For better understanding of the objects and other features of the present invention, its preferred embodiments will be described hereinbelow in greater detail with reference to the accompanying drawings, in which:
Microcomputer, comprising the above-mentioned CPU 1, flash memory 2 and RAM 3, executes various control programs stored in the flash memory 2 or RAM 3, to thereby control behavior of the entire mixer 100. The flash memory 2 or RAM 3 includes a current memory area for storing therein various parameters etc. currently set in the mixer. The DSP 4 performs digital signal processing on audio signals. The waveform I/O unit 5 includes analog input ports, analog output ports and digital input/output ports, and audio cables are connected to the waveform I/O unit 5. Each analog audio signal input via the waveform I/O unit 5 is converted into digital representation and then supplied to the DSP 4, and the DSP 4 performs signal processing on the supplied digital audio signal on the basis of instructions given from the CPU 1. Digital audio signals generated as a result of the signal processing by the DSP 4 are output to the outside via the waveform I/O unit 5 after being converted into analog representation. Further, digital audio signals can be communicated between the mixer 100 and a digital sound device connected to the mixer 100 via the waveform I/O unit 5.
The display 6, various operators 7 and electric faders 8 are user interlaces provided on an operation panel to be later described in detail in relation to
The display 6, which is for example in the form of a liquid crystal display (LCD), shows display screens corresponding to various functions of the audio mixer 100, and, through the GUI objects (e.g., button images) on the displayed screens, the user of the mixer 100 can make settings related to the entire system and settings of parameters for various functions. Let it be assumed that the instant embodiment of the mixer 100 is of a relatively inexpensive model where the display 6 is not a touch-panel type display, and hence that various operation based on the GUI objects (e.g., button images) on the displayed screens of the display 6 are performed using a cursor key, ENTER (decision key) key, etc. included in the group of operators 7.
The above-mentioned other I/O 10 is, for example, a network interface of the Ethernet (registered trademark), via which an external device, such as a personal computer containing an application program for remote-controlling the audio mixer 100 of the invention, is connectable to the audio mixer 100. Further, a USB memory 13 is connectable to the audio mixer 100 via a connector (USB terminal) 12 connected to a USB I/O 11 of the mixer 100. Mixer interior data, such as setting data of the DSP 4, of the mixer 100 may be transferred to the recorder 9 and then saved or loaded to the USB memory 13.
Input patch section 22 selectively connects each of the input ports (A inputs 20 or D inputs 21) to any one of a plurality of input channels 23 to thereby allocate the signal from each of the input ports (A inputs 20 or D inputs 21) to any one of the input channels 23. Further, data indicative of the connections, in the input patch section 22, between the individual input channels 23 and the input ports are stored as “patch data” in a suitable memory, such as the flash memory 2 or RAM 3. Note that, in this specification, associating and connecting the input ports and the input channels or associating and connecting the output ports and output-side channels are referred to as “patch”.
The plurality of input channels 23 (in the illustrated example, 32 (thirty two) input channels CH1-CH32) each include: parameter setting sections for setting values of parameters, such as limiter, compressor, equalizer, tone volume fader and panning parameters, to be applied to a digital audio signal allocated from the corresponding input port; thus, characteristics and level of the audio signal input to each of the input channels 23 are adjusted on the basis of parameter values set by the user via the parameter setting sections. Further, each of the input channels 23 is connected to individual ones of a predetermined plurality of mixing buses 25 (in the illustrated example, 16 (sixteen) mixing buses “mix1”-“mix16”), and, in association with each of the plurality of mixing buses 25, the input channel 23 includes an output destination selection section for turning on/off output to the mixing bus 25 and a send level adjustment section 24 for adjusting the send level of an audio signal to be sent to the mixing bus 25. Namely, the send level adjustment section 24 is a module for adjusting the send level with which an audio signal is be sent from the input channel 23 to the mixing bus 25. The user can transmit an output signal of each of the input channels 23 to a desired one of the mixing buses 25, selected via the output destination selection section of each of the input channels 23, with the send level corresponding to a parameter setting by the send level adjustment section 24. Each of the mixing buses 25 mixes together the signals received from the input channels 23 in accordance with a mixing ratio corresponding to signal output levels of the individual input channels 23.
