This is directed to an audio jack using pogo pins to provide a low profile assembly.
Many electronic devices include audio jacks for providing audio generated by electronic device circuitry to an audio output component coupled to the device. For example, many portable electronic devices include audio jacks to which headphone or speaker audio plugs can connect to transfer signals carrying the audio. Audio jacks include several conductive pads operative to contact audio plug contact portions or regions to provide electrical paths through which audio signals, power signals, and data signals can be transferred. The conductive pads typically can be formed from stamped sheet metal and can be shaped in a manner to ensure electrical contact and retention when an audio plug is inserted in the audio jack. Suitable shapes can include, for example, cantilever beams extending into an audio jack cavity and operative to deflect away from an audio plug when the audio plug is inserted in the audio jack.
The cantilever beam, however, can take up large amounts of space within the audio jack assembly. In particular, a cantilever beam can require a substantial minimum length for ensuring that the force generated by the beam deflection is sufficient to maintain the beam in contact with an audio plug contact portion. In addition, the cantilever beam requires space in at least two dimensions, which can prevent the size of an electronic device from being reduced. This can especially be an issue for electronic devices so small that the audio jack size effectively determines the size of the device.
An audio jack having pogo pins to provide conductive contacts with audio plug contact portions is provided.
The audio jack can include a cavity into which an audio plug can be inserted. A series of pogo pins can extend into the cavity to provide conductive contacts for audio plug contacts. When an audio plug is inserted in the audio jack, the deflectable tips of each pogo pin can sequentially deflect to allow the audio plug to be inserted into the cavity. The end of the pogo pins opposite the deflectable tips can be coupled to an appropriate electronic device component to transfer signals, such as a printed circuit board, flex circuit, cable, or any other suitable component.
The pogo pins can be positioned in the audio jack using any suitable orientation. In some embodiments, the pogo pins can be positioned in substantially a single plane such that the pogo pins require space in a single dimension of the audio jack assembly. The pogo pins can be oriented substantially orthogonal to the audio jack cavity (e.g., such that the deflectable tips extend orthogonally into the cavity), or at an angle relative to the cavity walls. In particular, it may be desirable to orient the pogo pins at an angle to prevent or reduce the chances that an audio jack snags on a deflectable tip upon insertion or removal.
The audio jack can include any suitable number of pogo pins. For example, the audio jack can include at least one pogo pin for each conductive portion of an audio plug inserted within the audio jack (e.g., four pins for each of the microphone, left, right and ground channels). As another example, the audio jack can include several pogo pins for a single audio plug conductive portion, for example as a detect mechanism (e.g., two pogo pins for the distal-most conductive portion, for example associated with the ground).
The pogo pins can have any suitable dimension. In particular, the pogo pin dimensions can be selected based on the size of the audio plug contact portions, the distance between the audio jack cavity and an electronic device component, or any other criteria. In some embodiments, a characteristic dimension of the deflectable tip (e.g., a diameter or radius of the tip) can be less than the maximum amount by which the deflectable tip can extend into the cavity.
The above and other features of the present invention, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings in which:
Embodiments of the following discussion will be described in the context of an audio jack. It will be understood, however, that features of the described embodiments can be applied to any suitable electronic connector, including for example an axial jack or connector (e.g., cylindrical axial jack for a cylindrical axial plug) for which pogo pins extend substantially orthogonal to the surface of the connector. Any suitable electronic or electrical plug can be placed within the electronic connector.
An audio jack can include several contact pads operative to electrically couple the conductive portions of an audio plug to electronic device components. The contact pads can take any suitable form. In some known embodiments, the contact pads can be constructed from pressed sheet metal and positioned such that they provide cantilever spring contacts for the audio plug.
When audio jacks such as those described in
To provide an electrically conductive path between the tip of retractable portion 304 and electronic device components coupled to the pogo pin (e.g., coupled via connections 312), body 302 can include conductive paths 310 extending within and along the length of body 302. Using conductive paths 302 instead of spring 306 to conduct signals through pogo pin 300 can reduce the impedance and resistance of the electrical path between the ends of pogo pin 300. The size and materials used for pogo pin 300 can be selected based on any suitable criteria, including for example the amount of current to pass through the pin, the size of the contact regions that retractable portion 304 contacts, the type of load applied to retractable portion 304, or any other suitable criteria. Similarly, different criteria can be used to select the type of spring 306 used, including for example the expected amount of the load, required retention forces by pogo pin 300, impedance and resistance concerns, or any other suitable criteria.
