The description that follows relates generally to headphones. In particular, the description relates to an improved audio listening system with improved earphone configurations.
Commercially available headphones typically comprise a pair of earphones, or ear-cups, coupled to one another by a resilient curved band, e.g., a headband, that applies sufficient force to the ear-cups to hold the headphones in place on the user's head. Ear-cups are designed to be positioned close to the auditory canal of the user's ear to create an acoustically necessary coupling space there between. If the ear-cup is not positioned squarely over the user's outer ear, the force holding the headphone in place may be concentrated on one part of the user's ear, causing the ear to become sore. Moreover, the uniqueness of each user's ear shape creates a problem for designing ear-cups that universally provide a comfortable and close fit to the outer part of the ear. Because today's users tend to wear headphones for relatively longer periods of time, the ability to completely and comfortably adjust a headphone to each particular user is becoming as important of a feature to consumers as the acoustical parameters of the headphone.
Many of today's headphone users also require greater portability from a headphone, as the combination of the Internet and smart phones have made music, video, and online applications available virtually anywhere and at anytime. Among commercially available headband type headphones, a few of them can be folded into a compact form when not in use, thereby protecting the headphones when not in use and increasing their portability. In addition, with greater mobility comes increased visibility, and so, for some users, headphones have become a form of artistic expression, making the aesthetic appeal of the headphone an important feature as well.
A common problem in many commercially-available headphones is the existence of a “rattling” sound within the ear-cups. In some instances, the rattling may be more prevalent when listening to audio files at high volume levels and/or when playing music with a rich bass. One cause of this rattling noise can be the dislodgement of internal components of the ear-cups, such as the diaphragm, wires, etc. Needless to say, the rattling noise can grossly interfere with the headphone user's enjoyment of the headphone.
The present disclosure is defined by the appended claims. This description summarizes some aspects of the embodiments and should not be used to limit the claims.
A technical advance is achieved by an audio listening device that includes ear-cups pivotably engaged to a headband assembly by engagement structures and a damper rim positioned between the ear-cups and the headband assembly, wherein the engagement structures and the damper rim provide semi-free, damped rotation of the ear-cups relative to the headband assembly.
According to one embodiment, an audio listening device includes a headband assembly comprising at least one end and an ear-cup assembly pivotably engaged to the at least one end of the headband assembly by an engagement structure. The engagement structure comprises at least two cooperatively-coupled curved surfaces. The audio listening device further includes a damper rim that is coupled to the ear-cup assembly and to the at least one end of the headband assembly. Moreover, the damper rim is configured to at least partially constrict movement of the ear-cup assembly relative to the headband assembly.
Other articles of manufacture, features, and advantages of the present invention will be, or will become, apparent to one having ordinary skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional articles of manufacture, features, and advantages included within this description be within the scope of the present invention, and be protected by the accompanying claims.
The invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. In the drawings, like reference numerals designate corresponding parts throughout the several views.
Illustrative and exemplary embodiments of the invention are described in further detail below with reference to and in conjunction with the figures.
The description that follows describes, illustrates and exemplifies one or more particular embodiments of the present invention in accordance with its principles. This description is not provided to limit the invention to the embodiments described herein, but rather to explain and teach the principles of the invention in such a way to enable one of ordinary skill in the art to understand these principles and, with that understanding, be able to apply them to practice not only the embodiments described herein, but also other embodiments that may come to mind in accordance with these principles. The scope of the disclosure is intended to cover all such embodiments that may fall within the scope of the appended claims, either literally or under the doctrine of equivalents.
In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” and “an” object is intended to denote also one of a possible plurality of such objects.
At least one of the ear-cups 102 includes a cable port 106. In practice, by plugging a headphone cable 108 into the cable port 106, the headphone wearer may use the headphone 100 to listen to audio signals being transmitted through the headphone cable 108. In one embodiment, each of the ear-cups 102 includes a cable port 106, and the cable ports 106 operate as input/output cable ports for inputting audio signals through one cable port 106 and outputting audio signals through the second cable port 106 to, for example, a second headphone set (not shown). Other mechanisms for transmitting signals to (and from) headphone 100 may be provided, such as alternative locations for cable port(s) 106 or the integration of wireless connectivity (such as, e.g., Bluetooth), without departing from the description herein.
Referring additionally to
The friction-based adjust mechanism, provided at both ends of the headband 110, is a mechanism for adjusting the size of the headphone 100 so as to adapt to the size of the wearer's head. To that end, the sliding members 114 are formed so as to create a biasing frictional force when they are slid relatively to the headband 110. Before the headphone 100 is fitted onto the wearer's head, each of the sliding members 114 can be substantially hidden within the corresponding channel. In this position, the distance between each of the headphone units 102 and the apex of the headband 110 is minimal, thus corresponding to the smallest head size that can comfortably accept or wear the headband 110. When the wearer puts on the headphone 100 by holding the earphone units 102 in his/her hands, he/she can adjust the headphone 100 by simply applying a force slightly greater than the frictional forces exerted by the sliding members 114 onto the channel to slide down the earphone units 102 towards his/her ears.
