The disclosure, in various embodiments, relates generally to audio driver assemblies, to headphones including audio driver assemblies, and to related methods of forming headphones. More specifically, embodiments of the disclosure relate to audio driver assemblies including a driver housing, an audio driver, and a stabilizer extending through the driver housing and into a magnet assembly, to headphones including such audio driver assemblies, and to methods of forming such headphones.
Conventional headphones include two ear-cup housings each including an audio driver assembly having an audio driver that produces audible sound waves. The audio driver may, for example, include a magnet/coil assembly secured within a driver housing, and a flexible diaphragm adjacent the magnet/coil assembly and attached to the driver housing. The positive and negative electrical terminals for the audio driver are respectively soldered to ends of wires, which extend to an audio jack (e.g., a tip-sleeve (TS) connector, a tip-ring-sleeve (TRS) connector, a tip-ring-ring-sleeve (TRRS) connector, etc.). The audio jack may be coupled to a media player such as a mobile phone, a digital media player, a computer, a television, etc., and the audio signal is transmitted to the audio driver in the audio driver assembly within the headphone through the wires.
The acoustic performance of a headphone is conventionally a function of both the audio driver, as well as the configuration of the audio driver assembly and the ear-cup housing within which the audio driver is disposed. The audio driver assembly and the ear-cup housing of conventional headphones typically define acoustical cavities that affect the acoustics of the headphone. Thus, the manufacturer of the headphones may design the ear-cup housing and audio driver assembly of a headphone for use with a selected audio driver, so as to provide the headphone with acoustics deemed desirable by the manufacturer.
In accordance with one embodiment described herein, an audio driver assembly comprises a driver housing and an audio driver secured within the driver housing. The audio driver comprises a magnet assembly, a flexible diaphragm overlying the magnet assembly, and a stabilizer extending through the driver housing and into the magnet assembly.
In additional embodiments, a headphone comprises an ear-cup housing and an audio driver assembly disposed at least partially within the ear-cup housing. The audio driver assembly comprises a driver housing, a flexible diaphragm suspended from the driver housing, a magnet assembly underlying the diaphragm, and a stabilizer extending through the driver housing and into the magnet assembly. The magnet assembly comprises a permanent magnet, a voice coil circumscribing the permanent magnet, and a yoke cup at least partially surrounding the permanent magnet and the voice coil.
In additional embodiments, a method of forming a headphone comprises forming an audio driver assembly, and attaching the audio driver assembly within an ear-cup housing. The audio driver assembly comprises a driver housing, a flexible diaphragm suspended from the driver housing, a magnet assembly underlying the diaphragm, and a stabilizer extending through the driver housing and into the magnet assembly. The magnet assembly comprises a permanent magnet, a voice coil circumscribing the permanent magnet, and a yoke cup at least partially surrounding the permanent magnet and the voice coil.
Audio driver assemblies are disclosed, as are headphones including audio driver assemblies, and methods of forming headphones. In some embodiments, an audio driver assembly includes a driver housing, an audio driver secured within driver housing, and a stabilizer extending through the driver housing and into the audio driver. The audio driver may comprise a magnet assembly and a flexible diaphragm overlying the magnet assembly. The stabilizer is configured and positioned to impede or prevent lateral movement of one or more components of the magnet assembly, reducing the risk of damage to the audio driver that may otherwise result from such lateral movement. In additional embodiments, the audio driver assembly may also include a vibration dampener disposed between the driver housing and the stabilizer. The vibration dampener may be configured and positioned to reduce the vibration amplitude at resonance of one or more components of audio driver assembly.
The following description provides specific details, such as material compositions and processing conditions, in order to provide a thorough description of embodiments of the present disclosure. However, a person of ordinary skill in the art would understand that the embodiments of the disclosure may be practiced without employing these specific details. Indeed, the embodiments of the disclosure may be practiced in conjunction with conventional audio driver assembly fabrication techniques employed in the industry. In addition, the description provided below does not form a complete process flow for manufacturing an audio driver assembly or audio device (e.g., headphone). Only those process acts and structures necessary to understand the embodiments of the disclosure are described in detail below. Additional acts to form a complete audio device from the structures and assemblies described herein may be performed by conventional fabrication processes.
