1. Field of the Invention
The present invention relates generally to portable devices for reproducing audio recordings, and more particularly, to a device for reproducing compressed digital audio recordings. Particular utility for the present application is in the reproduction of MP3 digital audio files, especially for use with portable computers, however other utilities are contemplated herein.
2. Description of Related Art
Presently there exist various portable devices for replaying digital audio recordings that have been compressed in accordance with a compressed audio digital recording format called MP3. These devices can be divided into two classes, those which store the MP3 compressed digital audio recordings in an electronic solid state memory, and those which record the compressed digital audio for subsequent reproduction using an electromechanical device such as a compact disk (“CD”) player or on a hard disk drive of a digital computer.
Portable devices for replaying MP3 compressed digital audio recordings that use electronic solid state memory, i.e. flash-memory, are capable of storing about ten (10) music selections. With an add-in memory card, such devices can carry a total of about twenty (20) music selections. These MP3 players that store the MP3 compressed digital audio recordings in an electronic solid state memory consume comparatively little electrical power. Thus, such MP3 players provide an extended playing interval without battery replacement or recharging for the limited number of selections which they can store.
In addition to having a capacity for only a limited number of music selections, another characteristic of portable MP3 players that store compressed digital audio recordings in an electronic solid state memory is the inconvenience associated with loading the music selections into that memory. In general, such MP3 players require first downloading or obtaining copies of MP3 compressed digital audio recordings on a hard disk drive of a personal computer, and then transferring the MP3 compressed digital audio recordings from the personal computer to the portable MP3 player. The preceding operations are to be contrasted with the simplicity of merely inserting a compact disk (“CD”) into a CD player, or playing MP3 compressed digital audio recordings directly from a hard disk drive or CD drive of a digital computer.
MP3 players which preserve compressed digital audio recordings for reproduction using an electromechanical device are capable of storing many more music selections than portable MP3 players that store compressed digital audio recordings in an electronic solid state memory, e.g. hundreds or even more than one-thousand. However, usually MP3 players that use electromechanical devices require significant amounts of electrical power. Thus, portable players that reproduce music selections using an electro-mechanical device exhibit comparatively short playing interval, e.g. less than one (1.0) hour before batteries must be replaced or recharged.
Batteries used in laptop and notebook computers usually permit their operation for several hours before becoming discharged. As is readily apparent, a laptop or notebook computer can be to play MP3 compressed digital audio recordings using either the computer's CD-ROM or hard disk drive. Pending U.S. patent application Ser. No. 09/136,207, now U.S. Pat. No. 6,226,237, entitled “Low Power CD-ROM Player for Portable Computers” that was filed on Aug. 19,1998, which is hereby incorporated by reference in its entirety, describes how a conventional laptop or notebook computer, when simply playing a conventional music CD, consumes an unnecessarily large amount of electrical energy. Such an excessive electrical energy consumption drains a laptop or notebook computer's battery of power that is more prudently applied in performing microprocessor intensive tasks such as word processing and spreadsheet analysis. The solution presented in the '207 application is a state machine that operates when main power to the portable device is OFF. The '207 invention couples a CD-ROM to the audio subsystem (when main power is OFF) so that CDs can be played, without excessive battery drain, or without having to boot up the portable computer.
Accordingly, it is one object of the present invention to adapt laptop and notebook digital computers for reproducing compressed digital audio recordings when main power to the computer system is OFF. Another object of the present invention is to adapt laptop and notebook digital computers for storing MP3 compressed digital audio recordings into a conventional portable MP3 player using as little energy as is practicable.
In one embodiment, the present invention provides a computer system adapted to play audio files which includes a computer subsystem comprising a system CPU and a drive for storing audio data. The computer system also includes an audio controller comprising a drive interface for selectively accessing the audio data from the drive and memory for storing the audio data. Advantageously, The controller is adapted to access, store and play the audio data when power is not being supplied to said computer subsystem.
In another embodiment, the present invention provides a computer system adapted to play audio data when said computer system is inactive, the computer system including a computer subsystem comprising a system CPU and a drive for storing audio data. An audio controller is provided comprising a drive interface for selectively accessing the audio data from the drive and decoder circuitry for decoding the audio data and generating a decoded signal. The controller is adapted to access the drive to retrieve the audio data and decode the audio data when said computer subsystem is inactive.
In method form, the present invention provides a method for playing audio files in a computer system when said computer system is in an inactive state includes the steps of activating an audio controller if a main CPU of a computer system is inactive; selecting desired audio data; and generating an audio data stream from said selected audio data.