As shown in
Now referring to
As shown in
Each engagement structure 116 is positioned within and covered by a damper rim 126 to protect the engagement structure 116 from exposure to dust and other foreign particles. By covering the engagement structures 116, damper rims 126 also provide a smooth finish to the headphone 100 by hiding the engagement structures 116 from view. The damper rims 126 also couple the ear-cup 102 to the arms 112 by serving as resilient and flexible connection between the ear-cup housing 120 and the inner housing 124 of the arms 112. The damper rims 126 are positioned vertically, or substantially parallel to an outer cap 128 of the ear-cups 102, and operate to dampen movement of the ear-cups 102 and to generally maintain the position of the ear-cup 102 relative to the arms 112 and the headband 110, without providing undue pressure against the wearer's outer ear. Moreover, due to its slim profile, the damper rims 126 also reduce a thickness of the ear-cups 102, thereby giving the headphone 100 a sleek appearance overall and increasing its aesthetic appeal.
In one embodiment, the damper rim 126 may be designed as a bellows. Damper rims 126 may be composed of a suitable flexible and resilient material, such as, e.g., rubber or polyester foam. As shown in
In one embodiment, each ear-cup 102 is acoustically enclosed on the back-side by the ear-cup housing 120, except for a small hole to allow routing of a cable 130 that electrically couples each ear-cup 102 to the headphone cable 108 connected to cable port 106. By acoustically sealing the back of each ear-cup 102 with ear-cup housing 120, the sound emitted from the rear of the transducer 132 is confined within each ear-cup 102, thereby enhancing the acoustic characteristics of the headphone 100. Each ear-cup housing 120 includes a transducer 132 for converting electrical signals into sound (for example, electrical signals receiving via the headphone cable 108). In part, transducer 132 produces sound by vibrating and pushing air forward. Ear-cup caps 134 cover each transducer 132 to protect the transducer 132 from the elements, such as dust, small particles, or other contamination. Each ear-cup cap 134 is positioned on a front-side of the ear-cup 102, so as to be directly opposite of the ear-cup housing 120, thereby creating an enclosed space around the transducer 132. The shape and size of this enclosed space determines, in part, the acoustic characteristics of the sound produced by the transducer 132. This enclosed space defines a fixed volume since the ear-cup housing 120 and the ear-cup cap 134 are relatively rigid components, i.e. not composed of flexible materials that significantly expand or contract when pressure is applied. The transducer 132 may be acoustically configured to produce optimal sound within the fixed volume formed by the enclosed space. As will be appreciated, internal sound reflections within the ear-cup housing 120 can degrade sound quality by producing standing waves and other forms of sound diffraction. To address these and other known issues, the ear-cup housing 120 may contain absorptive materials (e.g., wool, synthetic fiber batting, etc.) within the fixed volume (e.g., loosely packed within the enclosed space or densely lining the walls of the enclosed space), and/or the internal shape of the space enclosed within each ear-cup 102 may be designed to reflect sounds away from the ear-cup cap 134, where they may then be absorbed. Each ear-cup cap 134 may include a specifically designed grid-like surface for enabling sound to radiate from the transducer 132 towards the user's ear. In one embodiment, the grid-like surface of the ear-cup cap 134 may be comprised of a wire or fabric mesh.
According to other embodiments, each ear-cup 102 may include one or more vents in a front and/or back of the ear-cup 102. Like ports, vents can assist with frequency response tuning or adjustment. However, unlike ports, which are typically tube-like structures that occupy a larger volume, vents are very thin openings in the housing 120 of the ear-cup and typically have a thickness equal to a thickness of the ear-cup housing 120 (e.g., about 1.5 mm). In one embodiment, the ear-cup 102 includes back vents that are configured to tune a response of the transducer 132 by allowing a measured amount of sound leakage out of the back of the ear-cup 102. According to one aspect, the ear-cups 102 may include a mesh comprised of acoustically resistive material (e.g., a foam, a thin, perforated sheet, mesh, etc.) that is placed over the back vents to provide an appropriate amount of leakage. In one embodiment, the ear-cup 102 also includes front vents, which are configured to be more resistive than the back vents. For example, the front vents may be designed to allow less sound leakage at higher frequencies and more sound leakage at lower frequencies.
