The present invention relates to digital signal processing, and more particularly to audio frequency bandwidth expansion.
Audio signals sometimes suffer from inferior sound quality. This is because their bandwidths have been limited due to the channel/media capacity of transfer/storage systems. For example, cut-off frequencies are set at about 20 kHz for CD, 16 kHz for MP3, 15 kHz for FM radio, and even lower for other audio systems whose data rate capability are poorer. At playback time, it is beneficial to recover high frequency components that have been discarded in such systems. This processing is equivalent to expanding an audio signal bandwidth, so it can be called bandwidth expansion (BWE); see
On the other hand, time domain processing for BWE has been proposed in which high frequency components are synthesized by using amplitude modulation (AM) and extracted by using a high-pass filter. This system performs the core part of high frequency synthesis in time domain and is time domain alias-free. Another property employed is to estimate the cut-off frequency of input signal, on which the modulation amount and the cut-off frequency of the high-pass filter can be determined in run-time depending on the input signal. BWE algorithms work most efficiently when the cut-off frequency is known beforehand. However, it varies depending on signal content, bit-rate, codec, and encoder used. It can vary even within a single stream along with time. Hence, a run-time cut-off frequency estimator, as shown in
Another bandwidth problem occurs at low frequencies: bass loudspeakers installed in electric appliances such as flat panel TV, mini-component, multimedia PC, portable media player, cell-phone, and so on cannot reproduce bass frequencies efficiently due to their limited dimensions relative to low frequency wavelengths. With such loudspeakers, the reproduction efficiency starts to degrade rapidly from about 100-300 Hz depending on the loudspeakers, and almost no sound is excited below 40-100 Hz; see
The present invention provides audio bandwidth expansion with adaptive cut-off frequency detection and/or a common expansion for stereo signals and/or even-odd harmonic generation for part of low frequency expansion.
a-1m show spectra and functional blocks of bandwidth extension to either high or low frequencies of preferred embodiments.
a-2g show known spectra and bandwidth extensions.
a-3b illustrate a processor and network communications.
a-4c are experimental results.
1. Overview
Preferred embodiment methods include audio bandwidth extensions at high and/or low frequencies. Preferred embodiment high-frequency bandwidth expansion (BWE) methods include amplitude modulation and a high-pass filter for high frequency synthesis which reduces computation by making use of an intensity stereo processing in case of stereo signal input. Another BWE preferred embodiment estimates the level of high frequency components adaptively; this enables smooth transition in spectrum from original band-limited signals to synthesized high frequencies with a more natural sound quality.
Further preferred embodiments provide for the run-time creation of the high-pass filter coefficients, use of windowed sinc functions that requires low computation with much smaller look-up table size for ROM. This filter is designed to have linear phase, and thus is free from phase distortion. And the FIR filtering operation is done in frequency domain using the overlap-save method, which saves significant amount of computation. Some other operations including the AM operation are also converted to frequency domain processing so as to minimize the number of FFT operations.
In particular, a preferred embodiment method first identifies a cut-off frequency, as the candidate, with adaptive thresholding of the input power spectrum. The threshold is adaptively determined based on the signal level and the noise floor that is inherent in digital (i.e., quantized) signals. The use of the noise floor helps discriminate the presence of high frequencies in input signals. To verify the candidate cut-off frequency, the present invention then detects the spectrum envelope around the candidate. If no ‘drop-off’ is found in the spectrum envelope, the candidate will be treated as a false cut-off and thus discarded. In that case, the cut-off frequency will be identified as the Nyquist frequency FS/2. All the processing is done in the decibel domain to emphasize the drop-off in spectra percentage and to estimate the cut-off frequency in a more robust manner.
Preferred embodiment systems perform preferred embodiment methods with any of several types of hardware: digital signal processors (DSPs), general purpose programmable processors, application specific circuits, or systems on a chip (SoC) which may have multiple processors such as combinations of DSPs, RISC processors, plus various specialized programmable accelerators; see
2. Single-channel AM-based BWE with Adaptive Signal Level Estimation
Preferred embodiment methods and devices provide for stereo BWE using a common extension signal. Thus, initially consider preferred embodiment BWE for a single channel system, this will be the baseline implementation for the preferred embodiment stereo-channel BWE. We adopt the AM-based BWE method due to its good sound quality and lower computation complexity.
b shows the block diagram. First, let us assume that the input signal x(n) has been sampled with sampling frequency FS Hz and low-pass filtered with a filter having cut-off frequency FC Hz. Of course,
FC<FS/2=FN
where FN denotes the Nyquist frequency. For example, typical sampling rates are FS=44.1 or 48 kHz, so FN=22.05 or 24 kHz; whereas, FC may be about 16 kHz, such as in MP3.