Drawings presented herein are for illustrative purposes only, and are not meant to be actual views of any particular material, component, structure, device, or system. Variations from the shapes depicted in the drawings as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein are not to be construed as being limited to the particular shapes or regions as illustrated, but include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as box-shaped may have rough and/or nonlinear features, and a region illustrated or described as round may include some rough and/or linear features. Moreover, sharp angles that are illustrated may be rounded, and vice versa. Thus, the regions illustrated in the figures are schematic in nature, and their shapes are not intended to illustrate the precise shape of a region and do not limit the scope of the present claims. The drawings are not necessarily to scale. Additionally, elements common between figures may retain the same numerical designation.
As used herein, the terms “comprising,” “including,” “containing,” “characterized by,” and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps, but also include the more restrictive terms “consisting of” and “consisting essentially of” and grammatical equivalents thereof. As used herein, the term “may” with respect to a material, structure, feature or method act indicates that such is contemplated for use in implementation of an embodiment of the disclosure and such term is used in preference to the more restrictive term “is” so as to avoid any implication that other, compatible materials, structures, features and methods usable in combination therewith should or must be, excluded.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, “and/or” includes any and all combinations of one or more of the associated listed items.
As used herein, spatially relative terms, such as “beneath,” “below,” “lower,” “bottom,” “above,” “upper,” “top,” “front,” “rear,” “left,” “right,” and the like, may be used for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Unless otherwise specified, the spatially relative terms are intended to encompass different orientations of the materials in addition to the orientation depicted in the figures. For example, if materials in the figures are inverted, elements described as “below” or “beneath” or “under” or “on bottom of” other elements or features would then be oriented “above” or “on top of” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below, depending on the context in which the term is used, which will be evident to one of ordinary skill in the art. The materials may be otherwise oriented (e.g., rotated 90 degrees, inverted, flipped) and the spatially relative descriptors used herein interpreted accordingly.
As used herein, the term “substantially” in reference to a given parameter, property, or condition means and includes to a degree that one of ordinary skill in the art would understand that the given parameter, property, or condition is met with a degree of variance, such as within acceptable manufacturing tolerances. By way of example, depending on the particular parameter, property, or condition that is substantially met, the parameter, property, or condition may be at least 90.0% met, at least 95.0% met, at least 99.0% met, or even at least 99.9% met.
As used herein, the term “about” in reference to a given parameter is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the given parameter).
The driver housing 116 may be configured to be secured within an outer ear-cup housing of an ear-cup assembly, and includes at least one structure configured to at least partially enclose and support the audio driver 118. The driver housing 116 may be positioned over one or more sides (e.g., at least a back side) of the audio driver 118. An acoustical cavity 122 may be disposed between the driver housing 116 and the one or more sides of the audio driver 118. The driver housing 116 may also exhibit one or more apertures 124 (e.g., ports, holes, etc.) extending therethrough. The location and configuration (e.g., size, shape, etc.) of the apertures 124 may be selected to provide a desired emitted sound pressure level (SPL) profile, and/or a desired detectable SPL profile, for the audio driver assembly 110 and a headphone including the audio driver assembly 110. The apertures 124 in the driver housing 116 may, for example, include at least one bottom aperture 128 extending through a bottom portion of the driver housing 116, and at least one side aperture 126 extending through a side portion of the driver housing 116. As shown in
The audio driver 118 includes a magnet/coil assembly 136 and a flexible diaphragm 138 overlying the magnet/coil assembly 136. One or more components (e.g., the magnet/coil assembly 136, the flexible diaphragm 138, etc.) of the audio driver 118 may be coupled (e.g., directly coupled, indirectly coupled, or a combination thereof) to one or more portions of the driver housing 116 using, for example, an adhesive, a snap-fit, a welding process, or any other suitable method.