Additionally, or in the alternative, in some embodiments, the ear-cup 102 may include front vents and back vents in order to protect against an application of excessive pressure to the ear-cups 102. For example, if the user presses the ear-cup 102 too hard, it can damage a diaphragm of the transducer 132 by causing the diaphragm to become crinkled or puckered. Such excessive pressure can happen inadvertently while wearing the headphone 100, for example, if the ear-cup is pressed too hard against the head of the user. By providing front and back vents in the ear-cup 102, the acoustic chamber within the ear-cup 102 may not be fully-enclosed (e.g., may not be in a vacuum) and as a result, any pressure applied to the ear-cup 100 can be relieved through the vents of the ear-cup 102. For example, the front and back vents may operate as a pressure-relief valve within the ear-cup 102 that helps prevent damage to the diaphragm of the transducer 132, as well as other components within the ear-cup 102.
Cushioning doughnut-shaped ear pads 136 are wrapped circumferentially around the sound-radiating side of each ear-cup 102 for providing comfortable positioning on the user's ear. Due to the flexibility provided by the engagement structures 116 and the bow shape of the arm 112, when the headphone 100 is mounted on the wearer's head, each of the ear-cups 102 is completely self-adjustable with respect to the wearer's ear to become substantially parallel to the ear, thereby adopting an optimum position which minimizes the travel of the sound outside the ear pad 136. As such, the cushioned ear-cups 102 provide very comfortable listening, superior passive sound isolation, and minimize ear fatigue due to extended wear.
Referring additionally to
The headphone 200 may include components that are similar to those included in the headphone 100. For example, the headphone 200 may include a pair of ear-cups 202, a cable port 206, and/or a pair of bow-shaped arms 212 that are substantially similar to the ear-cups 102, cable port 106, and arms 112 shown in
As illustrated, the headphone 200 may include an engagement structure 216 (also referred to herein as “a set of engagement structures 216) configured to pivotably couple each of the arms 212 to a respective one of the ear-cups 202. According to one embodiment, the engagement structure 216 may include a pair of cooperatively-coupled curved surfaces between the ear-cup 202 and the arm 212, the curved surfaces defining a ball-joint type of interface configured to allow rotation of the ear-cup 202 relative to the arm 212. In
As shown in
According to one embodiment, the rear plate 218 may be positioned proximate to or within the cavity 238 of the arm 212. The arm 212 may include an inner housing 224 that is opposite from the cavity 238 and has an opening 225 configured to receive at least a portion of the rear plate 218. In some embodiments, the opening 225 may be configured to prevent the entire rear plate 218 from passing through the opening 225. For example, a top portion 218a of the rear plate 218 may press against a top portion 225a of the opening 225 and a bottom portion 218b of the rear plate 218b. The top and bottom portions of the rear plate 218 may include flat, paddle-shaped portions that are configured to lie flat against respective portions of the opening 225. The rear plate 218 may further include a curved convex surface 218c, that is at least partially semi-spherical or rounded. In one embodiment, the curved convex surface 218c may be positioned in a center of the rear plate 218. In one embodiment, the curved convex surface 218c may extend or jut out beyond the paddle-shaped portions 218a and 218b, such that an inclined portion 218e is formed from a top side of the curved convex surface 218c to either of the paddle-shaped portions 218a and 218b, as can be seen in
According to one embodiment, the front plate 222 may be positioned proximate to the ear-cup housing 220. Specifically, the ear-cup housing 220 may include an opening 229 that is configured to at least partially receive the front plate 222. In some embodiments, the opening 229 may have dimensions that are substantially similar to the dimensions of the front plate 222, such that the front plate 222 fits snugly into the opening 229. The front plate 222 may include a curved concave surface 222a configured to cooperatively receive and contact the curved convex surface 218c, upon attachment of the front plate 222 to the rear plate 218.
As shown in
Referring now to
Referring now to
To provide a reference point,
According to one aspect,
The headphone 200 may also include a damper or damper rim 226 that is at least similar in function to the above-described damper rim 126. For example, the damper 226 may cover and protect the engagement structure 216 from exposure to dust and other foreign particles. In addition, the damper 226 may serve as a resilient and flexible connection between the ear-cup housing 220 and the inner housing 224 of the arm 212. In some embodiments, the damper 226 may also be configured to constrict or dampen movement between the ear-cup 202 and the arm 212. For example, the damper 226 may be configured to have sufficient resilience and flexibility to allow semi-free rotation of the ear-cup 202, but still generally maintain or retain the position of the ear-cup 202 relative to the arm 212 (e.g., force the ear-cup back to a neutral position), without providing undue pressure against a headphone wearer's outer ear. According to some embodiments, the damper 226 may be made of rubber (e.g., silicon), plastic, or any other flexible and resilient material. In addition, the presence of the damper 226 between the ear-cup 220 and the arm 212 helps to stabilize the ear-cup 202 and at least partially dampen excessive forces that, for example, can dislodge internal components and thereby cause a “rattling” noise in the headphone. In one embodiment, the presence of the damper 226 has virtually eliminated the rattling noise within the headphone 200.
