The present disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio in an out-loud setting were limited until in 2002, when SONOS, Inc. began development of a new type of playback system. Sonos then filed one of its first patent applications in 2003, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering its first media playback systems for sale in 2005. The Sonos Wireless Home Sound System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a controller (e.g., smartphone, tablet, computer, voice input device), one can play what she wants in any room having a networked playback device. Media content (e.g., songs, podcasts, video sound) can be streamed to playback devices such that each room with a playback device can play back corresponding different media content. In addition, rooms can be grouped together for synchronous playback of the same media content, and/or the same media content can be heard in all rooms synchronously.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings, as listed below. A person skilled in the relevant art will understand that the features shown in the drawings are for purposes of illustrations, and variations, including different and/or additional features and arrangements thereof, are possible.
The drawings are for the purpose of illustrating example embodiments, but those of ordinary skill in the art will understand that the technology disclosed herein is not limited to the arrangements and/or instrumentality shown in the drawings.
I. Overview
“Smart devices” (also referred to as “IoT devices” and referred to herein as “network-enabled devices”) are becoming more prevalent, such that it is common for an individual to interact with numerous smart devices throughout the course of an ordinary day, and many households include multiple smart devices, often from different manufacturers or providers. For instance, a household may include one or more of a smart doorbell (such as those provided by Nest® or Ring®), a smart thermostat (such as those provided by (Nest® or Ecobee®), a smart vacuum (such as those provided by iRobot® or Neato®), or smart appliances (such as those provided by GE® or Whirlpool®), to name a few examples.
Smart devices may provide convenience by automating various tasks and by allowing a user to remotely control or otherwise interact with the smart devices. For instance, smart devices may generate alerts upon detecting various events in order to notify the user that the detected events have occurred. For instance, a smart doorbell may generate an alert responsive to detecting the presence of an individual at the door, a smart thermostat may generate an alert responsive to determining that a room has reached a threshold high or low temperature or responsive to activating or deactivating an HVAC system, and a smart vacuum may generate an alert responsive to starting or finishing a cleaning cycle.
When a smart device generates an alert, the smart device may notify the user of the generated alert via the user's mobile device. For instance, the smart device may cause the user's mobile device to output an audio and/or visual notification of the generated alert.
In some circumstances, the user might prefer to receive the notification of the generated alert via a playback device. For instance, the user might prefer certain notifications, such as a doorbell ringing or a fire alarm, to be heard or otherwise observed by people other than the user and/or in different rooms from the user. These notifications may be more suited for output via one or more playback devices, as output from the playback devices may be more effectively received by multiple people in different rooms than a notification provided by the user's mobile device.
Further, in some circumstances, the user might not receive the notification of the generated alert via the mobile device. For instance, the user may have powered off or silenced the mobile device, or the mobile device may have powered itself off responsive to low battery power. As another example, the user might not be paying attention or may be otherwise distracted from the mobile device. For instance, the user might be using a television or playback device to watch television or listen to music, and the audio output from the playback device may drown out or otherwise distract the user from the alert notifications output by the mobile device.
Disclosed herein are systems and methods to help address these or other issues. In particular, the present disclosure provides example systems and methods that involve a playback device outputting audio notifications corresponding to smart device alerts. However, as noted above, a user may have smart devices from multiple different manufacturers and/or vendors which may also differ from the manufacturer and/or vendor of the playback device. As such, to facilitate the playback device communicating with various smart devices, the playback device can be configured with an application programming interface (API) through which the smart devices can communicate with the playback device.
Using the playback device API, the playback device can receive alert communications from the smart devices. An alert communication may specify various characteristics of an alert, such as by identifying a particular audio notification that is to be played back by the playback device, as well as by identifying a priority level of the alert.
In some examples, the playback device may handle alert communications differently based on their identified priority level. For instance, when the playback device receives an alert communication, the playback device may add the audio notification identified by the alert communication to a queue of notifications for playback, and the playback device may add higher priority notifications ahead of lower priority notifications in the queue. Other examples of how the playback device treats alert communications differently based on their identified priority level are described in further detail below.
After receiving an alert communication from a smart device, the playback device can then play back the audio notification identified by the alert communication. If the playback device is outputting other audio content, such as music or television audio, then the playback device may stop playing back the other audio content or duck the other audio content in order to facilitate playing back the audio notification. Using the playback device to play back the audio notification corresponding to the smart device alert, instead of or in addition to displaying an alert notification on the user's mobile device, may increase the likelihood that the user will be notified of the alert and may result in an improved user experience.
Accordingly, in some implementations, for example, a playback device includes a network interface, an audio stage comprising an amplifier, one or more speaker drivers, one or more processors, and a housing carrying at least the network interface, the audio stage, the one or more speaker drivers, the one or more processors, and tangible, non-transitory, computer-readable media storing instructions executable by the one or more processors to cause the playback device to perform various operations. The operations include, while playing back audio content via the audio stage and the one or more speaker drivers, receiving, via the network interface, an alert communication from a smart device connected to the playback device via a local area network, the alert communication comprising (i) an audio notification identifier that identifies an audio notification and (ii) a priority identifier that identifies a priority level of the audio notification. The operations further include, responsive to receiving the alert communication, adding the audio notification to a notification queue at a particular queue position, wherein the particular queue position of the audio notification in the notification queue is based on the priority level of the audio notification relative to other audio content in the notification queue. Additionally, the operations include adjusting playback of the audio content for playing back the audio notification, and playing back the audio notification via the audio stage and the one or more speaker drivers.
While some examples described herein may refer to functions performed by given actors such as “users,” “listeners,” and/or other entities, it should be understood that this is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
Moreover, some functions are described herein as being performed “based on” or “in response to” (or “responsive to”) another element or function. “Based on” should be understood that one element or function is related to another function or element. “In response to” should be understood that one element or function is a necessary result of another function or element. For the sake of brevity, functions are generally described as being based on another function when a functional link exists; however, disclosure of either type of relationship should be understood as disclosing both types of functional relationship. In the claims, the functional relationship should be interpreted as recited.
In the Figures, identical reference numbers identify generally similar, and/or identical, elements. To facilitate the discussion of any particular element, the most significant digit or digits of a reference number refers to the Figure in which that element is first introduced. For example, element 110a is first introduced and discussed with reference to
II. Suitable Operating Environment
As used herein the term “playback device” can generally refer to a network device configured to receive, process, and output data of a media playback system. For example, a playback device can be a network device that receives and processes audio content. In some embodiments, a playback device includes one or more transducers or speakers powered by one or more amplifiers. In other embodiments, however, a playback device includes one of (or neither of) the speaker and the amplifier. For instance, a playback device can comprise one or more amplifiers configured to drive one or more speakers external to the playback device via a corresponding wire or cable.