In the figure, u1(n) is output from the amplitude-modulation block AM (more precisely, cosine-modulation). Let the block AM be a point-wise multiplication with a time varying cosine weight:
u1(n)=cos[2πfmn/FS]x(n)
where fm represents the frequency shift amount (known as a carrier frequency for AM) from the input signal. The behavior of this modulation can be graphically analyzed in the frequency domain. Let X(f) be the Fourier spectrum of x(n) defined as
X(f)=Σ−∞<n<∞x(n) exp[−j2πfn]
and let U1(f) be the Fourier spectrum of u1(n) defined similarly. Then the modulation translates into:
U1(f)=½X(f−fm/FS)+½X(f+fm/FS)
This shows that U1(f) is composed of frequency-shifted versions of X(f). The top two panels of
As shown in
Before being added to x(n), the level of u2(n) is adjusted using gain G(n), so that the band-expanded spectrum exhibits a smooth transition from the original spectrum through the synthesized high frequency spectrum (see the lower right panel in
In
Then G(n) is determined by
G(n)=2Σi|vH(n−i)|/αΣi|vM(n−i)|
where α factor compensates for the different frequency ranges in vH(n) and vM(n), and the factor of 2 is for canceling the ½ in the definition of U1(f). Finally, we obtain the band-expanded output:
y(n)=x(n)+G(n)u2(n)
From its definition, G(n) can be seen to be a rough estimation of the energy transition of |X(f)| for f in the interval FC−fm<f<FC. This is because the definition of G(n) can be interpreted using Parseval's theorem as
Note that this is just for ease of understanding and is mathematically incorrect because Parseval's theorem applies in L2 and not in L1. For example, if the numerator integral gives a small value, it is likely that X(f) decreases as f increases in the interval FC−fm<f<FC. Thus the definition tries to let G(n) be smaller so that the synthesized high frequency components get suppressed in the bandwidth expansion interval FC<f<FC+fm.
3. BWE for Stereo
a illustrates a first preferred embodiment system. In preferred embodiment methods the input stereo signals xl(n) and xr(n) are averaged and this average signal processed for high frequency component synthesis. Thus, first modulate:
u1(n)=cos[2πfmn/FS](xl(n)+xr(n))/2
Next, by high-pass filtering u1(n) with HPC(z), we obtain u2(n), the high frequency components. The signal u2(n) can be understood as a center channel signal for IS. We then apply the gains Gl(n) and Gr(n) to adjust the level of u2(n) for left and right channels, respectively. Ideally, we separately compute Gl(n) and Gr(n) for the left and right channels, but the preferred embodiment methods provide further computation reduction and apply HPM(z) only to the center channel while having HPH(z) applied individually to left and right channels. That is, left channel input signal xl(n) is filtered using high-pass filter HPH(z) to yield vl,H(n) and right channel input signal xr(n) is filtered again using high-pass filter HPH(z) to yield vr,H(n); next, the center channel signal (xl(n)+xr(n))/2 is filtered using high-pass filter HPM(z) to yield vM(n). Then define the gains for the left and right channels:
Gl(n)=2Σi|vl,H(n−i)|/αΣi|vM(n−i)|
Gr(n)=2Σi|vr,H(n−i)|/αΣi|vM(n−i)|
Lastly, compute the left and right channel bandwidth-expanded outputs using the separate left and right channel gains with the HPC-filtered, modulated center channel signal u2(n):
yl(n)=xl(n)+Gl(n)u2(n)
yr(n)=xr(n)+Gr(n)u2(n)
The determination of FC can be adaptive as described in the following section, and this provides a method to determine fm, such as taking fm=20 kHz−FC.