It will be appreciated by those skilled in the art that although the following Detailed Description will proceed with reference being made to preferred embodiments and methods of use, the present invention is not intended to be limited to these preferred embodiments and methods of use. Rather, the present invention is of broad scope and is intended to be limited as only set forth in the accompanying claims.
Other features and advantages of the present invention will become apparent as the following Detailed Description proceeds, and upon reference to the Drawings, wherein like numerals depict like parts, and wherein:
Conversely, when the system is OFF, as depicted in
The system block diagram of
Processor 48 is provided to control the general I/O functions, including access, traversal and retrieval commands for drives 20 or 22. In the preferred embodiment, external function keys 66 are provided to permit users to operate controller 18 and drives 20 or 22 to play MP3 files. Function keys can include play, pause, fast forward, rewind, next track, previous track, scan, etc. (or any combination thereof). Since, in the preferred embodiment, the controller 18 of the present invention permits traversal of directory structures and retrieval of files, it is also preferable to include MENU and ENTER function keys 66. Controller 18 includes a function key interface 46 to interpret commands generated by function keys 66 and generate commands to the processor 48. Instructions for retrieval and play of MP3 files are stored in flash memory 52. These instructions are preferably user-programmable firmware, permanently resident in memory 52. Upon activation of a function key, processor 48 receives instructions from memory 52. To communicate with drives containing MP3 data, a slave IDE interface 54 is provided. Upon user commands generated by the function keys, processor 48 instructs slave IDE interface to control one of the drives to begin traversing the directory structure. The directory structure in which MP3 files are stored by be fixed (for example, a directory may be user-specified and stored in flash memory 52), or the controller can permit users to traverse all directories and files on the drive. Once a user has selected an MP3 file and wishes to play that file (by pressing a play function key, for example), processor 48 instructs the slave IDE interface 54 to retrieve that file from the drive. Preferably, to minimize disk activity once a file selection is obtained, the file is transferred into RAM memory 50. It is most preferable to include dual port SRAM 50, as shown, to store both the audio file and to temporarily store instructions and/or program parameters used by the processor 48. Once the audio file is loaded into memory 50, the data is fed to MP3 decoder circuitry 56.
Decoder circuitry 56 comprises a stream audio decoder 58, buffer memory 60 and either an internal audio DAC 62, or a DAC interface 64 for communicating with an external audio DAC 26. Stream audio decoder 58 receives streaming audio data from memory 50 and decodes the data according to a decoder algorithm stored therein. Alternatively, a decoder algorithm may be stored in flash memory 52, loaded into memory 50 upon activation of the controller, and supplied to the decoder 58. Either way, it is preferable to permit users to update/modify the decoding algorithm. Accordingly, it is preferable that memory 52 or decoder 58 stores an updatable version of the decoder algorithm. In the preferred embodiment, decoder 58 is an MP3 audio file decoder. The output data generated by decoder 58 is decompressed digital audio data, and may include standard digital audio formats like PCM format data. The decoder outputs the decompressed data to a first in—first out (FIFO) buffer 60. If controller 18 is adapted with an internal DAC, data from the buffer 60 is fed into the DAC 60, which generates an analog audio signal, which in turn is fed to amplifier 28 and out to the speaker system (not shown). Alternately, if an external DAC is available in the computer system 10 (for example, as part of the audio IC), the decoder can include an appropriate interface 64. Interface 64 receives digital data from memory 60 and communicates with an external DAC. In a similar fashion, the external DAC 26 generates an analog signal which is supplied to the amplifier 28 and speaker system.
As discussed briefly above, the controller preferably includes an SMBus interface 42 to permit controller 18 to communicate with an SMBus of computer system 10. The SMBus is provided for when the system is ON to pass along function key commands to the system 14 and 12, and is also used to access the flash memory 52 of the controller 18 to permit upgrades and/or changes therein. Once commands are sent to the interface 46, said commands are communicated to the processor 48 for processing. It is also preferable that controller 18 include an LCD interface 57, which is coupled to the SMBus (via register block 44) and processor 48. In this way, the LCD interface 57 can generate signals indicative of both the users actions via function key interface 46, and the processor status. Processor status may include overall operation status (e.g., file loading, decompressing, file not found, etc.) and specific operational parameters (e.g., error status, component failure, etc.). Additionally, it is preferable to display the drive data, which may include directory tree structure, file name(s), etc. Additionally, MP3 files typically contain an ID tag that is descriptive of the title, song, etc. It is preferable that LCD interface 57 be adapted to read and display this tag data. Thus, LCD interface 57 is preferably adapted to display such drive data generate by processor 48.