The magnet/coil assembly 136 may include a permanent magnet 140, a voice coil 142 circumscribing the permanent magnet 140, and a yoke cup 144 at least partially surrounding the permanent magnet 140 and the voice coil 142. As shown in
The flexible diaphragm 138 may be positioned on or over the upper portion 148 of the yoke cup 144 of the magnet/coil assembly 136. At least a peripheral portion (e.g., an outer rim) of the flexible diaphragm 138 may be attached (e.g., coupled, bonded, adhered, connected, etc.) to the driver housing 116. A central portion of the flexible diaphragm 138 may be attached to the upper portion 148 of the yoke cup 144. The flexible diaphragm 138 may be configured to vibrate in accordance with movement of one or more components (e.g., the permanent magnet 140 and the yoke cup 144) of the magnet/coil assembly 136 responsive to a magnetic field produced by the voice coil 142 of the magnet/coil assembly 136 upon receiving an audio signal. In some embodiments, the flexible diaphragm 138 is formed of and includes a polymer material (e.g., a plastic).
The stabilizer 120 is positioned and configured to limit lateral movement (e.g., side-to-side movement, rocking movement, etc.) of one or more components of the magnet/coil assembly 136, while also permitting longitudinal movement (e.g., upward movement and downward movement) of the one or more components of the magnet/coil assembly 136. As used herein, each of the terms “lateral” and “horizontal” means and includes extending in a direction substantially parallel to at least the flexible diaphragm 138, regardless of the orientation of the flexible diaphragm 138. Accordingly, each of the terms “longitudinal” and “vertical” means and includes extending in a direction substantially perpendicular to at least the flexible diaphragm 138, regardless of the orientation of the flexible diaphragm 138. For example, the stabilizer 120 may be positioned and configured to substantially limit lateral movement of at least the permanent magnet 140 and the yoke cup 144, while permitting longitudinal movement of at least the permanent magnet 140 and the yoke cup 144. Limiting the lateral movement of the one or more components of the magnet/coil assembly 136 using the stabilizer 120 may prevent damage to the magnet/coil assembly 136 (and, hence, the audio driver 118) that may otherwise occur if the stabilizer 120 was not present in the audio driver assembly 110. By way of non-limiting example, the stabilizer 120 may prevent damage to (e.g., breakage of) the voice coil 146 that may otherwise occur if lateral movement of the permanent magnet 140 and the yoke cup 144 were unimpeded. Such unimpeded lateral movement may, for example, occur if a headphone including a conventional audio driver assembly were dropped and/or suddenly moved (e.g., jerked). The position and configuration (e.g., shape, size, and material composition) of the stabilizer 120 may be selected relative to positions and configurations of other components of the audio driver assembly 110 to provide the audio driver assembly 110 with desired acoustic properties, as described in further detail below.
The stabilizer 120 longitudinally extends through driver housing 116, the acoustical cavity 122, and at least a portion of the magnet/coil assembly 136. The stabilizer 120 may also be substantially centrally located relative to widths (e.g., diameters) of the driver housing 116, the magnet/coil assembly 136, and the flexible diaphragm 138. By way of non-limiting example, as shown in
The stabilizer 120 may exhibit a lateral cross-sectional shape that complements the lateral cross-sectional shape of each of the centrally located aperture 132 of the magnet/coil assembly 136 and the bottom aperture 128 of the driver housing 116. By way of non-limiting example, the stabilizer 120, the centrally located aperture 132 of the magnet/coil assembly 136 and the bottom aperture 128 of the driver housing 116 may each exhibit a substantially circular lateral cross-sectional shape. In addition, the stabilizer 120 may exhibit one or more lateral cross-sectional dimensions (e.g., diameters, widths, etc.) permitting the stabilizer 120 to substantially laterally extend between one or more surfaces defining the centrally located aperture 132 of the magnet/coil assembly 136, and to at least partially (e.g., substantially) laterally extend between one or more surfaces defining the bottom aperture 128 of the driver housing 116. In addition, the stabilizer 120 may exhibit a longitudinal cross-sectional dimension (e.g., height) permitting the stabilizer 120 to longitudinally extend beyond the lower surface of the driver housing 116.