Moreover, as used herein the term NMD (i.e., a “network microphone device”) can generally refer to a network device that is configured for audio detection. In some embodiments, an NMD is a stand-alone device configured primarily for audio detection. In other embodiments, an NMD is incorporated into a playback device (or vice versa).
The term “control device” can generally refer to a network device configured to perform functions relevant to facilitating user access, control, and/or configuration of the media playback system 100.
Each of the playback devices 110 is configured to receive audio signals or data from one or more media sources (e.g., one or more remote servers, one or more local devices) and play back the received audio signals or data as sound. The one or more NMDs 120 are configured to receive spoken word commands, and the one or more control devices 130 are configured to receive user input. In response to the received spoken word commands and/or user input, the media playback system 100 can play back audio via one or more of the playback devices 110. In certain embodiments, the playback devices 110 are configured to commence playback of media content in response to a trigger. For instance, one or more of the playback devices 110 can be configured to play back a morning playlist upon detection of an associated trigger condition (e.g., presence of a user in a kitchen, detection of a coffee machine operation). In some embodiments, for example, the media playback system 100 is configured to play back audio from a first playback device (e.g., the playback device 100a) in synchrony with a second playback device (e.g., the playback device 100b). Interactions between the playback devices 110, NMDs 120, and/or control devices 130 of the media playback system 100 configured in accordance with the various embodiments of the disclosure are described in greater detail below with respect to
In the illustrated embodiment of
The media playback system 100 can comprise one or more playback zones, some of which may correspond to the rooms in the environment 101. The media playback system 100 can be established with one or more playback zones, after which additional zones may be added, or removed to form, for example, the configuration shown in
In the illustrated embodiment of
In some aspects, one or more of the playback zones in the environment 101 may each be playing different audio content. For instance, a user may be grilling on the patio 101i and listening to hip hop music being played by the playback device 110c while another user is preparing food in the kitchen 101h and listening to classical music played by the playback device 110b. In another example, a playback zone may play the same audio content in synchrony with another playback zone. For instance, the user may be in the office 101e listening to the playback device 110f playing back the same hip hop music being played back by playback device 110c on the patio 101i. In some aspects, the playback devices 110c and 110f play back the hip hop music in synchrony such that the user perceives that the audio content is being played seamlessly (or at least substantially seamlessly) while moving between different playback zones. Additional details regarding audio playback synchronization among playback devices and/or zones can be found, for example, in U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is incorporated herein by reference in its entirety.
a. Suitable Media Playback System
The links 103 can comprise, for example, one or more wired networks, one or more wireless networks, one or more wide area networks (WAN), one or more local area networks (LAN), one or more personal area networks (PAN), one or more telecommunication networks (e.g., one or more Global System for Mobiles (GSM) networks, Code Division Multiple Access (CDMA) networks, Long-Term Evolution (LTE) networks, 5G communication network networks, and/or other suitable data transmission protocol networks), etc. The cloud network 102 is configured to deliver media content (e.g., audio content, video content, photographs, social media content) to the media playback system 100 in response to a request transmitted from the media playback system 100 via the links 103. In some embodiments, the cloud network 102 is further configured to receive data (e.g. voice input data) from the media playback system 100 and correspondingly transmit commands and/or media content to the media playback system 100.
The cloud network 102 comprises computing devices 106 (identified separately as a first computing device 106a, a second computing device 106b, and a third computing device 106c). The computing devices 106 can comprise individual computers or servers, such as, for example, a media streaming service server storing audio and/or other media content, a voice service server, a social media server, a media playback system control server, etc. In some embodiments, one or more of the computing devices 106 comprise modules of a single computer or server. In certain embodiments, one or more of the computing devices 106 comprise one or more modules, computers, and/or servers. Moreover, while the cloud network 102 is described above in the context of a single cloud network, in some embodiments the cloud network 102 comprises a plurality of cloud networks comprising communicatively coupled computing devices. Furthermore, while the cloud network 102 is shown in
The media playback system 100 is configured to receive media content from the networks 102 via the links 103. The received media content can comprise, for example, a Uniform Resource Identifier (URI) and/or a Uniform Resource Locator (URL). For instance, in some examples, the media playback system 100 can stream, download, or otherwise obtain data from a URI or a URL corresponding to the received media content. A network 104 communicatively couples the links 103 and at least a portion of the devices (e.g., one or more of the playback devices 110, NMDs 120, and/or control devices 130) of the media playback system 100. The network 104 can include, for example, a wireless network (e.g., a WiFi network, a Bluetooth, a Z-Wave network, a ZigBee, and/or other suitable wireless communication protocol network) and/or a wired network (e.g., a network comprising Ethernet, Universal Serial Bus (USB), and/or another suitable wired communication). As those of ordinary skill in the art will appreciate, as used herein, “WiFi” can refer to several different communication protocols including, for example, Institute of Electrical and Electronics Engineers (IEEE) 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ac, 802.11ad, 802.11af, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax, 802.1lay, 802.15, etc. transmitted at 2.4 Gigahertz (GHz), 5 GHz, and/or another suitable frequency.
In some embodiments, the network 104 comprises a dedicated communication network that the media playback system 100 uses to transmit messages between individual devices and/or to transmit media content to and from media content sources (e.g., one or more of the computing devices 106). In certain embodiments, the network 104 is configured to be accessible only to devices in the media playback system 100, thereby reducing interference and competition with other household devices. In other embodiments, however, the network 104 comprises an existing household communication network (e.g., a household WiFi network). In some embodiments, the links 103 and the network 104 comprise one or more of the same networks. In some aspects, for example, the links 103 and the network 104 comprise a telecommunication network (e.g., an LTE network, a 5G network). Moreover, in some embodiments, the media playback system 100 is implemented without the network 104, and devices comprising the media playback system 100 can communicate with each other, for example, via one or more direct connections, PANs, telecommunication networks, and/or other suitable communication links.
In some embodiments, audio content sources may be regularly added or removed from the media playback system 100. In some embodiments, for example, the media playback system 100 performs an indexing of media items when one or more media content sources are updated, added to, and/or removed from the media playback system 100. The media playback system 100 can scan identifiable media items in some or all folders and/or directories accessible to the playback devices 110, and generate or update a media content database comprising metadata (e.g., title, artist, album, track length) and other associated information (e.g., URIs, URLs) for each identifiable media item found. In some embodiments, for example, the media content database is stored on one or more of the playback devices 110, network microphone devices 120, and/or control devices 130.