4. Cut-off Frequency Estimation
Preferred embodiment methods estimate the cut-off frequency FC of the input signal from the input signal, and then the modulation amount fm and the cut-off frequency of the high-pass filter can be determined in run-time depending on the input signal. That is, the bandwidth expansion can adapt to the input signal bandwidth.
b shows the block diagram of the preferred embodiment cut-off estimator. It receives input samples x(n) as successive frames of length N, and outputs the estimated cut-off frequency index kc with auxiliary characteristics of the detected envelope for each frame. The corresponding cut-off frequency is then given by
FC=FSkc/N
The input sequence x(n) is assumed to be M-bit linear pulse code modulation (PCM), which is a very general and reasonable assumption in digital audio applications. The frequency spectrum of x(n) accordingly has the so-called noise floor originating from quantization error as shown in
Suppose that x(n) was obtained through quantization of the original signal u(n) in which q(n)=x(n)−u(n) is the quantization error, and the quantization step size is
Δ=2−M+1
According to the classical quantization model, the quantization error variance is given by
E[q2]=Δ2/12≡Pq
On the other hand, the quantization error can generally be considered as white noise. Let Q(k) be the N-point discrete Fourier transform (DFT) of q(n) defined by
Q(k)=1/NΣ0≦n≦N−1q(n)e−j2πnk/N
Then, the expectation of the power spectrum will be constant as
E[|Q(k)|2]=PQ
The constant PQ gives the noise floor as shown in
From Parseval's theorem, the following relation holds:
Σ0≦k≦N−1|Q(k)|2=1/NΣ0≦n≦N−1q(n)2
By taking the expectation of this relation and using the foregoing, the noise floor is given by
PQ=Pq/N=1/(322MN)
As shown in block diagram
Let xm(n) be the input samples of the m-th frame as
xm(n)=x(Nm+n) 0≦n≦N−1
Then, the frequency spectrum of the windowed m-th frame becomes
Xm(k)=1/NΣ0≦n≦N−1w(n)xm(n)e−j2πnk/N
where w(n) is the window function such as a Hann, Hamming, Blackman, et cetera, window.
Define the peak power spectrum of the m-th frame, Pm(k) for 0≦k≦N/2, as
Pm(k)=max{αPm−1(k), |Xm(k)|2+|Xm(−k)|2}
where α is the decay rate of peak power per frame. Note that the periodicity Xm(k)=Xm(N+k) holds in the above definition. For simplicity, we will omit the subscript m in the peak power spectrum for the current frame in the following.
After the peak power spectrum is obtained, the candidate cut-off frequency kc′ is identified as the highest frequency bin for which the peak power exceeds a threshold T:
P(kc′)>T
The threshold T is adapted to both the signal level and the noise floor. The signal level is measured in mean peak power within the range [K1, K2] defined as
PX=ΣK
The range is chosen such that PX reflects the signal level in higher frequencies including possible cut-off frequencies. For example, [K1, K2]=[N/5, N/2]. The threshold T is then determined as the geometric mean of the mean peak power PX and the noise floor PQ:
T=√(PXPQ)
In the decibel domain, this is equivalent to placing T at the midpoint between PX and PQ as
=(X+Q)/2
where the calligraphic letters represent the decibel value of the corresponding power variable as
=10 log10 P
It must be noted that, even if there is no actual cut-off in P(k), the above method will identify a certain kc′ as the candidate cut-off, which is actually a false cut-off frequency. Hence, whether there is the true cut-off at the candidate kc′ or not should be examined.
In order to see if there is the actual cut-off at kc′, the preferred embodiment method detects the envelope of P(k) separately for below kc′ and for above kc′. It uses linear approximation of the peak power spectrum in the decibel domain, as shown in
y=aL(kc′−k)+bL
and
y=aH(k−kc′)+bH
The slopes aL, aH and the offsets bL, bH are derived by the simple two-point linear-interpolation. To obtain aL and bL, two reference points KL1 and KL2 are set as in
KL1=kc′−N/16, KL2=kc′−3N/16
Then, the mean peak power is calculated for the two adjacent regions centered at the two reference points as
PL1=(1/DL)ΣK
PL2=(1/DL)ΣK
where DL is the width of the regions:
DL=KL1−KL2
The linear-interpolation of the two representative points, (KL1, PL1) and (KL2, PL2), in the decibel domain gives
aL=(L2−L1)/DL
bL=(KL2L1−KL1L2)/DL
where L1,L2 are again decibel values of PL1, PL2.
