Some examples of displays incorporate an arrangement of different colored light-emitting elements, such as light-emitting diodes (LEDs), for example red-green-blue element pixel packages. In some examples, displays have been used to display graphics or video content such as various advertisements for products and companies. The displays can be used in exterior environments, such as in an outdoor stadium or arena, or in an interior environment, such as an indoor stadium, arena, or venue. Displaying various advertisements over the course of a time period (e.g., a sports game held at a stadium) can generate monetary gain for the establishment.
Sound systems are also used in the exterior and interior environments and can increase the overall experience for occupants. Some examples of sound systems incorporate a static advertisement such as a scrim that includes a printed advertisement. However, since the static advertisements can only display a single advertisement the amount of monetary gain is limited.
The present inventors have recognized, among other things, that a problem to be solved includes providing a display over a speaker without sacrificing the quality of the sound. For example, existing systems and methods for providing an advertisement over a speaker includes a static advertisement (e.g., a scrim including a printed advertisement) where only a single advertisement can be displayed over a time period (e.g., a sporting game). The present subject matter provides a solution to this problem, by providing an acoustically transparent display that is coupled to a housing that includes at least one audio speaker. The acoustically transparent display of the present disclosure provides little to no adverse effect to sound quality and can be used to display a plurality of advertisements over the course of a time period.
In an example, the present subject matter provides an audio and display system comprising a housing having an interior region, at least one audio speaker positioned within the interior region, and a display coupled to the housing. The display includes a frame coupled to the housing, the frame having a plurality of mounting members, wherein at least two adjacent mounting members of the plurality of mounting members are spaced apart by a first distance, a plurality of support members coupled to the mounting members of the frame, wherein at least two adjacent support members of the plurality of support members are spaced apart by a second distance, and a plurality of light-emitting elements coupled to each of the plurality of support members, wherein the display module is substantially acoustically transparent.
In another example, the present subject matter provides a display comprising a frame having a plurality of mounting members, wherein at least two adjacent mounting members of the plurality of mounting members are spaced apart by a distance. The display includes at least one support member mounted to the plurality of mounting members, the at least one support member defining a plurality of cavities, wherein a support member area is provided by a total support member footprint area excluding a total cavity area, and a plurality of light-emitting elements coupled to the plurality of support member, wherein the display is substantially acoustically transparent.
In another example, the present subject matter provides a display comprising a frame having a plurality of mounting members, wherein at least two adjacent mounting members of the plurality of mounting members are spaced apart by a first distance, a plurality of support members mounted to the plurality of mounting members, wherein at least two adjacent support members of the plurality of support members are spaced apart by a second distance, and a plurality of light-emitting elements coupled to each of the plurality of support members, wherein the display module is substantially acoustically transparent.
In another example, the present subject matter provides a method of manufacturing a display system comprising mounting a plurality of light-emitting elements along each of a plurality of support members, providing or obtaining a frame having a plurality of mounting members spaced apart by a first distance, and coupling the plurality of support members to the plurality of mounting members such that each of the plurality of support members are spaced apart by a second distance so that the frame and the plurality of support members are substantially acoustically transparent.
These and other examples and features of the present audio and display module and related methods will be set forth, in part, in the following Detailed Description. This Overview is intended to provide an overview of subject matter of the present disclosure and is not intended to provide an exclusive or exhaustive explanation. The Detailed Description below is included to provide further information about the present subject matter.
In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
In the following Detailed Description, reference is made to the accompanying drawings which form a part hereof. The drawings show, by way of illustration, specific examples in which the present audio and display systems and related methods can be practiced. These examples are described in sufficient detail to enable those skilled in the art to practice, and it is to be understood that other embodiments can he utilized and that structural changes can be made without departing from the scope of the present disclosure. Therefore, the following Detailed Description is not to he taken in a limiting sense, and the scope of the present disclosure is defined by the appended claims and their equivalents.
The display module 14 can include a frame 10, a plurality of support, members 16, and a plurality of light-emitting elements 18. The frame 10 can include a frame body 11 and a plurality of mounting members 12 extending between the frame body 11. At least two adjacent mounting members 12 of the plurality of mounting members 12 can be spaced apart by a first distance 13. In an example, each of the mounting members 12 of the plurality of mounting members 12 can be spaced apart from an adjacent mounting member 12 by the first distance 13. Additionally, each of the plurality of mounting members 12 can be spaced apart from an adjacent mounting member 12 by at least the first distance 13.