A plurality of (16 in the illustrated example) mixing channels (CH1-CH16) 26, corresponding to the plurality of mixing buses 25, each include a mixed output adjustment section 27 for adjusting a signal output level of the mixing channel; thus, the mixed output adjustment section 27 can set an output level of digital audio signals sent from the corresponding mixing bus 25. Further, each of the mixing channels 26 includes, in addition to the mixed output adjustment section 27, parameter setting sections for setting values of parameters, such as limiter, compressor and equalizer parameters, to be applied to the audio signals; thus, characteristics of the audio signals can be adjusted independently per mixing channel 26.
Output patch section 28 selectively connects each of the mixing channels 26 to any one of a plurality of analog output ports (A outputs) 29 or digital output ports (D outputs) 30 to thereby allocate the output of the mixing channel 26 to any one of the output ports (A outputs 29 or D outputs 30); thus, audio signals having been subjected user-desired mixing processing are output from the A or D outputs 29 or 30.
The channel strip section 31 includes an input channel section 34 and a stereo master section 35. In the illustrated example of
In the “Sends On Fader (SOF) mode” of the present invention, as will be later described in detail, each of the fader operators 36 of the input channel section 34 functions as an operator for adjusting the send level of an audio signal to be sent from the input channel to a mixing bus selected as an object of operation to be performed by the SOF function, while the fader operator 37 of the stereo master section 35 functions as an operator for adjusting the output level of the mixing bus selected as the object of operation.
The channel strips of the input channel section 34 or the stereo master section 35 may include, in addition to the fader operators 36 or 37, a switch for selecting the channel in question as an object of operation to be performed by the selected channel section 32, a switch for selecting the channel in question as an object of cue monitoring, a switch for switching between ON and OFF states of the channel, etc. Further, output-side channels, such as the mixing channels 26, may be operated via the input channel section 34.
In the instant embodiment of the invention, each of the bus selection switches 39 performs either one of two functions, i.e. a function for selecting one of the mixing buses and a function for switching between operation modes of the fader operators 36, 37. Namely, by operating any one of the bus selection switches 39, the user can give an instruction for switching between the ON and OFF states of the SOF function. Also, when the SOF function is OFF, the user can operate any one of the bus selection switches 39 to select a desired signal destination mixing bus for a channel currently allocated to the selected channel section 32, namely, select an object of operation to be performed by the selected send level operator 38. When the SOF function is ON (.e., in the SOF mode), on the other hand, the user can operate any one of the bus selection switches 39 to select a desired mixing channel that should become an object of operation to be performed by the SOF function. Note that, in this specification, the operation mode in which the SOP function is OFF will be referred to as “ordinary mode” while the operation mode in which the SOF function is ON will be referred to as “SOF mode” that corresponds to a “special mode” mentioned in the appended claims.
Now, with reference to a flow chart of
At next step S2 of
First, a description is given about the case where no operation mode switching is effected (i.e., where the operated bus selection switch 39 was in the non-operating state) (YES determination at step S2). In this case, any one of the other bus selection switches 39 than the operated bus selection switch 39 is in the operating (or selected) state. Thus, a determination is made at step S3, on the basis of the operational state of the other bus selection switch 39 (that was in the selected state immediately before the operation of the bus selection switch 39), as to which one of the ordinary mode and SOF mode the operation mode of the fader operators 36, 37 is set in.
If the fader operators 36, 37 are operating in the ordinary mode (YES determination at step S4), the LED 40 of the currently-operating bus selection switch 39 is deilluminated at step S5, and the LED 40 of the above-mentioned operated bus selection switch 39 is switched to the illuminated state at step S6, and a “send level” parameter, which is to be applied to the mixing bus corresponding to the operated bus selection switch 39, of the channel currently allocated to the selected channel section 32 is allocated to the selected send level operator 38 at step S7. In this way, the object of operation to be performed by the selected send level operator 38 can be switched to the mixing bus corresponding to the operated bus selection switch 39.