Similarly, for the envelope above kc′, KH1 and KH2 are set appropriately, and
PH1=(1/DH)ΣK
PH2=(1/DH)ΣK
are computed, where
DH=KH2−KH1
Example values are
KH1=kc′+N/16, KH2=kc′+N/8
With these values aH and bH can be computed by just switching L to H in the foregoing.
In the preferred embodiment method, the candidate cut-off frequency kc′ is verified as
where kc is the final estimation of the cut-off frequency, and b is a threshold. The condition indicates that there should be a drop-off larger than b (dB) at kc′ so that the candidate can be considered as the true cut-off frequency.
There are many other possible ways to verify the candidate cut-off frequency kc′ using aL, bL, aH and bH. Another simple example is
bL>>bH
This condition means that the offsets should be on the expected side of the threshold. Even more sophisticated and robust criteria may be considered using the slopes aL and aH.
5. BWE in Time Domain
g shows the block diagram of a preferred embodiment time domain BWE implementation. The system is similar to the preferred embodiment of sections 2 and 3 but with a cut-off frequency (bandwidth) estimator and input delay z−D. Suppose that the input signal x(n) has been sampled with sampling frequency at FS and low-pass filtered with cut-off frequency at FC. The input signal x(n) is processed with AM to produce signal u1(n), which can be said to be a frequency-shifted signal. High-pass filter HC(z) is applied to u1(n) in order to preserve the input signal under the cut-off frequency FC when u1(n) is mixed with x(n). Therefore the cut-off frequency of HC(z) has to be set at FC. If FC is unknown a priori or varies with time, the cut-off estimator of the preceding section can be used in run-time to estimate FC and determine the filter coefficients of HC(z). The output from HC(z), u2(n), is amplified or attenuated with time-varying gain g(n) before being mixed with x(n). As described in foregoing sections 2-3, the gain g(n) is determined in run-time by the level estimator so that the spectrum of the output signal y(n) shows a smooth transition around FC. The input delay z−D is used to compensate for the phase delay caused by HC(z). For example, when HC(z) is designed as a linear phase FIR and its order is 2L, the delay amount is D=L.
The high-pass filter coefficients HC(z) is determined every time kc (or FC(n)) is updated. From the implementation view point, the filter coefficient creation has to be done with low computation complexity. The known approach precalculates and stores in a ROM a variety of IIR (or FIR) filter coefficients that correspond to the possible cut-off frequencies. If an IIR filter is used, HC(z) will have non-linear phase response and the output u2(n) will not be phase-aligned with the input signal x(n) even if we have the delay unit. This could cause perceptual distortion. On the other hand, FIR filters generally require longer tap length than IIR filters. Therefore huge amount of ROM size will be required to store FIR filter coefficients for variety of cut-off frequencies. To avoid these problems, the preferred embodiment design form HC(z) with FIR that requires small amount of ROM size and low computational cost. With this design, the preferred embodiment system enables better sound quality than the known approach with IIR implementation for HC(z) or much smaller ROM size than that with FIR implementation.
Our FIR filter design method is similar to that presented in cross-reference patent application No. 60/660,372, which is based on the well-known windowed sinc function. The impulse response hid(n)(m) of the “ideal” high-pass filter with cut-off angular frequency at ωC(n) at time n can be found by inverse Fourier transforming the ideal frequency-domain high-pass filter as follows:
hid(n)(m)=(½π){∫−π≦ω≦−ω
so
Substituting ωC(n)=2πFC(n)/FS gives
This “ideal” filter requires the infinite length for hid(n)(m). In order to truncate the length to a finite number, window function is often used that reduces the Gibbs phenomenon. Let the window function be denoted w(m) and non-zero only in the range −L≦m≦L, then practical FIR high-pass filter coefficients with order-2L can be given as
For run-time calculation of these filter coefficients, we factor h(n)(m) as
h(n)(m)=hw(m)hS(n)(m)
where
with h0(n)=(1−kc(n)/(N/2))w(0).