The plurality of light-emitting elements 18 can be coupled to each of the plurality of support members 16. In an example, at least two adjacent support members 16 of the plurality of support members 16 are spaced apart by a second distance 20. In another example, each of the support members 16 of the plurality of support members 16 can be spaced apart from adjacent support members 16 by at least the second distance 20. The display module 14 can also include a plurality of Light emitting elements 18. The plurality of support members 16 can be coupled to the mounting members 12 of the frame 10.
The display module 14 can include a front display surface 24 that can be configured to provide a display of graphics or video content. The front display surface 24 can be formed from the plurality of light-emitting elements 18 coupled to the plurality of support members 16. In an example, the light-emitting elements 18 can comprise light-emitting diode (LED) devices, although other types of light-emitting devices can be used. For the sake of brevity, the remainder of this disclosure will describe the light-emitting elements 18 as LEDs 18. However, a person of skill in the art will understand that other types of light-emitting devices can be contemplated.
When multiple LEDs 18 are positioned together in close proximity, various colors can be shown by combining the colors of one or more of the LEDs 18. In an example, the front display surface 24 can include an array of LED pixels, with each LED pixel including a red LED, a green LED, and a blue LED. The red, green, and blue LEDs can cooperate to provide a spectrum of colors when one, two, or three of the light emitting elements in a pixel are lit at varying intensities. The front display surface 24 can also provide a black or empty looking surface over a portion of the display, when desired, by deactivating or turning off the LEDs in a particular portion of the front display surface 24. The front display surface 24 of the display module 14 can be combined with front display surfaces of one or more adjacently-positioned displays modules to form a front display surface of a larger display module.
In an example, the display module 14 can be coupled to the housing 4 opposite of a sound producing portion of the at least one audio speaker 6. In an example, the display module 14 is not coupled to housing but is coupled to the audio speaker 6. In another example, the display module 14 is not coupled to either the housing 4 or the audio speaker 6 but is placed in front of one or more audio speakers 6.
As discussed herein, the display module 14 can form a substantially acoustically transparent display. That is, sound produced from the at least one audio speaker 6 can pass through the display module 14 (e.g., the frame 10 and the plurality of support members 16 including the plurality of LEDs 18) without being substantially adversely affected. In this document, the term “substantially acoustically transparent” is used to include a frequency response measurement taken as sound passes through the display module 14 that varies by less than an acceptable decibel deviation threshold. The acceptable decibel deviation threshold can depend on the environment in which the audio and display system 2 is to be operating. For example, if the audio and display system 2 is to be used in a large, open-air stadium, a relatively small decibel deviation threshold may be acceptable. If the audio and display system 2 is being used in a small, indoor space, than a relatively larger decibel deviation threshold may be acceptable. In an example, the decibel deviation threshold can be no more than about six (6) decibels from a frequency response measurement taken without the display module 14. In another example, the decibel deviation threshold can be no more than about five (5) decibels from a frequency response measurement taken without the display module 14. In yet another example, the decibel deviation threshold can be no more than about four (4) decibels from a frequency response measurement taken without the display module 14. In still another example, the decibel deviation threshold can be no more than about three (3) decibels from a frequency response measurement taken without the display module 14.
At least two adjacent mounting members 12 of the plurality of mounting members 12 can be spaced apart by a first distance 13. In an example, the first distance 13 can he equal to or greater than 20 millimeters. For example, the first distance 13 can be a minimum spacing between the plurality of mounting members 12 that can provide for adequate mechanical support to the display module 14, but which does not substantially adversely affect the sound quality of the at least one audio speaker 6 (shown in
A distance 30 between the ultimate mounting members 12 and the frame 10 can be the same or different from the first distance 13. In an example, the distance 30 can be from about 20 millimeters to about 2000 millimeters.
The plurality of mounting members 12 can have a rectangular cross-sectional shape. However, the plurality of mounting members 12 can have a number of different cross-sectional shapes. For example, the cross-sectional shape of the plurality of mounting members 12 can include, but is not limited to, circular, ovular, square, triangular, trapezoidal, polygonal, parallelogram, rhomboidal, and other irregular shapes. A mounting member thickness 36 can be from about 2.5 millimeters to about 75 millimeters. In an example, the mounting member thickness 36 can be about 25 millimeters. The mounting member thickness 36 is a thickness of the mounting member 36 in a direction that is orthogonal to the direction of sound travel and can be the same for each mounting member 12 of the plurality of mounting members 12. Additionally, the mounting member thickness 36 of each mounting member 12 of the plurality of mounting members 12 can vary between each mounting member 12.