If, on the other hand, the fader operators 36, 37 are operating in the SOF mode (NO determination at step S4), it means that the LED 40 of the currently-operating bus selection switch 39 is in the blinked state. Thus, the LED 40 of the currently-operating bus selection switch 39 is deilluminated at step S8, and the LED 40 of the above-mentioned operated bus selection switch 39 is blinked at step S9. Then, a process of the “Sends On Fader (SOF) mode” is started at step S10, through an SOF mode starting process to be later described with reference to
Next, a description is given about the case where operation mode switching is effected, i.e. where the bus selection switch 39 operated by the user was in the operating state (namely, where the mixing bus corresponding to the operated bus selection switch 39 has been selected in the ordinary mode or SOF mode and the LED 40 of the operated bus selection switch 39 was being illuminated or blinked) (NO determination at step S2. At next step S11, a determination is made, on the basis of the checked operational state of the operated bus selection switch 39, as to which one of the ordinary mode and SOF mode the operated bus selection switch 39 was in, to thereby determine a current operation mode of the fader operators 36, 37.
If the fader operators 36, 37 are operating in the ordinary mode, i.e., the LED 40 of the operated bus selection switch 39 was in the illuminated state) (YES determination at step S11), control is performed at step S12 to switch the LED 40 of the operated bus selection switch 39 from the illuminated state to the blinked state. The process of the “Sends On Fader (SOF) mode” is started at step S13, through the SOF mode starting process to be later described with reference to
If the fader operators 36, 37 are operating in the SOF mode i.e., the LED 40 of the operated bus selection switch 39 was in the blinked state) (NO determination at step S11), control is performed at step S14 to switch the LED 40 of the operated bus selection switch 39 from the blinked state to the illuminated state. The process of the SOF mode is brought to an end at step S15, through an SOF mode ending process to be later described with reference to
First, at step S17-S18, the object of operation to be performed by each of the individual fader operators 36 in the input channel section 34 is switched to the “send level” parameter for the mixing bus set as the object of operation to be performed by the SOF function. Namely, the “send level” parameters (i.e., parameters set by the send level adjustment sections 24 of
Next, at steps S20-S23, the object of operation to be performed by the fader operator 37 in the stereo master section 35 is switched to a “send level” parameter for the mixing bus set as the object of operation to be performed by the SOF function. Namely, at step S20, an “output level” parameter (i.e., parameter set by the mixed output adjustment section 27) of the mixing channel 26, corresponding to the mixing bus that corresponds to the bus selection switch 39 operated by the user, is allocated as the object of operation to be performed by the fader operator 37 in the stereo master section 35 (see
Thus, at steps S16-S22, the SOF function is started, and the send levels to be applied the mixing bus currently set as the object of operation can be adjusted by use of the fader operators 36 of the input channel section 34 while the output level of the mixing channel 26 corresponding to the mixing bus set as the object of operation can be adjusted by use of the fader operator 37 of the stereo master section 35.
Further, at steps S26-S28, the object of operation to be performed by the fader operator 37 in the stereo master section 35 is switched to a parameter that was being set prior to the start of the SOF function. Namely, the parameter (normally, output level of the stereo master channel) that was being set prior to the start of the SOF function is allocated, at step S26, as the object of operation to be performed by the fader operator 37 in the stereo master section 35. Then, the current setting of the parameter in question is read out, at step S27, from the current memory area (flash memory 2 or RAM 3), and the operating knob of the fader operator 37 of the stereo master section 35 is set, at step S28, to a position corresponding to the read-out current setting.
Thus, at steps S23-S28, the SOF function is ended so that the operation in the ordinary mode is resumed, and the tone volume levels of the individual input channels 23 can be adjusted by use of the fader operators 36 of the input channel section 34 while the allocated parameter (normally, stereo master output level) can be adjusted by use of the fader operator 37 of the stereo master section 35.