It is clear that hw(m) is independent of the cut-off frequency and therefore time-invariant. It can be precalculated and stored in a ROM and then referenced for generating filter coefficients in run-time with any cut-off frequencies. The term hS(n)(m) can be calculated with low computation using a recursive method as in the cross-referenced application. In particular, presume that
s1(n)=sin [2πkc(n)/N]
c1(n)=cos [2πkc(n)/N]
can be obtained by referring to a look-up table, then we can perform recursions for positive m:
hS(n)(1)=s1(n)
hS(n)(2)=2c1(n)hS(n)(1)
hS(n)(3)=2c1(n)hS(n)(2)−hS(n)(1)
. . .
hS(n)(m)=2c1(n)hS(n)(m−1)−hS(n)(m−2)
and for negative m use hS(n)(m)=−hS(n)(−m).
The FIR filter derived above doesn't satisfy causality; that is, there exists m such that h(n)(m)≠0 for −L≦m<0, whereas causality has to be satisfied for practical FIR implementations. To cope with this problem, we insert a delay in the FIR filtering in order to make it causal. That is,
u2(n)=Σ−L≦m≦Lu1(n−m−L)h(n)(m)
where u2(n) is the output signal (see
6. BWE in Frequency Domain
FIR filtering is a convolution with the impulse response function; and convolution transforms into pointwise multiplication in the frequency domain. Consequently, a popular alternative formulation of FIR filtering includes first transform (e.g., FFT) a block of the input signal and the impulse response to the frequency domain, next multiply the transforms, and lastly, inverse transform (e.g, IFFT) the product back to the time domain.
h shows the block diagram of the preferred embodiment frequency domain BWE implementation. For the overlap-save method, an overlapped frame of input signal is processed to generate a non-overlapped frame of output signal. See
x(r)(m)=x(Rr+m−N) 0≦m≦N−1
We assume x(m)=0 for m<0. Note that, for the FFT processing, N is chosen to be a power of 2, such as 256.
y(r)(m)=y(Rr+m−R) 0≦m≦R−1
In
Due to the frame-based processing, the cut-off frequency estimation can be done each frame, not for each input sample. Hence update of the high-pass filter becomes to be done less frequently. However, as is often the case, this causes no quality degradation because the input signal can be assumed to be stationary during a certain amount of duration, and the cut-off frequency is expected to change slowly.
For the r-th frame, the DFT (FFT implementation) of x(r) is defined as:
XS(r)(k)=Σ0≦m≦N−1x(r)(m) exp [−j2πkm/N]
The DFT coefficients XS(r)(k) will be used for high-frequency synthesis, and also the cut-off estimation after a simple conversion as explained in detail in the following.
The AM operation is applied to x(r)(m) as described in section 2 above:
u1(r)(m)=cos [2πFmm/FS]x(r)(m)
Note that, in the following discussion regarding frequency domain conversion, a constraint will have to be fulfilled on the frequency-shift amount Fm. Let km be a bin number of frequency-shift amount, we have to satisfy km=NFm/FS is an integer since the bin number has to be integer. On the other hand, for use of FFT, the frame size N has to be power of 2. Hence, Fm=FS/2integer.
Also note that, the use of overlapped frames requires another condition to be satisfied on the output frame size R. The cosine weight in the modulation for overlapped input signals in successive frames has to be the same values. Otherwise the same input signal in different frames is weighted by different cosine weights, which causes perceptual distortion around output frame boundaries. Since
x(r)(m)=x(Rr+n−N)=x(r−1)(m+R),
we have to satisfy
cos [2πFmm/FS]=cos [2πFm(m+R)/FS]
This leads to
Fm=FSI/R
where I is an integer value. This leads to R being 4 times an integer. This condition is not so strict for most of the applications. Overlap ratio of 50% (e.g, R=N/2) is often chosen for frequency domain processing, which satisfies R being 4 times an integer.
Then we convert the operation modulation to the frequency domain. Again with capitals denoting transforms of lower case:
U1(r)(k)=½(XS(r)(k−km)+XS(r)(k+km))
The equation indicates that, once we have obtained the DFT of the input frame, then the AM processing can be performed in frequency domain just by summing two DFT bin values.