In the illustrated embodiment of
The media playback system 100 includes the NMDs 120a and 120d, each comprising one or more microphones configured to receive voice utterances from a user. In the illustrated embodiment of
b. Suitable Playback Devices
The playback device 110a, for example, can receive media content (e.g., audio content comprising music and/or other sounds) from a local audio source 105 via the input/output 111 (e.g., a cable, a wire, a PAN, a Bluetooth connection, an ad hoc wired or wireless communication network, and/or another suitable communication link). The local audio source 105 can comprise, for example, a mobile device (e.g., a smartphone, a tablet, a laptop computer) or another suitable audio component (e.g., a television, a desktop computer, an amplifier, a phonograph, a Blu-ray player, a memory storing digital media files). In some aspects, the local audio source 105 includes local music libraries on a smartphone, a computer, a networked-attached storage (NAS), and/or another suitable device configured to store media files. In certain embodiments, one or more of the playback devices 110, NMDs 120, and/or control devices 130 comprise the local audio source 105. In other embodiments, however, the media playback system omits the local audio source 105 altogether. In some embodiments, the playback device 110a does not include an input/output 111 and receives all audio content via the network 104.
The playback device 110a further comprises electronics 112, a user interface 113 (e.g., one or more buttons, knobs, dials, touch-sensitive surfaces, displays, touchscreens), and one or more transducers 114 (referred to hereinafter as “the transducers 114”). The electronics 112 is configured to receive audio from an audio source (e.g., the local audio source 105) via the input/output 111, one or more of the computing devices 106a-c via the network 104 (
In the illustrated embodiment of
The processors 112a can comprise clock-driven computing component(s) configured to process data, and the memory 112b can comprise a computer-readable medium (e.g., a tangible, non-transitory computer-readable medium, data storage loaded with one or more of the software components 112c) configured to store instructions for performing various operations and/or functions. The processors 112a are configured to execute the instructions stored on the memory 112b to perform one or more of the operations. The operations can include, for example, causing the playback device 110a to retrieve audio data from an audio source (e.g., one or more of the computing devices 106a-c (
The processors 112a can be further configured to perform operations causing the playback device 110a to synchronize playback of audio content with another of the one or more playback devices 110. As those of ordinary skill in the art will appreciate, during synchronous playback of audio content on a plurality of playback devices, a listener will preferably be unable to perceive time-delay differences between playback of the audio content by the playback device 110a and the other one or more other playback devices 110. Additional details regarding audio playback synchronization among playback devices can be found, for example, in U.S. Pat. No. 8,234,395, which was incorporated by reference above.
In some embodiments, the memory 112b is further configured to store data associated with the playback device 110a, such as one or more zones and/or zone groups of which the playback device 110a is a member, audio sources accessible to the playback device 110a, and/or a playback queue that the playback device 110a (and/or another of the one or more playback devices) can be associated with. The stored data can comprise one or more state variables that are periodically updated and used to describe a state of the playback device 110a. The memory 112b can also include data associated with a state of one or more of the other devices (e.g., the playback devices 110, NMDs 120, control devices 130) of the media playback system 100. In some aspects, for example, the state data is shared during predetermined intervals of time (e.g., every 5 seconds, every 10 seconds, every 60 seconds) among at least a portion of the devices of the media playback system 100, so that one or more of the devices have the most recent data associated with the media playback system 100.
The network interface 112d is configured to facilitate a transmission of data between the playback device 110a and one or more other devices on a data network such as, for example, the links 103 and/or the network 104 (
In the illustrated embodiment of
The audio components 112g are configured to process and/or filter data comprising media content received by the electronics 112 (e.g., via the input/output 111 and/or the network interface 112d) to produce output audio signals. In some embodiments, the audio processing components 112g comprise, for example, one or more digital-to-analog converters (DAC), audio preprocessing components, audio enhancement components, a digital signal processors (DSPs), and/or other suitable audio processing components, modules, circuits, etc. In certain embodiments, one or more of the audio processing components 112g can comprise one or more subcomponents of the processors 112a. In some embodiments, the electronics 112 omits the audio processing components 112g. In some aspects, for example, the processors 112a execute instructions stored on the memory 112b to perform audio processing operations to produce the output audio signals.
The amplifiers 112h are configured to receive and amplify the audio output signals produced by the audio processing components 112g and/or the processors 112a. The amplifiers 112h can comprise electronic devices and/or components configured to amplify audio signals to levels sufficient for driving one or more of the transducers 114. In some embodiments, for example, the amplifiers 112h include one or more switching or class-D power amplifiers. In other embodiments, however, the amplifiers include one or more other types of power amplifiers (e.g., linear gain power amplifiers, class-A amplifiers, class-B amplifiers, class-AB amplifiers, class-C amplifiers, class-D amplifiers, class-E amplifiers, class-F amplifiers, class-G and/or class H amplifiers, and/or another suitable type of power amplifier). In certain embodiments, the amplifiers 112h comprise a suitable combination of two or more of the foregoing types of power amplifiers. Moreover, in some embodiments, individual ones of the amplifiers 112h correspond to individual ones of the transducers 114. In other embodiments, however, the electronics 112 includes a single one of the amplifiers 112h configured to output amplified audio signals to a plurality of the transducers 114. In some other embodiments, the electronics 112 omits the amplifiers 112h.
The transducers 114 (e.g., one or more speakers and/or speaker drivers) receive the amplified audio signals from the amplifier 112h and render or output the amplified audio signals as sound (e.g., audible sound waves having a frequency between about 20 Hertz (Hz) and 20 kilohertz (kHz)). In some embodiments, the transducers 114 can comprise a single transducer. In other embodiments, however, the transducers 114 comprise a plurality of audio transducers. In some embodiments, the transducers 114 comprise more than one type of transducer. For example, the transducers 114 can include one or more low frequency transducers (e.g., subwoofers, woofers), mid-range frequency transducers (e.g., mid-range transducers, mid-woofers), and one or more high frequency transducers (e.g., one or more tweeters). As used herein, “low frequency” can generally refer to audible frequencies below about 500 Hz, “mid-range frequency” can generally refer to audible frequencies between about 500 Hz and about 2 kHz, and “high frequency” can generally refer to audible frequencies above 2 kHz. In certain embodiments, however, one or more of the transducers 114 comprise transducers that do not adhere to the foregoing frequency ranges. For example, one of the transducers 114 may comprise a mid-woofer transducer configured to output sound at frequencies between about 200 Hz and about 5 kHz.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including, for example, a “SONOS ONE,” “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “PLAYBASE,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Other suitable playback devices may additionally or alternatively be used to implement the playback devices of example embodiments disclosed herein. Additionally, one of ordinary skilled in the art will appreciate that a playback device is not limited to the examples described herein or to SONOS product offerings. In some embodiments, for example, one or more playback devices 110 comprises wired or wireless headphones (e.g., over-the-ear headphones, on-ear headphones, in-ear earphones). In other embodiments, one or more of the playback devices 110 comprise a docking station and/or an interface configured to interact with a docking station for personal mobile media playback devices. In certain embodiments, a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use. In some embodiments, a playback device omits a user interface and/or one or more transducers. For example,
c. Suitable Network Microphone Devices (NMDs)
In some embodiments, an NMD can be integrated into a playback device.