A mounting member center-to-center distance 32 between adjacent mounting members 12 of the plurality of mounting members 12 can be from about 20 millimeters to about 2000 millimeters. In an example, the mounting member center-to-center distance 32 can be about 500 milliliters. The mounting member center-to-center distance 32 between each adjacent mounting member 12 of the plurality of mounting members 12 can be the same. Additionally, the mounting member center-to-center distance 32 between each adjacent mounting member 12 of the plurality of mounting members 12 can be different.
The plurality of mounting members 12 can include a plurality of connection holes 34. The plurality of connection holes 34 can be a threaded hole configured to receive a screw for coupling the display module 14 (as shown in
In an example, the frame body 11 and the plurality of mounting members 12 can be manufactured as an integral body. In another example, the frame body 11 and the plurality of mounting members 12 can be formed separately and subsequently coupled together. The frame 10 can be manufactured to minimize potential vibration caused by the at least one audio speaker 6 (as shown in
The plurality of support members 16 can have an elongate body 46. The plurality of LEDs 18 can he coupled to the plurality of support members 16. The plurality of support members 16 and the plurality of LEDs 18 can form the front display surface 24 that is configured to provide for a display of graphics or video content. The plurality of support members 16 can be aligned in a direction that is substantially perpendicular to the plurality of mounting members 12 of the frame 11. In the example shown in
At least two adjacent support members 16 of the plurality of support members 16 can be spaced apart by the second distance 20. The second distance 20 can be from about 10 millimeters to about 100 millimeters. The second distance 20 is a distance between adjacent support members 16 of the plurality of support members 16 that does not adversely affect the sound quality of the at least one audio speaker 6 (as shown in
A distance 40 between the ultimate mounting members 16 and the frame 10 can be the same or different from the second distance 20. In an example, the distance 40 can be from about 0.5 millimeters to about 100 millimeters. A support member thickness 42 in a direction generally orthogonal to the direction of sound travel (as shown in
A support member center-to-center distance 44 between adjacent support members 16 of the plurality of mounting members 16 can be from about 5 millimeters to about 100 millimeters. In an example, the support member center-to-center distance 42 can be about 25 millimeters. The support member center-to-center distance 42 between each adjacent support member 16 of the plurality of support members 16 can be the same. Additionally, the support member center-to-center distance 42 between each adjacent support member 16 of the plurality of support members 16 can be different from each other.
In an example, each of the plurality of support members 16 can be independent from the other support members 16 and individually coupled to the frame 10 such that at least two adjacent support members 16 are spaced apart by the second distance 20. In another example, the plurality of support members 16 can be coupled together such that at least two adjacent support members 16 are spaced apart by the second distance 20. For example, a wire can be woven around the plurality of support members 16 to maintain the second distance 20 between at least two adjacent support members 16 of the plurality of support members 16.
In an example, the plurality of support members 16 can define a plurality of cavities 17 between adjacent support members 16. A total support member area is less than a total display footprint area. The total display footprint area can be the area defined by the perimeter of support member, including the area of the support, members and the area of the cavities (e.g., space between support members). In an example, the total display footprint area can be equal to or less than seventy five percent of the total display footprint area. Stated differently, the total cavity area is at least 25 percent of the total display footprint area. In another example, the total cavity area can be about 35 percent of the total support member footprint area. In an example, the plurality of cavities 17 defined by the spaced apart support members 16 can provide a total support member area percentage threshold of the total support member footprint area that allows the plurality of support members 16 to be substantially acoustically transparent and not adversely affect the sound quality. That is, sound produced from the at least one audio speaker 6 (as shown in
One or more circuit boards 50 (e.g., printed circuit boards) and a plurality of LEDs 18 can be coupled to the support member 16. The plurality of LEDs 18 can be electrically coupled to the circuit board 50. In an example, the LEDs 18 can comprise through-hole technology, where an LED includes a lead pin that can be inserted through a hole in the circuit board and where the lead pin can be soldered to a connection pad on the back side of the circuit board. In another example, the LEDs 18 can comprise surface-mount technology (SMT) LEDs, also referred to as surface-mount LEDs. A surface-mount LED is mounted directed onto the front face of a circuit board by being soldered directly to solder pads. Surface-mount LEDs can be smaller than through-hole LEDs and can take up less space on the circuit board.