Now apply the overlap-save method to implement the time domain FIR convolution at the end of section 5. Let the r-th frame of the output from the high-pass filter be u2(r)(m) for 0≦m≦R−1. The sequence can be calculated using the overlap-save method as follows. First, let h(r)(m) be the filter coefficients, which are obtained similarly to h(n)(m) as described in section 5 above but for the r-th frame instead of time n. The length-(2L+1) sequence h(r)(m) is extended to a periodic sequence with period N by padding with N−2L−1 0s. Note that we need 2L≦N−R to keep the convolution in a single block. Here we set 2L=N−R. After these, we can calculate FFT of h(r)(m) and denote this H(r)(k).
Now let V(r)(k)=H(r)(k) U1(r)(k) for 0≦k≦N−1. Then, let v(r)(m) denote the inverse FFT of V(r)(k); extract u2(r)(m) from v(r)(m):
u2(r)(m)=v(r)(m+L) for 0≦m≦R−1
By unframing the output frame u2(r)(m) (see
Here we explain our method to calculate the DFT of the filter coefficients, H(r)(k), which is required for the overlap-save method. Recall the formula of the filter coefficients for r-th frame, and after extending this to a periodic sequence with period N using zero padding, then we have
h(r)(m)=hw(m)hS(r)(m) for m=0, ±1, ±2, . . . , ±N/2
where
with h0(r)=(1−kc(r)/(N/2))w(0). Note we assume here that the cut-off frequency index for r-th frame, kc(r), has already been obtained. Also note that hS(r)(m) doesn't have to be zero-padded, because hw(m) is zero-padded and that makes h(r)(m) zero-padded.
It is well known that the time domain point-wise multiplication is equivalent to circular convolution of the DFT coefficients. Let Hw(k) and HS(r)(k), respectively, be the DFT of hw(m) and hS(r)(m), then the product h(r)(m)=hw(m)hS(r)(m) transforms to
where {circle around (X)} denotes the circular convolution and we assumed the periodicity on the DFT coefficients. Note that hw(m) is the sum of δ(m) plus an odd function of m, thus Hw(k)=1+jHw,Im(k) where Hw,Im(k) is a real sequence; namely, the discrete sine transform of hw(m). Since Hw,Im(k) is independent of the cut-off frequency, it can be precalculated and stored in a ROM. As for HS(r)(k), because hS(r)(m) is just the sine function, we can write
HS(r)(k)=h0(r)+j(N/2)[δ(k−kC(r))−δ(k+kC(r))]
Thus the circular convolution can be simplified significantly. Since the DFT coefficients of real sequences are asymmetric in their imaginary parts about k=0, the following relations hold:
and similarly,
1{circle around (X)}j(N/2)[δ(k−kC(r))−δ(k+kC(r))]=0
Consequently,
H(r)(k)=h0(r)+½[Hw,Im(k+kC(r))−Hw,Im(k−kC(r))]
Thus H(r)(k) can be easily obtained by just adding look-up table values Hw,Im(k).
The order of the high-pass filter, which has been set at 2L=N−R in the preferred embodiment method, can be further examined. In general, we hope to design a long filter that has better cut-off characteristic. However, due to the behavior of circular convolution of the overlap-save method, illegally long order of filter results in time domain alias. See
Preceding section 4 provided the method that estimates frame-varying cut-off frequency kC(r) in the system
XA(r)(k)=1/NΣ0≦m≦N−1wa(m)x(r)(m)exp [−j2πmk/N]
In general, the analysis window function wa(m) has to be used to suppress the sidelobes caused by the frame boundary discontinuity. However, direct implementation of FFT only for this purpose requires redundant computation, since we need another FFT that is used for XS(r)(k). To cope with this problem, we propose an efficient method that calculates XA(r)(k) from XS(r)(k), which enables economy of computational cost. Based on our method, any kind of window function can be used for wa(m), as long as it is derived from a summation of cosine sequences. This includes Hann, Hamming, Blackman, Blackman-Harris windows which are commonly expressed as the following formula:
wa(m)=Σ0≦i≦Mam cos [2πmi/N]
For example, for the Hann window, M32 1, a0=½ and a1=½.