Referring again to
After detecting the activation word, voice processing 124 monitors the microphone data for an accompanying user request in the voice input. The user request may include, for example, a command to control a network-enabled device, such as a thermostat (e.g., NEST® thermostat), an illumination device (e.g., a PHILIPS HUE ® lighting device), or a media playback device (e.g., a Sonos® playback device). For example, a user might speak the activation word “Alexa” followed by the utterance “set the thermostat to 68 degrees” to set a temperature in a home (e.g., the environment 101 of
d. Suitable Control Devices
The control device 130a includes electronics 132, a user interface 133, one or more speakers 134, and one or more microphones 135. The electronics 132 comprise one or more processors 132a (referred to hereinafter as “the processors 132a”), a memory 132b, software components 132c, and a network interface 132d. The processor 132a can be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 132b can comprise data storage that can be loaded with one or more of the software components executable by the processor 132a to perform those functions. The software components 132c can comprise applications and/or other executable software configured to facilitate control of the media playback system 100. The memory 112b can be configured to store, for example, the software components 132c, media playback system controller application software, and/or other data associated with the media playback system 100 and the user.
The network interface 132d is configured to facilitate network communications between the control device 130a and one or more other devices in the media playback system 100, and/or one or more remote devices. In some embodiments, the network interface 132d is configured to operate according to one or more suitable communication industry standards (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G, LTE). The network interface 132d can be configured, for example, to transmit data to and/or receive data from the playback devices 110, the NMDs 120, other ones of the control devices 130, one of the computing devices 106 of
The user interface 133 is configured to receive user input and can facilitate control of the media playback system 100. The user interface 133 includes media content art 133a (e.g., album art, lyrics, videos), a playback status indicator 133b (e.g., an elapsed and/or remaining time indicator), media content information region 133c, a playback control region 133d, and a zone indicator 133e. The media content information region 133c can include a display of relevant information (e.g., title, artist, album, genre, release year) about media content currently playing and/or media content in a queue or playlist. The playback control region 133d can include selectable (e.g., via touch input and/or via a cursor or another suitable selector) icons to cause one or more playback devices in a selected playback zone or zone group to perform playback actions such as, for example, play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode, etc. The playback control region 133d may also include selectable icons to modify equalization settings, playback volume, and/or other suitable playback actions. In the illustrated embodiment, the user interface 133 comprises a display presented on a touch screen interface of a smartphone (e.g., an iPhone™, an Android phone). In some embodiments, however, user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.
The one or more speakers 134 (e.g., one or more transducers) can be configured to output sound to the user of the control device 130a. In some embodiments, the one or more speakers comprise individual transducers configured to correspondingly output low frequencies, mid-range frequencies, and/or high frequencies. In some aspects, for example, the control device 130a is configured as a playback device (e.g., one of the playback devices 110). Similarly, in some embodiments the control device 130a is configured as an NMD (e.g., one of the NMDs 120), receiving voice commands and other sounds via the one or more microphones 135.
The one or more microphones 135 can comprise, for example, one or more condenser microphones, electret condenser microphones, dynamic microphones, and/or other suitable types of microphones or transducers. In some embodiments, two or more of the microphones 135 are arranged to capture location information of an audio source (e.g., voice, audible sound) and/or configured to facilitate filtering of background noise. Moreover, in certain embodiments, the control device 130a is configured to operate as playback device and an NMD. In other embodiments, however, the control device 130a omits the one or more speakers 134 and/or the one or more microphones 135. For instance, the control device 130a may comprise a device (e.g., a thermostat, an IoT device, a network device) comprising a portion of the electronics 132 and the user interface 133 (e.g., a touch screen) without any speakers or microphones.
III. Example Audio Notification Playback
As indicated above, examples described herein relate to example techniques for playback devices to output audio notifications or alert communications from network-enabled devices.
The playback device 210 may be similar or equivalent to any of the playback devices 110 depicted in
The network-enabled devices 240 represent various different types of devices configured to communicate with other devices over a network, and are sometimes referred to as “smart devices” or “IoT devices.” The network-enabled devices 240 can include third-party devices provided by a manufacturer or vendor that is different from the manufacturer or vendor of the playback device 210. For instance, in examples where the playback device 210 is a playback device manufactured by Sonos®, a third-party network-enabled device 240 can include any non-Sonos® smart device.
As shown in
The network-enabled devices 240 are configured to generate alerts upon detecting various events. For instance, the doorbell 240a may generate an alert responsive to detecting the presence of an individual at the door, such as by determining that the individual has interacted with a user interface of the doorbell (e.g., detecting a button press or touchscreen interaction) or by using a camera or motion sensor of the doorbell 240a to detect the individual's presence. The thermostat 240b may generate an alert responsive to determining that the environment 201 has reached a threshold high or low temperature or responsive to activating or deactivating an HVAC system of the environment 201. The robotic vacuum 240c may generate an alert responsive to starting or finishing a cleaning cycle. The oven 240d may generate an alert responsive to reaching a threshold temperature or determining that a cook timer has expired. These alert examples are merely illustrative, and in other examples the network-enabled devices 240 may generate additional, fewer, or different types of alerts.
The network-enabled devices 240 provide the generated alerts to a user. In some cases, the network-enabled devices 240 provide the generated alerts to the user by causing the user's mobile device to output an audio and/or visual notification of the generated alert. For instance, the network-enabled device 240 can cause a control device 230 to display a notification of the generated alert. The control device 230 may be similar or equivalent to the control device 130a depicted in
In some circumstances, the user may prefer to be notified via a media playback system. For example, the user may prefer to be alerted of high-priority events from certain types of devices such as alarms (e.g., smoke alarm, carbon monoxide alarm) via the media playback system.
In some circumstances, the user might not be effectively notified via a mobile device. For instance, the mobile device may be control device 230, and the user might not receive the notification of the generated alerts output by the control device 230, as the user may have powered off or silenced the control device 230, or the control device 230 may have powered itself off responsive to low battery power. As another example, the playback device 210 may be playing back music or other audio content that drowns out or otherwise distracts the user from the alert notifications output by the control device 230.
Disclosed herein are example systems and methods for providing additional and/or alternative notifications of the network-enabled device generated alerts, which can increase the likelihood of the user effectively receiving the notifications and improve the user experience. In particular, the present disclosure provides example systems and methods that involve the playback device 210 outputting audio notifications of the network-enabled device alerts.
In order to output audio notifications of the network-enabled device alerts, the playback device 210 can be configured with an application programming interface (API) through which the network-enabled devices 240 can communicate with the playback device 210. Example features of the API are shown and described in further detail below. However, these API features are merely illustrative, and in other examples, additional, fewer, and/or different API features can be used.