The one or more circuit boards 50 can be disposed within the recess 48 of the support member 16. For example, the one or more circuit boards 50 can be coupled to the support member 16 by, for example, an interference fit, gluing, locking, or integration. At least a portion 54 of the plurality of LEDs 18 can project from the recess 48.
In an example, the support member 16 can include an encapsulant 52 disposed within the recess 48. The encapsulant 52 can be incorporated into the support member 18 for environmental protection. The encapsulant 52 can substantially cover at least a portion of the circuit board 50 and a portion of the plurality of LEDs 18. For example, the portion of the plurality of LEDs 18 that are disposed within the recess 48. Additionally, the encapsulant 52 can fill the recess 48 and substantially seal off the recess 48 from exterior environment, e.g., to substantially seal the circuit board 50 and any electrical connections between the LEDs 18 and the circuit board from moisture or other contaminants. The encapsulated circuit board 50 can be coupled with the support member 16 and can be configured for use in an exterior environment, such as in an outdoor stadium or arena, or in an interior environment, such as an indoor stadium, arena, or venue. In an example, the encapsulant is dispensed through a nozzle into the recess 48 formed by the plurality of support members 18. For example, a precision metering system can be used to dispense the encapsulant into the recess 48 until at least the circuit board 50 is covered. In an example, the encapsulant is delivered until the open volume of the recess 48 is filled.
Examples of materials that can be used for the encapsulant 52 include, but are not limited to, silicones and polyurethanes, In an example, the encapsulant 52 can be molded from a silicone encapsulant, such as silicone electronics encapsulants manufactured by Dow Corning Corp., Midland, Mich., USA, such as Dow Corning EE-1184 silicone encapsulant.
The example illustrated in
In an example, the contrast enhancement element 56 can be coupled to or onto or around the support member 16 including the plurality of LEDs 18. For example, the contrast enhancement element 56 can be coupled to the support member 16 via thread forming screws, rivets, or a snap fit. The contrast enhancement element 56 can also be coupled to the support member 16 via adhesive tapes, epoxies or glues.
The fastening device 58 can include a cover 62. When the cover 62 is rotated, the cover 62 is configured to engage with the two extending arms 66 to couple the support member 16 to a mounting member 12 (as shown in
In an example, the support member 90 can define a plurality of cavities 104. In the example shown in
A total support member area can be less than the total display footprint area. The total display footprint area can be the area defined by the perimeter of the support member 90, including the area of the support members and the area of the cavities 104. In an example, the total support member area can be equal to or less than seventy-five percent of the total display footprint area. Stated differently, the total cavity area can be at least about twenty-five percent of the total display footprint area. In another example, the total cavity area can be at least about thirty-five percent of the total display footprint area. In an example, the total support member area can be below a total support member area percentage threshold. The total support member area percentage threshold can be a maximum percentage that the total support member area can occupy of the total display footprint area that will not adversely affect the sound quality from an audio speaker. Maintaining the total support member area below the total support member area percentage can provide a suitable percentage of “open space” provided by the plurality of cavities 104 and allows the support members 90 to be substantially acoustically transparent and not adversely affect the sound quality. That is, sound produced from the at least one audio speaker 6 (as shown in
The support member 90 can include a circuit board 98 where the plurality of LEDs 92 can be mounted and electrically coupled to the circuit board 98. For example, the plurality of LEDs 92 can be mounted to a front face 100 of the circuit board 98. In an example, the LEDs 92 can comprise surface-mount LEDs.
As illustrated in
In an example, an encapsulating mask 102 can be formed over at least the front face 100 of the circuit board 98. The encapsulating mask 102 can substantially cover and substantially seal at least a portion of the front face 100 and at least a portion of the LEDs the encapsulating mask 102 can substantially cover and substantially seal at least a portion of the front face 100 and at least a portion of the LEDs 92 mounted to the front face mounted to the front face 100. In an example, the encapsulating mask 102 can include a plurality of projections 106 that are each configured to receive and cover a corresponding LED 92. The material that forms the encapsulating mask 102 can be substantially transparent so that light emitted from the LEDs 92 can be emitted through the encapsulating mask 102. Example of an encapsulating masks that can be used with display modules is described in U.S. Provisional Application Ser. No. 61/735,346, filed on Dec. 10, 2012, entitled “Encapsulation of Light-Emitting Elements on a Display Module,” assigned to the assignee of this application, the disclosure of which is incorporated herein by reference in its entirety.