Comparison of XA(r)(k) and XS(r)(k) as DFTs leads to the following relation:
XA(r)(k)=XA(r)(k){circle around (X)}Wa(k)
where Wa(k) is the DFT of wa(m). Using the expression of wa(m) in terms of cosines and after simplification, we obtain
XA(r)(k)=a0XS(r)(k)+½Σ1≦m≦Mam(XS(r)(k−m)+XS(r)(k+m))
Typically, M=1 for Hann and Hamming windows, M=2 for Blackman window and M=3 for Blackman-Harris window. Therefore the computational load of this relation is much lower than additional FFT that would be implemented just to obtain XA(r)(k).
Since the preferred embodiment frequency domain method for BWE is much more complicated than that the time domain method, we summarize the steps of the procedure.
(1) Receive R input samples and associate an N-sample frame overlapped with the previous ones. The overlap length N−R has to be N−R=2L, where 2L is the order of high-pass filter HC(z).
(2) The N sample input signal is processed with FFT to obtain XS(r)(k).
(3) XS(r)(k) is converted to XA(r)(k), which is the short-time spectrum of the input signal with a cosine-derived window.
(4) Using XA(r)(k), the cut-off frequency index kC(r) is estimated. The estimation can be done based on either approach in section 4.
(5) XS(r)(k) is also frequency-shifted by cosine modulation to yield U1(r)(k)
(6) U1(r)(k) is point-wisely multiplied with H(r)(k) to yield U2(r)(r,k), where H(r)(k) is calculated as h0(r)+½[Hw,Im(k+kC(r))−Hw,Im(k−kC(r))] using a lookup table for the Hw,Im(.) values.
(7) U2(r)(r,k) is processed with IFFT to get u2(r)(r,m), and the synthesized high frequency components u2(n) is extracted as u2(r)(r,n+L)
(8) The gain g(n) is determined as in section 3, and applied to the high frequency components u2(n).
(9) The signal u2(n) is added to delayed input signal, where the delay amount D is given by D=L.
7. Bass Expansion
i shows the block diagram of the preferred embodiment bass enhancement system, which is composed of a high-pass filter ‘HPF’, the preferred embodiment harmonics generator, and a bass boost filter ‘Bass Boost’. The high-pass filter removes frequencies under fL (see
The bass boost filter is intended to equalize the loudspeaker of interest for the higher bass frequencies fH≦f≦fC.
The preferred embodiment harmonics generator generates integral-order harmonics of the lower bass frequencies fL≦f≦fH with an effective combination of a full wave rectifier and a clipper.
h(n)=he(n)+Kho(n)
where K is a level-matching constant. The generated harmonics h(n) is passed to the output low-pass filter ‘LPF2’ to suppress extra harmonics that may lead to unpleasant noisy sound.
The peak detector ‘Peak’ works as an envelope estimator. Its output is used to eliminate dc (direct current) component of the full wave rectified signal, and to determine the clipping threshold. The following paragraphs describe the peak detection and the method of generating harmonics efficiently using the detected peak.
The peak detector detects peak absolute value of the input signal s(n) during each half-wave. A half-wave means a section between neighboring zero-crossings.
To generate even-order harmonics he(n), the preferred embodiments employs the full wave rectifier. Namely it calculates absolute value of the input signal s(n). An issue of using the full wave rectifier is that the output cannot be negative and thus it has a positive offset that may lead to unreasonably wide dynamic range. The offset could be eliminated by using a high-pass filter. However, the filter should have steep cut-off characteristics in order to cut the dc offset while passing generated bass (i.e., very low) frequencies. The filter order will then be relatively high, and the computation cost will be increased. Instead, the preferred embodiments, in a more direct way, subtracts an estimate of the offset as
he(n)=|s(n)|−αp(n)
where α is a scalar multiple. From the derivation in the following section, the value of α is set to 2/π.
The frequency characteristics of he(n) are analyzed for a sinusoidal input. Since the frequencies contained in s(n) and he(n) are very low compared to the sampling frequency, the characteristics may be derived in the continuous time domain.