A. Example API
An example API can define various parameters that the network-enabled device 240 and/or the playback device 210 can use to facilitate causing the playback device 210 to output an audio notification of the network-enabled device alert. Table 1 shown below provides example API parameters, each of which are explained in further detail below. However, these parameters are for illustrative purposes, and in other examples, the API may define additional, fewer, and/or alternative parameters.
As shown in Table 1, one example parameter defined by the API is an id parameter. The id parameter represents a string type parameter that represents an identifier of a particular audio notification. In some examples, the playback device 210 generates a value of the id parameter and assigns the value to a particular audio notification.
Another example parameter is a name parameter. The name parameter represents a string type parameter that represents a user-identifiable name associated with an audio notification. The user-identifiable name can include a name of the network-enabled device 240 that generated the alert and/or a description of a type of the alert. In some examples, the network-enabled device 240 specifies a value of the name parameter for a particular audio notification.
Another example parameter is an appId parameter. The appId parameter represents a string type parameter that identifies an application that generated a particular audio notification. As shown, the appId parameter is a reversed Internet domain associated with the application, such as “com.acme.app,” where “acme.com” is the domain prior to reversal. In other examples, the appId parameter can take various other forms.
Another example parameter is a priority parameter. The priority parameter represents an enumerated type parameter that specifies a priority of an audio notification. In some examples, the priority parameter comprises enumerated values of “LOW” or “HIGH” for respectively setting the priority as low or high, but in other examples, the priority parameter may comprise additional or different enumerated values. For instance, the priority parameter may indicate priority level on a numerical scale (e.g., 1-5). In some examples, the network-enabled device 240 sets the value of the priority parameter for a particular audio notification. In other examples, the playback device 210 sets the value of the playback parameter based on the type of network-enabled device 240 that generated the alert corresponding to the audio notification. In yet another example, the user may indicate via a user interface the priority to assign to a particular alert from the network-enabled device 240.
The network-enabled devices 240 can set the priority parameter to “HIGH” for audio notifications that correspond to network-enabled device alerts that are particularly time-sensitive, and “LOW” for audio notifications that are less time-sensitive. Time-sensitive audio notifications are alerts that are to be played back as closely as possible to the event triggering the audio notification. Example high priority alerts may include, but are not limited to, smoke alarms, carbon monoxide alarms, oven timers, and security alarms. Example low priority alerts may include, but are not limited to, doorbells, phone calls, completed laundry cycle, motion detectors, and preheated ovens. And, as explained in further detail below with respect to
Another example parameter is a notification parameter. The notification parameter represents an enumerated type parameter that specifies a particular audio source that the playback device 210 outputs as the network-enabled device alert notification. In some examples, the notification parameter comprises enumerated values of (i) “CHIME” which, when set as the notification enumerated value, causes the playback device 210 to output a default chime audio notification as the network-enabled device alert notification, and (ii) “CUSTOM” which, when set as the notification enumerated value, causes the playback device 210 to output a custom audio notification as the network-enabled device alert notification. In other examples, the notification enumerated values may comprise additional or different values. The audio for the default chime audio notification may be stored in the memory of playback device, while the audio for the custom audio notification may be specified by the network-enabled device, as explained in further detail below.
Another example parameter is a streamUrl parameter. The streamUrl parameter represents a string type parameter that specifies a URL of an audio source for the playback device 210 to output as the custom audio notification as the third-part alert notification. As such, when the notification parameter is set as “CUSTOM,” the playback device 210 can retrieve the audio source from the URL specified as the streamUrl parameter, and can play back the retrieved audio source as the network-enabled device alert notification.
Another example parameter is an httpAuthorization parameter. The httpAuthorization parameter represents a string type parameter that specifies credentials for authorizing access to the URL specified by the streamUrl parameter when the specified URL requires authentication, such as when the specified URL is secure (e.g., using https).
Another example parameter is an expiryMillis parameter. The expiryMillis parameter represents an integer type parameter that indicates how long a particular audio notification is permitted to be queued in a notification queue for playback before dismissing the audio notification from notification queue. In the present example, the value of the expiryMillis parameter specifies such a time limit in milliseconds, but other example implementations are possible as well.
Another example parameter is a shouldLoop parameter. The shouldLoop parameter can be a Boolean type parameter that specifies whether the playback device 210 should loop the playback of a particular audio notification. If the shouldLoop parameter is set as “FALSE,” then the playback device 210 plays back the audio notification once. If the shouldLoop parameter is set as “TRUE,” then the playback device 210 loops playback of the audio notification for a predetermined amount of time. The predetermined amount of time may depend on the priority value of the audio notification. For instance, the playback device 210 may be configured to loop playback of high priority audio notifications for a longer predetermined amount of time than low priority audio notifications.
Another example parameter is a status parameter. The status parameter can be an enumerated type parameter that identifies a current status of a particular audio notification. In an example, the status parameter enumerated values include (i) “PENDING” for audio notifications that are scheduled for playback but are not currently being played back, (ii) “ACTIVE” for audio notifications that are currently being played back, and (iii) “DISMISSED” for audio notifications that have been dismissed. In other examples, the status parameter enumerated values may comprise additional or different values.
Another example parameter is an errorCode parameter. The errorCode parameter represents an error type parameter to which the playback device 210 assigns a particular value responsive to detecting a particular error condition. Example error values include (i) “ERROR_AUDIO_CLIP_DO_NOT_DISTURB,” which the playback device 210 can assign to the errorCode parameter responsive to determining that the playback device 210 is in a “do not disturb” mode that temporarily disables audio notification playback, (ii) “ERROR_AUDIO_CLIP_ID_NOT_FOUND,” which the playback device 210 can assign to the errorCode parameter reponsive to determining that the playback device 210 is unable to retrieve the specified audio source for the audio notification (e.g., the audio source identified by the streamUrl parameter), (iii) “ERROR_AUDIO_CLIP_MEDIA_ERROR,” which the playback device 210 can assign to the errorCode parameter responsive to determining that the specified audio source for the audio notification is a type of media that is unsupported for playback by the playback device 210, (iv) “ERROR_ AUDIO_CLIP_CANCEL,” which the playback device 210 can assign to the errorCode parameter responsive to determining that the audio notification has been canceled prior to playing back the notification, and (v) “ERROR_AUDIO_CLIP_EXPIRE,” which the playback device 210 can assign to the errorCode parameter responsive to determining that the audio notification has expired prior to playing back the notification (e.g., determining that the time specified by the expiryMillis parameter has elapsed before playback). In other examples, the playback device 210 can assign additional or different values to the errorCode parameter responsive to detecting additional or different error conditions.
B. Example Use of the API
Using the above-described API, the network-enabled devices 240 can communicate with the playback device 210 to cause the playback device 210 to output an audio notification of one or more alerts generated by the network-enabled devices 240 or to perform various other functions related to the audio notification.