The encapsulated circuit board 98 can be coupled with the support member 90. The support member 90, circuit board 98, and plurality of LEDs 92 can be coupled to the frame 10 (shown in
As shown in
The method 100, at 104, can include providing or obtaining a frame having a plurality of mounting members spaced apart by a first distance, such as frame 10 including the frame body 11 and the plurality of mounting members 12 extending between a first surface 26 and a second surface 28 of the frame body 11. The plurality of mounting members 12 can be spaced apart by a first distance 13. The first distance 13 can be equal to or greater than 20 millimeters. As discussed herein, the first distance 13 can be a minimum spacing between adjacent mounting members 12 of the plurality of mounting members 12 that does not adversely affect the sound quality of the at least one audio speaker 6 (shown in
The method 100, at 106, can include coupling the plurality of support members to the plurality of mounting members such that each of the plurality of support members are spaced apart by a second distance. For example, the plurality of support members 16 including the plurality of LEDs 18 can be coupled to the plurality of mounting members 12, where each of the plurality of support members 16 are spaced apart by a second distance 20. In an example, the second distance 20 can be within a range about 5 millimeters to about 100 millimeters. As described herein, the second distance 20 is a distance between adjacent support members 16 of the plurality of support members 16 that does not adversely affect the sound quality of the at least one audio speaker 6. Additionally, the second distance 20 is a distance between adjacent support members 38 of the plurality of support members 16 that does not adversely affect the visual quality of the display module 14. The display module 14 (e.g., the plurality of support members 16 (including a plurality of LEDs) coupled to the frame 10) can form an acoustically transparent display. That is, sound can pass through the display module 14 without being substantially adversely affected.
In an example, coupling the plurality of support members 16 to the plurality of mounting members 12 can include coupling a plurality of brackets 60 of a plurality of fastening devices 58 to the plurality of mounting members 12. For example, each of the support members 16 and the brackets 60 can include holes 64, 34 that can be aligned within each other and configured to receive a screw. Coupling the plurality of support members 16 to the plurality of mounting members 12 can include positioning the plurality of support members 16 within an opening 72 defined by compressible extension arms 66 of the fastening device 58. The method 100 can include rotating a cover 64 of the fastening device 58 in a first direction 73 such that projections 76 of the compressible extension arms 66 engage with a ramped surface 82 of first and second ends 80, 82 of the cover 64. The cover 65 can be rotated until the projections 76 are positioned with in the pockets 84 of the first and second ends 80, 82 of the cover 64.
The method 100 can include coupling the display module 14 to a housing 4 having an interior region 8, wherein at least one audio speaker 6 is positioned within the interior region 8. The housing 4 can include the interior region 8, where at least one audio speaker 6 is positioned within the interior region 8. The acoustically transparent display module 14 can be coupled to the housing 4 by hardware, including but not limited to, pins, screws, and clips.
In an example, the method 100 can further include coupling an acoustically transparent scrim between the housing 4 and the frame 10. For example, if the audio and display system 2 is being using in an external environment, the acoustically transparent scrim can provide protection from elements such as leaves, rocks, debris, and animals entering the interior cavity of the housing 4.
In an example, the method 100 can further include forming an encapsulant 52 within the recess 48 of the plurality of support members 16. For example, the encapsulant can be mixed and dispensed using a precision nozzle into the recess 48 of the plurality of support members 16. In an example, the encapsulant can be dispensed until at least the circuit board 50 is covered. In other example, the encapsulant can be dispensed until the open volume of the recess 48 is filled.
In an example, the method 100 can further include forming a contrast enhancement element 56 on the plurality of support members 16. The contrast enhancement element 56 can include, but is not limited to stamped, extruded or molded metal or plastic such as 5052 aluminum sheet, 1034 steel, and polycarbonate. In an example, the contrast enhancement element 56 can be coupled to or onto or around the support member 16 including the plurality of LEDs 18.