Controller 18 includes an internal clocking mechanism 40 to clock the circuitry of the controller, and to communicate with timed devices (drives 20 or 22) over a timed bus (e.g., IDE bus). It will be understood by those skilled in the art that more than one clock frequency is typically required, for example, differing clocks supplied to processor 48, decoder 58 and audio DAC 62. The clock mechanism preferably includes a PLL timer that is clocked by a set crystal, as shown.
As described above, the controller 18 of the preferred embodiment operates to play compressed audio files when the system 10 is OFF. To that end, it is preferred that the controller 10 is activated by a user pressing one of the function keys (i.e., system power is supplied to controller 18 by pressing one of the function keys 66). Upon this event, power is coupled to the components of controller 18, and to the drive systems 20 and/or 22. By the same token, if the system 10 is ON, the controller of the present invention includes switches 68. Switches 68 operate to decouple the controller 18 from the IDE bus (as shown in
It should be noted that the controller 18 is preferably operable with both hard disk drives 20 and CD-ROM drives 22, either of which are conventional storage media for MP3 audio files. Accordingly, function keys 66 also preferably include activation keys for the CD-ROM drive, which may include EJECT, FF/SCAN-FF, RW/SCAN-RW, PLAY, PAUSE, STOP, MENU, ENTER etc.
Controller 18′ includes similar components as the controller 18 of the previous embodiment, except that it may not be necessary to include function keys 66 and function key interface 46, since it is likely that portable player 70 includes such functionality. Similarly, it may not be necessary to include display functionality with controller 18′ if portable player 70 is equipped with an appropriate display to view drive directory structures and files.
Thus, it is evident that there has been disclosed an audio controller for portable electronic devices that satisfies the aims and objectives stated herein. Those skilled in the art will recognize numerous modifications that may be made to the present invention. For example, although the controller 18 and 18′ of the present invention has been described with reference to MP3 audio data, it should be readily apparent that the controller 18 and 18′ is independent of the specific format of audio data, and should instead be viewed as a general-purpose audio controller capable of receiving, playing, and/or decompressing any type of audio data, not limited to MP3 format data.
Other modifications are possible. For example, the controller 18 of
Still further modifications are possible. The controller 18 of the present invention has been described herein as including decoding circuitry 56 to decode audio data when the system 10 is OFF. However, it is contemplated that audio files, such as MP3 files could be decoded and stored in a decoded format on the drives 20 and/or 22, for example when the system 10 is ON. If decoded (decompressed) is accessed by the controller 18, this data is stored into memory 50 and supplied directly to audio DAC 62 or audio DAC interface 64. In other words, no decoding is necessary for such data and controller 18 plays the decoded data directly. Those skilled in the art will recognize numerous additional modifications, and all such modifications are deemed within the spirit and scope of the present invention, only as limited by the appended claims.
This application is a continuation application under 37 CFR §1.53(b) of application Ser. No. 09/650,515 filed Aug. 29, 2000, now US Pat. No. 6,675,233, which itself is a continuation-in-part application of application Ser. No. 09/595,103 filed Jun. 16, 2000,now U.S. Pat. No. 6,711,631 which itself is a continuation of application Ser. No. 09/136,207, filed Aug. 19, 1998, now U.S. Pat. No. 6,226,237, both of which claim benefit of U.S. Provisional Patent Application No.60/079,508, filed Mar. 26, 1998. This application also claims benefit to Provisional Application Ser. No. 60/182,448, filed Feb. 15, 2000, Provisional Application Ser. No. 60/183,181, filed Feb. 17, 2000 and Provisional Application Ser. No. 60/216,853, filed Jul. 7, 2000.