The stabilizer 120 may be formed of and include at least one of a polymer material (e.g., a plastic) and metal material (e.g., a metal, a metal alloy, etc.). The material composition of the stabilizer 120 may be selected to provide the stabilizer 120 with properties (e.g., flexure, stiffness, etc.) sufficient to substantially impede or prevent lateral movement of one or more components of the magnet/coil assembly 136 (e.g., the permanent magnet 140 and the yoke cup 144), and may also be selected to provide the audio driver assembly 110 with desired acoustic properties. As a non-limiting example, a stabilizer 120 formed of and including a metal material may impede lateral movement of components of the magnet/coil assembly 136 and may also provide the audio driver 118 with relatively lower resonance than a stabilizer 120 formed of and including a polymer material (e.g., at least partially due to the relatively increased density of a metal material as compared to a polymer material). In some embodiments, the stabilizer 120 is formed of and includes a metal material.
The stabilizer 120 may be attached (e.g., adhered, bonded, coupled, etc.) to one or more surfaces (e.g., surfaces of at least one of the permanent magnet 140, the lower portion 146 of the yoke cup 144, and the upper portion 148 of the yoke cup 144) defining the centrally located aperture 132 of the magnet/coil assembly 136, and may be unattached (e.g., unadhered, unbonded, uncoupled, etc.) to surfaces defining the bottom aperture 128 of the driver housing 116. Accordingly, the stabilizer 120 may move longitudinally (e.g., move upward, move downward) in accordance with the longitudinal movement of one or more components (e.g., the permanent magnet 140 and the yoke cup 144) of the magnet/coil assembly 136. In additional embodiments, the stabilizer 120 may be attached to one or more surfaces defining the bottom aperture 128 of the driver housing 116, and may be unattached to surfaces defining the centrally located aperture 132 of the magnet/coil assembly 136. Accordingly, in such additional embodiments, the stabilizer 120 may remain substantially stationary during longitudinal movement of one or more components (e.g., the permanent magnet 140 and the yoke cup 144) of the magnet/coil assembly 136.
Optionally, a vibration dampener may be included in the audio driver assembly 110 at the location where the stabilizer 120 extends through the driver housing 116. The vibration dampener may intervene between the stabilizer 120 and the driver housing 116, and may be configured to reduce the vibration amplitude at resonance of one or more components of audio driver assembly 110 (e.g., the stabilizer 120; components the audio driver 118, such as the permanent magnet 140, the yoke cup 144, and the flexible diaphragm 138; etc.). The vibration dampener may facilitate a relatively more even (e.g., uniform) vibration response for the audio driver assembly 110 across a relatively wider range of frequencies.
As a non-limiting example,
In additional embodiments, the vibration dampener 150 may exhibit a different configuration than that depicted in
Referring collectively to
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, the disclosure is not limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure as defined by the following appended claims and their legal equivalents.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/099,010, filed Dec. 31, 2014, the disclosure of which is hereby incorporated herein in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3798393 | Gorike | Mar 1974 | A |
6023515 | McKee et al. | Feb 2000 | A |
8199955 | Akino | Jun 2012 | B2 |
8442258 | Kimura | May 2013 | B2 |
20020025052 | Gotoh et al. | Feb 2002 | A1 |
20040008858 | Steere et al. | Jan 2004 | A1 |
20070223718 | Felder et al. | Sep 2007 | A1 |
20080170710 | Pasternak | Jul 2008 | A1 |
20110188696 | Kimura | Aug 2011 | A1 |
20110243370 | Wang | Oct 2011 | A1 |
20120114160 | Lin | May 2012 | A1 |
20140270228 | Oishi et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2007018657 | Feb 2007 | WO |
2008064022 | May 2008 | WO |
Entry |
---|
Price, Rex, U.S. Appl. No. 14/802,360 entitled Mass Port Plug for Customizing Headphone Drivers, and Related Methods, filed Jul. 17, 2015. |
European Search Report for European Application No. 15202031 dated Mar. 7, 2016, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20160192076 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
62099010 | Dec 2014 | US |