The present disclosure is explained in greater detail below through illustrative examples.
Full range Sounds System (100 Hz to 10 kHz), available from Daktronics. Dual FFT Measurement System (EASERA SysTune), available from AFMG, Rational Acoustics, Meyer Sound Labs.
Sound Devices USBPRe2 Measurement Preamp, available from Sound Devices.
Josephson C55OH Omnidirectional Reference Microphone, available from TestMic.com.
A sound system was sent a full range signal and a frequency response (magnitude) was measured with a reference microphone and recorded with the dual FFT Measurement system. Ground plane measurements were taken on an axis at 25 feet increments out to 250 feet. Additional measurements of the sound system were recorded off axis at 10 degree increments to 90 degrees oft axis. The results for Comparative Example A are compared to the following Examples 1-3.
A substantially acoustically transparent display was placed in front of the sound system. The substantially acoustically transparent display in Example 1 had a plurality of mounting members spaced apart by 500 millimeters and a plurality of support members (including a plurality of LEDs) were coupled to the mounting members and spaced apart by 25 millimeters.
The sound system was sent a full range signal and a frequency response (magnitude) was measured with a reference microphone and recorded with the dual FFT Measurement system. Ground plane measurements were taken on an axis at 25 feet increments out to 250 feet. Additional measurements of the sound system were recorded off axis at 10 degree increments to 90 degrees off axis. The results for Example 1 at 25 feet are shown in
In
A substantially acoustically transparent display was placed in front of the sound system. The substantially acoustically transparent display in Example 1 had a plurality of mounting members spaced apart by 500 millimeters and a plurality of support members (including a plurality of LEDs) were coupled to the mounting members and spaced apart by 40 millimeters.
The sound system was sent a full range signal and a frequency response (magnitude) was measured with a reference microphone and recorded with the dual FFT Measurement system. Ground plane measurements were taken on an axis at 25 feet increments out to 250 feet. Additional measurements of the sound system were recorded off axis at 10 degree increments to 90 degrees off axis. The results for Example 2 at 25 feet are shown in
In
A substantially acoustically transparent display was placed in front of the sound system. The substantially acoustically transparent display in Example 1 had a plurality of mounting members spaced apart by 500 millimeters and a plurality of support members (including a plurality of LEDs) were coupled to the mounting members and spaced apart by 50 millimeters.
The sound system was sent a full range signal and a frequency response (magnitude) was measured with a reference microphone and recorded with the dual FFT Measurement system. Ground plane measurements were taken on an axis at 25 feet increments out to 250 feet. Additional measurements of the sound system were recorded off axis at 10 degree increments to 90 degrees off axis. The results of Example 3 are shown in
In
In
The results in
In
The results in
In
Each of these non-limiting examples can stand on its own, or can be combined in any permutation or combination with any one or more of the other examples
Example 1 can include subject matter such as an audio and display system The audio and display system includes a housing having an interior region, at least one audio speaker positioned within the interior region, and a display coupled to the housing. The display includes a frame coupled to the housing, the frame having a plurality of mounting members, wherein at least two adjacent mounting members of the plurality of mounting members are spaced apart by a first distance, a plurality of support members coupled to the mounting members of the frame, wherein at least two adjacent support members of the plurality of support members are spaced apart by a second distance, and a plurality of light-emitting elements coupled to each of the plurality of support members, wherein the display module is substantially acoustically transparent.
Example 2 can include, or can optionally be combined with the subject matter of Example 1, to optionally include where the plurality of support members define a plurality of cavities between adjacent support members of the plurality of support members.
Example 3 can include, or can optionally be combined with the subject matter of Example 1 or 2, to optionally include where a total support member footprint area is equal to or less than about seventy-five percent of a total display footprint area.
Example 4 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1 through 3 to optionally include where the first distance is equal to or greater than 20 millimeters.
Example 5 can include, or can optionally be combined with the subject matter of one or any combination of Examples 1 through 4, to optionally include where the second distance is from about 10 millimeters to about 100 millimeters.
Example 6 can include, or can optionally be combined with the subject matter of Examples 1 through 5 to optionally include where the at least one audio speaker is configured to provide an audio frequency from about 20 hertz to about 20,000 hertz.