Number | Name | Date | Kind |
---|---|---|---|
4851987 | Day | Jul 1989 | A |
4968987 | Naka et al. | Nov 1990 | A |
4999634 | Brazdrum et al. | Mar 1991 | A |
5142684 | Perry et al. | Aug 1992 | A |
5167024 | Smith et al. | Nov 1992 | A |
5200913 | Hawkins et al. | Apr 1993 | A |
5218704 | Watts, Jr. et al. | Jun 1993 | A |
5375076 | Goodrich et al. | Dec 1994 | A |
5511203 | Wisor et al. | Apr 1996 | A |
5548777 | Woo | Aug 1996 | A |
5560024 | Harper et al. | Sep 1996 | A |
5600800 | Kikinis et al. | Feb 1997 | A |
5619402 | Liu | Apr 1997 | A |
5634798 | Suh | Jun 1997 | A |
5642417 | Stringer | Jun 1997 | A |
5646699 | Oh et al. | Jul 1997 | A |
5671368 | Chan et al. | Sep 1997 | A |
5692197 | Narad et al. | Nov 1997 | A |
5696975 | Moore et al. | Dec 1997 | A |
5699244 | Clark, Jr. et al. | Dec 1997 | A |
5708840 | Kikinis et al. | Jan 1998 | A |
5732266 | Moore et al. | Mar 1998 | A |
5790875 | Andersin et al. | Aug 1998 | A |
5796705 | Kim | Aug 1998 | A |
5797089 | Nguyen | Aug 1998 | A |
5815679 | Liu | Sep 1998 | A |
5819116 | Maupin et al. | Oct 1998 | A |
5822598 | Lam | Oct 1998 | A |
5835759 | Moore et al. | Nov 1998 | A |
5838983 | Atkinson | Nov 1998 | A |
5870355 | Fujihara | Feb 1999 | A |
5903764 | Shyr et al. | May 1999 | A |
5910933 | Moore | Jun 1999 | A |
5964878 | Ryu | Oct 1999 | A |
5969529 | Eiraku et al. | Oct 1999 | A |
5974549 | Golan | Oct 1999 | A |
5983073 | Ditzik | Nov 1999 | A |
6006285 | Jacobs et al. | Dec 1999 | A |
6006337 | Koo | Dec 1999 | A |
6018724 | Arent | Jan 2000 | A |
6034621 | Kaufman | Mar 2000 | A |
6038672 | Klein | Mar 2000 | A |
6047223 | Sartori | Apr 2000 | A |
6047342 | Depew | Apr 2000 | A |
6047380 | Nolan et al. | Apr 2000 | A |
6076133 | Brainard et al. | Jun 2000 | A |
6088730 | Kato et al. | Jul 2000 | A |
6088809 | Atkinson | Jul 2000 | A |
6101562 | Chang et al. | Aug 2000 | A |
6125417 | Bailis et al. | Sep 2000 | A |
6141052 | Fukumitsu et al. | Oct 2000 | A |
6151012 | Bullister | Nov 2000 | A |
6154359 | Kamikakai et al. | Nov 2000 | A |
6173417 | Merrill | Jan 2001 | B1 |
6195713 | Chaiken et al. | Feb 2001 | B1 |
6202121 | Walsh et al. | Mar 2001 | B1 |
6226237 | Chan et al. | May 2001 | B1 |
6233464 | Chmaytelli | May 2001 | B1 |
6252511 | Mondshine et al. | Jun 2001 | B1 |
6259597 | Anzai et al. | Jul 2001 | B1 |
6266713 | Jacobs et al. | Jul 2001 | B1 |
6272575 | Rajchel | Aug 2001 | B1 |
6279056 | Jacobs et al. | Aug 2001 | B1 |
6292440 | Lee | Sep 2001 | B1 |
6304261 | Shields et al. | Oct 2001 | B1 |
6310634 | Bodnar et al. | Oct 2001 | B1 |
6332175 | Birrell et al. | Dec 2001 | B1 |
6334149 | Davis, Jr. et al. | Dec 2001 | B1 |
6336142 | Kato et al. | Jan 2002 | B1 |
6349386 | Chan | Feb 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6370631 | Dye | Apr 2002 | B1 |
6377530 | Burrows | Apr 2002 | B1 |
6378010 | Burks | Apr 2002 | B1 |
6378077 | Atkinson | Apr 2002 | B1 |
6385734 | Atkinson | May 2002 | B2 |
6393499 | Chaiken et al. | May 2002 | B1 |
6412075 | Klein | Jun 2002 | B1 |
6446073 | D'Amato et al. | Sep 2002 | B1 |
6675233 | Du et al. | Jan 2004 | B1 |
20010028562 | Naghi | Oct 2001 | A1 |
Number | Date | Country |
---|---|---|
0825519 | Feb 1998 | EP |
0945778 | Sep 1999 | EP |
0999549 | May 2000 | EP |
09-191848 | Apr 1997 | JP |
99078492 | Nov 1999 | KR |
WO 9638841 | Dec 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20060101175 A1 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
60183181 | Feb 2000 | US | |
60182448 | Feb 2000 | US | |
60216853 | Jul 2000 | US | |
60079508 | Mar 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09650515 | Aug 2000 | US |
Child | 10658229 | US | |
Parent | 09136207 | Aug 1998 | US |
Child | 09595103 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09595103 | Jun 2000 | US |
Child | 09650515 | US |