The network-enabled devices 240 can be connected to the same network (e.g., local area network, Bluetooth) as the media playback system of playback device 210. The network-enabled devices 240 can communicate directly with the playback device 210 over the network, or the network-enabled devices 240 can communicate with the playback device 210 via one or more intermediary computing devices, such as the computing devices 206 shown in
Using one or more servers as intermediaries between the playback device 210 and the network-enabled devices 240 may have various advantages. Such servers may be more reliably connected to the playback device 210 and/or the network-enabled devices 240, as such computing devices may have a static network address (or domain) whereas individual devices may have dynamic addresses. Further, such servers may implement additional cloud services, such as backup or logging of notifications. Yet further, security may be enhanced.
In the header 302, the network-enabled device 240 specifies a command for the playback device 210 to execute, as well as identifiers specifying which playback device 210 is to carry out the command. In this manner, the network-enabled device 240 can specify certain speakers to play back alert notifications, which can improve user experience. For instance, the oven 240d is located in a kitchen, so the oven 240d can specify that the playback device 210, which is also located in the kitchen, is to play back the alert notification from the oven 240d. As shown, the header 302 specifies that the playback device 210 that is named “xyz” and located in household “ABCD1234” is to execute a “loadAudioClip” command. The specified playback device 210 can be a standalone playback device or a playback device that is grouped with one or more other playback devices (e.g., a playback device grouped in a surround sound configuration, including rear channel speakers).
In some examples, the alert message 300 may address multiple playback devices (e.g., all networked playback devices on a given network). For instance, in an example, the header 302 does not specify a particular playback device 210 for carrying out the command to play back an audio notification, so as to address any playback device 210 receiving the alert message 300. In this case, if multiple playback devices receive the notification, all of these networked playback devices concurrently play back the notification. As another example, the alert message 300 can specify multiple playback devices to play back the audio notification, and the playback device 210 receiving the alert message 300 can synchronize playback of the audio notification across the specified playback devices. The multiple playback device specified to play back the audio notifications may be identified individually using an identifier of the playback device (e.g., serial number, name, other unique alphanumeric string, etc.) As yet another example, the alert message 300 can specify that the audio notification is to be played back across grouped playback devices, and the playback device 210 receiving the alert message 300 can synchronize playback of the audio notification across any playback devices grouped with the playback device 210. This feature can be an “include grouped devices” option enabling an alert message 300 targeting a player in a group to be played synchronously by all players in the same group. Other examples are possible as well.
The body 304 of the alert message 300 specifies various parameter values that the playback device 210 uses when executing the “loadAudioClip” command, including values for the name, appId, priority, notification, streamUrl, and expiryMillis parameters, each of which is described above in further detail. As shown in
Responsive to receiving the alert message 300 from the network-enabled device 240, the playback device 210 sends, to the network-enabled device 240, response message 310 that acknowledges receipt of the alert message 300 and provides a status of the notification. Similar to the alert message 300, the response message 310 includes a header portion 312 and a body portion 314. In the header 312, the playback device 210 specifies that the response message 310 is provided in response to the loadAudioClip command provided by the network-enabled device 240 and indicates that the loadAudioClip command was successfully received.
The body 314 of the response message 310 includes additional parameter values specified by the playback device 210. For instance, the playback device 210 assigns a value to the id parameter, which identifies the audio notification requested by the alert message 300. As shown, the playback device 210 has identified the audio notification as “NEW NOTIFICATION.” Additionally, the body 314 of the response message 310 reports a status of the audio notification. As shown, the status of the audio notification is “PENDING,” which, as noted above, means the audio notification is queued for playback by the playback device 210.
In addition to sending the response message 310, the playback device 210 also takes steps to play back the audio notification requested by the alert message 300. In some examples, the playback device 210 maintains a queue of notifications, and the playback device plays back the queued notifications according to their order in the notification queue. In such examples, responsive to receiving the alert message 300, the playback device 210 adds the audio notification identified by the alert message 300 into the notification queue.
In some examples, instead of returning an interrupted notification to the notification queue 400 (e.g., as described in connection with
In some examples, the playback device 210 is configured to interrupt an active notification in order to play back a new notification (e.g., as described in connection with
As another example, the playback device 210 can be configured such that, when the new notification is a low priority notification, the playback device 210 does not interrupt playback of the active notification unless the active notification is a low priority notification that the playback device 210 has been playing back for the threshold amount of time. As yet another example, the playback device 210 can be configured such that, when the new notification is a low priority notification, the playback device 210 does not interrupt playback of the active notification, regardless of the priority of the active notification.
In addition to adding new notifications to the notification queue 400, the playback device 210 can be configured to remove notifications from the notification queue 400 under certain circumstances. As described above, for instance, the network-enabled devices 240 can specify a maximum amount of time that an alert notification is permitted to be queued for playback in the notification queue 400 (e.g., using the expiryMillis parameter). As such, the playback device 210 can determine that an alert notification has been in the notification queue 400 for a threshold amount of time corresponding to an expired audio notification, for instance by determining that an alert notification has been in the notification queue 400 for the amount of time specified by the expiryMillis parameter. In response to making such a determination, the playback device 210 can remove the expired alert notification from the notification queue.
In addition to treating the low and high priority notifications differently when adding new notifications to the notification queue 400, the playback device 210 can be configured to treat low and high priority notifications differently when playing back the notifications. As an example, the playback device 210 can be configured to play back high priority notifications at a higher volume than low priority notifications. As another example, the playback device 210 can be configured to play back low and high priority notifications for different lengths of time. For instance, the playback device 210 can be configured to limit playback of notifications to a threshold playback time, and once the threshold playback time has elapsed, the playback device 210 dismisses playback of the notification. As such, the playback device 210 can set the threshold playback time to be longer for high priority notifications (e.g., 1 hour) than for low priority notifications (e.g., 1 minute).
In some examples, the notification queue 400 is empty, such that the playback device 210 is not playing back any notifications. Instead, the playback device 210 can be playing back various other audio content, such as music, television audio, audiobooks, or the like. In such a scenario, when the playback device 210 receives a request from one of the network-enabled devices 240 to play back an alert notification (e.g., when the playback device 210 receives alert message 300), the playback device 210 can adjust the playback of the other audio content in order to facilitate playing back the alert notification.
As described above with respect to the example operating environment, example playback devices 110 may implement a playback queue to manage playback of multiple items of audio content. A notification queue may be separate and distinct from a playback queue implemented by a playback device 110 for general playback of audio content. An example playback device 210 may implement both a playback queue and a notification queue concurrently. In some cases, as described in further detail below, the notification queue may take control or otherwise modify playback from the playback queue.