Let f(t) be a periodic function of period 2π. Then, the Fourier series of f(t) is given by
f(t)=a0+Σ0<k<∞(ak cos kt+bk sin kt)
where the Fourier coefficients ak, bk are
a0=∫−π<t<πf(t)dt
ak=∫−π<t<πf(t)cos kt dt
bk=∫−π<t<πf(t)sin kt dt
Suppose that the unit sinusoidal function of the fundamental frequency, sin t, is fed to the foregoing full-wave rectifier with offset (he(n)=|s(n)|−αp(n)). Note that the peak is always equal to 1 for input sin t. Then, computing the Fourier coefficients for |sin t|−α gives
a0(e)=2/π−α.
b
k
(e)=0
Hence, the full wave rectifier generates even-order harmonics. To eliminate the dc offset, a0(e), α is set to 2/π. in the preferred embodiments. The frequency spectrum of he(n) is shown in
To generate higher harmonics of odd-order, the preferred embodiment clips the input signal s(n) at a certain threshold T(T>0) as follows:
The threshold T should follow the envelope of the input signal s(n) to generate harmonics efficiently. It is thus time-varying and denoted by T(n) hereinafter. In the present invention, from the derivation in the following section, the threshold is determined as
T(n)=βp(n)
where β=1/√2.
The Fourier coefficients of a unit sinusoidal, sin t, clipped with the threshold T=sin θ are given by
ak(o)=0
b1(o)=2(θ+sin θ cos θ)/π
Note that the clipping generates odd-order harmonics. The frequency spectrum of the clipped sinusoidal, ho(n), is shown in
The similarity in the decay rate is suggested as follows. When the threshold parameter θ is set to θ=π/4, the magnitude of the k≠1, odd Fourier coefficients become
|bk(o)|=2[1−(−1)(k−1)/2/k]/π(k2−1)
Since the 1/k term is small compared to the principal term due to k≧3, the following approximation holds
2|bk(o)|=4/π(k2−1) for k≠1, odd
On the other hand, from he(n) discussion
|ak(e)|=4/π(1−k2) for k even, positive
Thus the expressions for |ak(e)| and 2|bk(o)| are identical except for the neglected term. Therefore, the frequency spectra of he(n) and 2he(n) decay in a similar manner with respect to k. In the preferred embodiments, the constant K in and β are so selected as K=2, β=sin π/4=1/√2.
8. Experimental Results of Stereo BWE
We implemented and tested the proposed method in the following steps: First, a stereo signal sampled at 44.1 kHz was low-pass filtered with cut-off frequency at 11.025 kHz (half the Nyquist frequency). This was used for an input signal to the proposed system. The frequency shift amount f, was chosen to be 5.5125 kHz. Therefore, the bandwidth of the output signal was set to about 16 kHz. We implemented the high-pass filters with an IIR structure.
9. Modifications
The preferred embodiments can be modified while retaining one or more of the features of adaptive high frequency signal level estimation, stereo bandwidth expansion with a common signal, cut-off frequency estimation with spectral curve fits, and bass expansion with both fundamental frequency illusion and frequency band equalization.
For example, the number of samples summed for the ratios defining the left and right channel gains can be varied from a few to thousands, the shift frequency can be roughly a target frequency (e.g., 20 kHz)—the cutoff frequency, the interpolation frequencies and size of averages for the cut-off verification could be varied, and the shape and amount of bass boost could be varied, and so forth.
This application claims priority from provisional applications Nos. 60/657,234, filed Feb. 28, 2005, 60/749,994, filed Dec. 13, 2005, and 60/756,099, filed Jan. 4, 2006. Co-assigned, copending patent application No. 60/660,372, filed Mar. 9, 2005 discloses related subject matter.
Number | Name | Date | Kind |
---|---|---|---|
4696035 | Torelli et al. | Sep 1987 | A |
5111346 | Matsuoka | May 1992 | A |
5319713 | Waller et al. | Jun 1994 | A |
5377272 | Albean | Dec 1994 | A |
5838800 | Lowe et al. | Nov 1998 | A |
5872851 | Petroff | Feb 1999 | A |
5892830 | Klayman | Apr 1999 | A |
6711265 | Morris, Jr. | Mar 2004 | B1 |
6947564 | Hoover | Sep 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
60657234 | Feb 2005 | US | |
60749994 | Dec 2005 | US | |
60756099 | Jan 2006 | US | |
60660372 | Mar 2005 | US |