According to the instant embodiment, as having been described above, the operation mode of the fader operators can be switched to the SOF mode by the user depressing a particular bus selection switch 39 currently operating in the ordinary mode (i.e., bus selection switch 39 of which the LED 40 was in the illuminated state immediately before the depression or operation). Further, in the SOF mode, a particular mixing bus to be set as the object of operation to be performed by the SOF function can be selected by means of the 16 bus selection switches 39 of the mixing bus selection section 33. The LED 40 of the bus selection switch 39, selected as the object of operation to be performed by the SOF function, is switched to the blinked state. By the user further depressing the bus selection switch 39 operating in the SOF mode (i.e., bus selection switch 39 of which the LED 40 was in the blinked state), the operation mode of the fader operators 36, 37 can be switched from the SOF mode to the ordinary mode. Further, the selection of a mixing bus as an object of operation in the SOF mode can be performed in a manner that correspondency between the mixing bus as an object of operation in the SOF mode and the bus selection switch 39 can be easily identified, because the existing bus selection switches 39 are used for this purpose.
To cancel (deactivate or turn off) the SOF function, for example, in a case where, in the ordinary mode (where the SOF function is OFF), another mixing bus than the mixing bus last (i.e., most recently) set as an object of operation to be performed by the SOF function is allocated as an object of operation to be performed by the selected send level operator 38, the user only has to depress twice in succession the bus selection switch 39 (of which the LED 40 was in the non-illuminated state immediately prior to the deactivation of the SOF function) corresponding to the other mixing bus. The same can be said of an operation for set (activating or turning on) the SOF function; namely, the user only has to depress twice in succession a particular bus selection switch 39 corresponding to a mixing bus to be allocated as an object of operation to be performed by the SOF function, without being particularly conscious of the last (i.e., most recent) selection of a mixing bus as an object of operation in the ordinary mode. Thus, the present invention allows the SOF-function turning on/off operation to be performed with an increased operability.
The SOF function has been described above as being turned on or off by the user only depressing twice in succession any one of the bus selection switches 39. Alternatively, where there is no change in the mixing bus set as the object of operation at the time of turning on or off the SOF function (i.e., at the time of effecting operation mode switching), the user may depress only once the bus selection switch 39 corresponding to the mixing bus set as the object of operation, as clear from the description given above with reference to the flow chart of
Therefore, the embodiment of the present invention described above can accomplish the superior benefit that the user is allowed to perform, even in a mixer of a relatively inexpensive model equipped with no touch-panel type display, the operation for activating/deactivating the SOF function and selecting an object of operation to be performed by the SOF function in a manner that the ON/OFF setting of the SOF function and selection state of the mixing buses can be identified sensuously and promptly, which can achieve a superior operability without unnecessarily increasing the number of component parts.
When switching the mixing bus set as the object of operation in the SOF mode at step S16 in the above-described embodiment, the object of operation to be performed by the selected send level operator 38 in the selected channel section 32 may also be switched in response to the switching of the object of operation in the SOF mode.
Further, whereas the operation for activating/deactivating the SOF function (i.e., the operation for effecting operation mode switching) has been described above as depressing twice in succession a same bus selection switch 39, such operation for activating/deactivating the SOF function by use of the bus selection switches 39 is not so limited and may be performed by so-called “long-time depression” or simultaneous depression of two bus selection switches 39; in short, any operation schemes, other than the mixing bus selection operation by single depression, may be applied as long as they can instruct activation/deactivation of the SOF function (operation mode switching).
Whereas the present invention has been described so far as an apparatus invention, the present invention is not so limited and may be arranged and implemented as a software program for causing a computer as a communication setting apparatus.
This application is based on, and claims priority to, Japanese Patent Application No. 2006-242028 filed on Sep. 6, 2006. The disclosure of the priority application, in its entirety, including the drawings, claims, and the specification thereof is incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2006-242028 | Sep 2006 | JP | national |