Example 7 can include, or can optionally be combined with the subject matter of Examples 1 through 6 to optionally include where each of the plurality of support members include an elongated body having a recess, the recess extending in a longitudinal direction of the elongated body.
Example 8 can include, or can optionally be combined with the subject matter of Examples 1 through 7 to optionally include one or more circuit boards disposed within the recess of each of the plurality of support members.
Example 9 can include, or can optionally be combined with the subject matter of Examples 1 through 8 to optionally include where each of the plurality of light-emitting elements are electrically coupled to a respective circuit board of the one or more circuit boards, and wherein a portion of the plurality of light-emitting elements projects from the recess.
Example 10 can include subject matter such as a display. The display can include a frame having a plurality of mounting members, wherein at least two adjacent mounting members of the plurality of mounting members are spaced apart by a distance, at least one support member mounted to the plurality of mounting members, the at least one support member defining a plurality of cavities, and a plurality of light-emitting elements coupled to the at least one support member, wherein the display is substantially acoustically transparent.
Example 11 can include, or can optionally be combined with the subject matter of Examples 1 through 10 to optionally include where a total support member footprint area is less than or equal to seventy five percent of a total display footprint area.
Example 12 can include, or can optionally be combined with the subject matter of Examples 1 through 11 to optionally include where the distance is equal to or greater than 20 millimeters.
Example 13 can include, or can optionally be combined with the subject matter of Examples 1 through 12 to optionally include where at least one support member includes a plurality of support members, and at least two adjacent support members of the plurality of support members are spaced apart by a second distance.
Example 14 can include, or can optionally be combined with the subject matter of Examples 1 through 13 to optionally include the second distance is from about 20 millimeters to about 2000 millimeters.
Example 15, can include, or can optionally be combined with the subject matter of Examples 1 through 14 to optionally include a plurality of fastening devices configured to couple the plurality of support members to the plurality of mounting members.
Example 16, can include, or can optionally be combined with the subject matter of Examples 1 through 15 to optionally include where each of the plurality of fastening devices includes
Example 17 can include subject matter such as a method of manufacturing a display. The method can include mounting a plurality of light-emitting elements along each of a plurality of support members, providing or obtaining a frame having a plurality of mounting members spaced apart by a first distance, and coupling the plurality of support members to the plurality of mounting members such that each of the plurality of support members are spaced apart by a second distance so that the frame and the plurality of support members are substantially acoustically transparent.
Example 18 can include, or can optionally be combined with the subject matter of Examples 1 through 17 to optionally include coupling the frame to a housing having an interior region, wherein at least one audio speaker is positioned within the interior region.
Example 19 can include, or can optionally be combined with the subject matter of Examples 1 through 18 to optionally include where mounting the plurality of light-emitting elements along the plurality of support members comprises electrically coupling the plurality of light-emitting elements to a plurality of circuit boards positioned in a recess of each of the plurality of support members such that a portion of the plurality of light-emitting elements projects from the recess.
Example 20 can include, or can optionally be combined with the subject matter of Examples 1 through 19 to optionally include forming an encapsulant within the recess over at least a portion of the plurality of circuit boards and at least a portion of the plurality of light-emitting elements.
The above Detailed Description is intended to be illustrative, and not restrictive. For example, the above-described examples (or one or more elements thereof) can be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. Also, various features or elements can be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter can lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
In the event of inconsistent usages between this document and any documents so incorporated by reference, the usage in this document controls.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated, In this document, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, composition, formulation, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
Method examples described herein can be machine or computer-implemented, at least in part. Some examples can include a computer-readable medium or machine-readable medium encoded with instructions operable to configure an electronic device to perform methods or method steps as described in the above examples. An implementation of such methods or method steps can include code, such as microcode, assembly language code, a higher-level language code, or the like. Such code can include computer readable instructions for performing various methods. The code may form portions of computer program products. Further, in an example, the code can be tangibly stored on one or more volatile, non-transitory, or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media can include, but are not limited to, hard disks, removable magnetic disks, removable optical disks (e.g., compact disks and digital video disks), magnetic cassettes, memory cards or sticks, random access memories (RAMs), read only memories (ROMs), and the like.
The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
This non-provisional patent application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/740,907, entitled “AUDIO AND DYNAMIC DISPLAY SYSTEM,” filed on Dec. 21, 2012, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61740907 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13842829 | Mar 2013 | US |
Child | 15355832 | US |