In some examples, the playback device 210 temporarily reduces the volume of (also referred to as “ducking”) the other audio content and plays back the alert notification concurrently with the ducked audio content. U.S. Pat. No. 9,665,341 entitled, “Synchronized audio mixing,” which is hereby incorporated by reference, provides in more detail some examples of a playback device mixing audio content for concurrent playback. In other examples, the playback device 210 stops playback of the other audio content, plays back the alert notification, and then resumes playback of the other audio content after playing back the alert notification.
In some examples, whether the playback device 210 ducks the other audio content or stops playback of the other audio content depends on whether the alert notification is a high priority notification or a low priority notification. For instance, for low priority notifications, the playback device 210 can duck the other audio content and play back the low priority notification concurrently with the ducked audio content. For high priority notifications, the playback device 210 can stop playing back the other audio content, play back the high priority notification, and then resume playing back the other audio content after playing back the high priority notification.
Additionally or alternatively, in some examples, whether the playback device 210 ducks the other audio content or stops playback of the other audio content depends on a type of the other audio content. For instance, if the playback device 210 determines that the other audio content includes long play content, such as audiobooks, podcasts, or movie audio, then the playback device 210 stops playing back the other audio content, plays back the notification, and then resumes playing back the other audio content after playing back the notification. If the playback device 210 determines that the other audio content includes short play content, such as music, then the playback device 210 ducks the other audio content and plays back the notification concurrently with the ducked audio content. To facilitate this, the playback device 210 can be preset to treat certain types of audio content as long play or short play.
In some examples, the playback device 210 determines whether to duck or stop playback of the other audio content based on a source of the other audio content. Depending on the audio source, the playback device 210 may be unable to control the audio source (e.g., causing the audio source to pause, stop, or resume the audio content). For instance, some audio sources may provide the other audio content to the playback device 210 through a line-in connection or some other connection through which the playback device 210 is unable to control the audio source. Alternatively, even if the playback device 210 is capable of controlling the audio source, doing so might result in an undesirable user experience. For instance, the audio source may include a live streaming service, such as a live radio broadcast, that if paused would resume at a later live time or would cause the user's feed to be delayed from the live feed. As such, the playback device 210 can be configured to duck playback of any audio content that is provided by an audio source that the playback device 210 cannot interrupt, such as audio content received through a line-in connection, or for which interruption would result in an undesirable user experience, such as live-streaming audio content.
As described above, the playback device 210 can be configured to limit the amount of time that the playback device 210 plays back a particular notification, such that the playback device 210 automatically dismisses playback of the notification after a threshold amount of time elapses. However, a user may wish to dismiss playback of an alert notification without waiting for the threshold amount of time to elapse. As such, the playback device 210 can be configured to receive user input for dismissing playback of an alert notification.
In some examples, the playback device 210 includes a user interface (e.g., one or more buttons, knobs, dials, touch-sensitive surfaces, displays, touchscreens), such as the user interface 113 described above in connection with
While playing back an alert notification, the playback device 210 can receive user input via the user interface, and, responsive to receiving the user input, the playback device 210 dismisses playback of the alert notification. For instance, during playback of an alert notification, a skip forward button may be configured to skip forward from playback of a given notification to playback of another notification in the notification queue or to the currently playing media item in the playback queue. As another example, a play/pause button may be configured to dismiss the currently playing alert notification. As yet another example, the user may perform a particular gesture or input pattern, such as a double tap of a particular button or a particular swipe pattern on the user interface, to dismiss the currently playing alert notification.
In some examples, the playback device 210 causes the control device 230 to display, via its graphical user interface, a visual notification corresponding to an alert notification that the playback device 210 is playing back. For instance, responsive to receiving a request to play back an alert notification (e.g., responsive to receiving alert message 300) or responsive to playing back the alert notification, the playback device 210 can send an instruction to the control device 230 that causes the control device to display an indication that the playback device 210 is playing back the alert notification.
The indication 533a includes information 533b about the alert notification that the playback device 210 is playing back. The information 533b can include an identification of the network-enabled device that generated the alert, a description of the conditions that prompted the alert, or various other information that can help the user identify the source of the alert. This information may be populated from parameters in the alert message 300, which the playback device may include in the instruction(s) to the control device to display the indication that the playback device 210 is playing back the alert notification.
As shown in
The indication 533a further includes a dismiss button 533c and a snooze button 533d. When a user activates the dismiss button 533c, the control device 230 sends a dismiss instruction to the playback device 210. Responsive to receiving the dismiss instruction, the playback device 210 stops playing back the alert notification and removes the alert notification from the notification queue 400. When a user activates the snooze button 533d, the control device 230 sends a snooze instruction to the playback device 210. Then, responsive to receiving the snooze instruction, the playback device 210 stops playing back the alert notification and places the alert notification back into the notification queue 400, for instance, according to one or more of the processes described above in connection with
In some examples, the control device 230 sends the dismiss instruction to the network-enabled device 240, and the network-enabled device 240 responsively sends the dismiss instruction to the playback device 210. In some examples, the control device 230 and the playback device 210 are connected to the same LAN, and the control device 230 sends the dismiss instruction to the playback device 210 over the LAN. In some examples, the control device 230 sends the dismiss instruction to a server device, which then routes the dismiss instruction to the playback device 210. For instance, the control device 230 may send the dismiss instruction to a third-party server, the third-party server may send the dismiss instruction to the network-enabled device 240, and the network-enabled device 240 may send the dismiss instruction to the playback device 210. As another example, the control device 230 may send the dismiss instruction to a first-party server, and the first-party server may send the dismiss instruction to the playback device 210. In examples where the dismiss instruction is not sent to the network-enabled device 240, the control device or the playback device 210 may send a message to the network-enabled device 240 indicating that the alert notification has been dismissed.
In some examples, the playback device 210 is configured to display the indication 533a on a “now playing” screen of the user interface 133. The now playing screen can include various information related to media content that the playback device 210 is currently playing back, such as media content art (e.g., album art, lyrics, videos), a playback status indicator (e.g., an elapsed and/or remaining time indicator), media content information, a playback control icons, and a zone indicator, as shown and described in connection with
In some examples, the network-enabled device 240 causes the control device 230 to display the indication 533a. For instance, in addition to sending the alert message 300 to the playback device 210, the network-enabled device 240 may send a message to the control device 230 instructing the control device 230 to display the indication 533a. Alternatively, the network-enabled device 240 may send a message (e.g., included in or separate from the alert message 300) to the playback device 210 instructing the playback device 210 to cause the control device 230 to display the indication 533a.
In some examples, the playback device 210 provides reports to the network-enabled devices 240 whenever the playback device 210 performs certain actions related to an alert notification. For instance, the playback device 210 can send reports to the network-enabled device 240 (or to the third-party server) indicating that the playback device 210 has queued an alert notification for playback, is currently playing back an alert notification, has dismissed an alert notification (e.g., in response to user input), has interrupted an alert notification in order to play back another alert notification, has removed an expired alert notification from the queue, or has stopped playing back an alert notification based on playing back the alert notification for a threshold amount of time. For a given notification, the playback device 210 can provide these reports only to the network-enabled devices 240 associated with notification, or the playback device 210 can provide these reports to multiple ones or all of the network-enabled devices 240 that are networked with the playback device 210.