According to some embodiments, the damper 226 may be attached to the arm 212 using a first attachment mechanism and may be attached to the ear-cup housing 212 using a second attachment mechanism. By using two different attachment mechanisms for attaching the damper 226, the ear-cup 202 may be provided with a wider range of motion and/or greater flexibility. As will be appreciated, though specific examples of damper attachment mechanisms may be provided, the principles disclosed herein are not limited to the exact structures described and shown herein.
In some embodiments, the first attachment mechanism may include a ring-shaped clamp 227 for coupling the damper 226 to the arm 212. The ring-shaped clamp 227 includes a plurality of apertures 240 that are configured to receive a plurality of prongs 242 included in the inner housing 224. Likewise, the damper 226 may include a plurality of apertures 244 that are configured to fit over the prongs 242. According to one embodiment, the prongs 242 may be heat staked to the clamp 240 and the damper 226 in order to create a secure, permanent connection between the components. According to some embodiments, the clamp 240 may be made of metal, plastic, or any other suitable material.
In some embodiments, the second attachment mechanism for securing the damper 226 to the ear-cup housing 220 may include a plurality of tabs 246 coupled to the damper rim 226 and a plurality of slots 248 configured to receive the tabs 246. According to one embodiment, the tabs 246 may snap into the slots 248. For example, each of the tabs 246 may include flexible flanges 246a and 246b on either side of the tab 246. The flexible flanges 246a and 246b may include a spring mechanism that allows the flanges 246a and 246b to be pressed substantially flat during insertion into the slot 248, in order to allow the tab 246 to pass through the slot 248. Once the tab 246 passes through the slot 248, the flanges 246a and 246b may automatically re-extend, or spring back into place, so that the tab 248 cannot be pulled back through the slot 248 (e.g., because a length of the fully-extended tab 246 is greater than a length of the slot 248).
According to some embodiments, though the damper 226 is positioned between the ear-cup 202 and the arms 212, the actual point of connection between the ear-cup 202 and the arms 212 may be comprised only of the engagement structure 216. As shown in
As discussed above, the curved surfaces of the engagement structure 216 enable the ear-cup 202 to pivot relative to the arm 212 in any direction about the interface formed by the front plate 222 and the rear plate 218. To some extent, the damper 226 may be configured to constrict this movement of the ear-cup 202 relative to the arm 212, at least because unconstricted movement of the ear-cup 202 can cause undesirable effects, such as, e.g., hanging or tilting down of the ear-cup 202 and/or rattling noise within the ear-cup 202.
As will be appreciated, the principles described herein are not limited to the exact structure, shape, or size depicted in the figures. For example, instead of paddle-shaped portions 218a and 218b, the rear plate 218 can have any other overall shape that provides a curved or semi-spherical interface between the ear-cup 202 and the arm 212.
Thus, the headphones disclosed herein provide sleek, space-saving audio listening devices that can be comfortably worn by the wearer for an extended listening period, when compared to commercially available headphones. By pivotably connecting the ear-cups to the arms using the disclosed engagement mechanisms, and dampening the movement of the engagement mechanisms with a flexible damper rim, a comfortable, substantially pressureless, and precise fitting solution to the wearer's ear is achieved, while protecting the ear-cups from excessive forces and/or movements that can lead to rattling noises within the ear-cups. Furthermore, as discussed above, several features are provided to obtain a slimmer and sleeker design with convenient portability. For example, the damper rims not only provide a protective cover for the engagement mechanisms, but also provide an element of aesthetic appeal by mimicking the look, and color, of a traditional speaker cone surround. Moreover, the size and positioning of the damper rims and the placement of batteries in the arms reduces the overall thickness of the ear-cups, thereby increasing the commercial appeal and usability of the headphone disclosed herein.
It should be emphasized that the above-described embodiments, particularly, any “preferred” embodiments, are possible examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention without substantially departing from the spirit and principles of the invention. All such modifications are intended to be included herein within the scope of this disclosure and protected by the following claims.
This application is a continuation-in-part of U.S. Non-provisional patent application Ser. No. 13/517,035, filed on Jun. 18, 2012, entitled “Audio Listening System,” which is a national stage patent application of PCT/US11/67045, filed on Dec. 22, 2011, which claims priority from U.S. Provisional Patent Application No. 61/429,426, filed on Jan. 3, 2011, all of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13517035 | Sep 2013 | US |
Child | 13925613 | US |