Although the following discussion will describe the use of pogo pins in the context of an audio jack, it will be understood that such pogo pins can be used in any electronic device port for connecting to any suitable plug. The plug and port can transfer signals representing any suitable information, including for example audio, data, power, or any other types of information. A pogo pin can be implemented in an audio jack using any suitable approach.
To retain audio plug 420 within the cavity, audio jack 400 can include internal retention mechanism 404 positioned opposite pogo pins 412, such that audio plug 420 is restrained between retention mechanism 404 and pogo pins 412. Retention mechanism 404 can include any suitable mechanism for providing a retention force on an audio plug inserted in the cavity, including for example a spring positioned within cavity 402. The strength of retention mechanism 404 can be selected based on any suitable criteria, including for example the required retention force, the space available within cavity 402, and the size of the audio plug component against which retention mechanism 404 rests. In some embodiments, retention mechanism 404 may not be necessary if pogo pins 412 provide a sufficient retention force.
Body 406 can be formed from any suitable component. In some embodiments, body 406 can be formed from a single component (e.g., molded), or from several components combined and assembled to create body 406. For example, body 406 can include at least two portions each defining a portion of cavity 402 (e.g., two halves) that are combined. As another example, body 406 can be formed from a tubular section defining the cavity to which other sections retaining pogo pins (e.g., pogo pins 412) can be coupled. Any suitable approach can be used to assemble distinct portions, including for example an adhesive, tape, heat staking, a mechanical fastener, or another approach).
Audio jack 400 can include pogo pins 412 embedded within body 406 and at least partially extending within cavity 402. In particular, retractable portion 414 of each pogo pin 412 can extend into cavity 402 via an opening such that, when audio plug 420 is inserted in cavity 402, retractable portion 414 is depressed and contacts audio plug 420. Pogo pins 412 can be coupled to body 406 using any suitable approach, including for example an adhesive, tape, press fit (e.g., in a nylon body), heat staking, a mechanical fastener, as a manufacturing process (e.g., mold body 406 around pogo pins 412), or any other suitable approach. In some embodiments, pogo pins 412 can be placed within a notch of body 406.
To prevent an audio plug from stubbing against a retractable portion 414 of a pogo pin 412 upon insertion or removal, retractable portion 414 can extend into cavity 402 by a maximum amount.
Returning to
The individual pogo pins 412 can provide electrical signals to the electronic device using any suitable approach. In some embodiments, each pogo pin 412 can be coupled to one or more circuit boards, flex circuits, wires, or any other electronic device component (e.g., audio output circuitry). For example, each pogo pin 412 can be coupled to a circuit board 410 for transferring signals between audio plug 420 and the electronic device.
Pogo pins 412 can be distributed within audio jack 400 using any suitable approach. In some embodiments, pogo pins 412 can be distributed substantially within a single plane or along a single dimension of the electronic device. In the example of
Because the force applied to pogo pins 412 is not a purely axial force (e.g., a force along the main axis of pogo pin 412) but a force that includes at least a substantial side loading component, the pogo pins can be positioned at an angle relative to cavity 402.
In some embodiments, the audio jack can include conductive pad assemblies other than pogo pins. In particular, the audio jack can include any conductive pad assembly that includes a body and a deflecting component. To reduce the amount of space required by the audio jack in at least two dimensions, the deflecting component can move substantially linearly in and out of the body. To further reduce the amount of space required in a direction along the length of the audio jack, the deflecting component can move in a direction substantially orthogonal or angled relative to elongated cavity of the audio jack (e.g., within a single plane passing through a central axis of the cavity). When an audio plug is inserted in the audio jack, the audio plug can side load the deflecting components, for example load the deflecting components at an angle (e.g., perpendicular or substantially perpendicular) relative to the axis of motion of the deflecting component.
In some embodiments, an electronic device port can include linear contact pads extending from several sides of the port. In particular, an electronic device can include linear contact pads, such as pogo pins, extending from opposite sides of a port and contacting different contact regions of a plug inserted in the port. Because the linear contact pads can require less space along the height of the port, a plug having more distinct contact regions can be used with a smaller port (e.g., the density of contact pads can increase because the space required for a contact pad to move can be limited to a direction away from the port). In some embodiments, combinations of linear contact pads (e.g., pogo pins) and non-linear contact pads (e.g., the stamped pads of
The above described embodiments of the present invention are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims which follow.
This application claims priority to U.S. Provisional Application No. 61/162,210, filed Mar. 20, 2009, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61162210 | Mar 2009 | US |