Various embodiments of method 600 include one or more operations, functions, and actions illustrated by blocks 602 through 610. Although the blocks are illustrated in sequential order, these blocks may also be performed in parallel, and/or in a different order than the order disclosed and described herein. Also, the various blocks may be combined into fewer blocks, divided into additional blocks, and/or removed based upon a desired implementation.
In addition, for the method 600 and for other processes and methods disclosed herein, the flowchart shows functionality and operation of one possible implementation of some embodiments. In this regard, each block may represent a module, a segment, or a portion of program code, which includes one or more instructions executable by one or more processors for implementing specific logical functions or steps in the process. The program code may be stored on any type of computer readable medium, for example, such as a storage device including a disk or hard drive. The computer readable medium may include non-transitory computer readable media, for example, such as tangible, non-transitory computer-readable media that stores data for short periods of time like register memory, processor cache, and Random Access Memory (RAM). The computer readable medium may also include non-transitory media, such as secondary or persistent long term storage, like read only memory (ROM), optical or magnetic disks, compact-disc read only memory (CD-ROM), for example. The computer readable media may also be any other volatile or non-volatile storage systems. The computer readable medium may be considered a computer readable storage medium, for example, or a tangible storage device. In addition, for the method 600 and for other processes and methods disclosed herein, each block in
Method 600 begins at block 602, which involves the playback device playing back audio content via an audio stage and one or more speaker drivers of the playback device. As described above, playing back audio content may involve playing back alert notifications from a notification queue, or may involve playing back audio content that excludes alert notifications, such as music, television audio, audiobooks, or the like.
At block 604, method 600 involves, while playing back the audio content, the playback device receiving, via a network interface of the playback device, an alert communication from a network-enabled device, the alert communication comprising (i) an audio notification identifier that identifies an audio notification and (ii) a priority identifier that identifies a priority level of the audio notification. As described above, receiving the alert communication may involve receiving alert message according to an API of the playback device. Additionally, the audio notification identifier may identify a default audio notification supported by the playback device, or the audio notification identifier may identify a custom audio notification. The audio for the default audio notification may be stored in the memory of playback device.
At block 606, method 600 involves, responsive to receiving the alert communication, the playback device adding the audio notification to a notification queue at a particular queue position, wherein the particular queue position of the audio notification in the notification queue is based on the priority level of the audio notification relative to other audio content in the notification queue. As described above, the playback device adds high priority notifications ahead of low priority notifications in the notification queue.
At block 608, method 600 involves the playback device adjusting playback of the audio content for playing back the audio notification. As described above, adjusting playback of the audio content may involve stopping playback of the audio content or ducking the audio content.
At block 610, method 600 involves the playback device playing back the audio notification. In examples where adjusting playback of the audio content involves ducking the audio content, playing back the audio notification involves playing back the audio notification concurrently with the ducked audio content. In examples where adjusting playback of the audio content involves stopping playback of the audio content, the method 600 may further involve, after playing back the audio notification, resuming playback of the audio content
Within examples, the audio notification is a first audio notification, the notification queue includes a second audio notification, and adding the audio notification to the notification queue involves adding the first audio notification to the notification queue ahead of the second audio notification based on the priority level of the first audio notification being a higher priority than a priority level of the second audio notification.
In some examples, the audio notification is a first audio notification, the audio content includes a second audio notification, the priority level of the first audio notification is higher than a priority level of the second audio notification, and stopping playback of the audio content involves stopping playback of the second audio notification based on the priority level of the first audio notification being higher than the priority level of the second audio notification.
In further examples, the audio notification is a first audio notification, the audio content includes a second audio notification, and adjusting playback of the audio content involves (i) determining, based on the particular queue position of the first audio notification, that the first audio notification is ready for playback, (ii) determining that the playback device has been playing back the second audio notification for a threshold amount of time corresponding to a partially-played back notification, and (iii) based on both the first audio notification being ready for playback and the playback device having played back the second audio notification for the threshold amount of time corresponding to a partially-played back notification, stopping playback of the second audio notification and starting the playback of the first audio notification.
In some examples, the audio notification is a first audio notification, the notification queue includes a second audio notification, and the method 600 further involves (i) the playback device determining that the second audio notification has been in the notification queue for a threshold amount of time corresponding to an expired audio notification and (ii) responsive to determining that the second audio notification has been in the notification queue for the threshold amount of time corresponding to the expired audio notification, the playback device removing the second audio notification from the notification queue.
Within examples, the method 600 further involves the playback device sending, via the network interface to a mobile device having a graphical user interface, an instruction that causes the mobile device to display, via the graphical user interface, an indication that the playback device is playing back the audio notification. In such examples, the method 600 may further involve (i) the playback device receiving, via the network interface from the mobile device, an instruction to dismiss the audio notification and (ii) in response to receiving the instruction to dismiss the audio notification, the playback device stopping playback of the audio notification and resuming playback of the audio content.
While the method 600 is described with respect to a playback device receiving an alert communication while playing back other audio content, the systems and methods disclosed herein are not limited to such a scenario. For instance, a playback device can receive an alert communication when the playback device is not playing back other audio content, and, in such a scenario, the playback device can execute some or all of the processes described above in order to output an audio notification based on the alert communication.
IV. Conclusion
The above discussions relating to playback devices, controller devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
(Feature 1) A method to be performed by a playback device comprising: a network interface; an audio stage comprising an amplifier; one or more speaker drivers; one or more processors; and a housing carrying at least the network interface, the audio stage, the one or more speaker drivers, the one or more processors, and tangible, non-transitory, computer-readable media storing instructions executable by the one or more processors to cause the playback device to perform the method. The method comprising: while playing back audio content via the audio stage and the one or more speaker drivers, receiving, via the network interface, an alert communication from a network-enabled device connected to the playback device via a local area network, the alert communication comprising (i) an audio notification identifier that identifies an audio notification and (ii) a priority identifier that identifies a priority level of the audio notification; responsive to receiving the alert communication, adding the audio notification to a notification queue at a particular queue position, wherein the particular queue position of the audio notification in the notification queue is based on the priority level of the audio notification relative to other audio content in the notification queue; adjusting playback of the audio content for playing back the audio notification; and playing back the audio notification via the audio stage and the one or more speaker drivers.
(Feature 2) The method of feature 1, wherein the audio notification is a first audio notification, wherein the notification queue comprises a second audio notification, and wherein adding the audio notification to the notification queue comprises adding the first audio notification to the notification queue ahead of the second audio notification based on the priority level of the first audio notification being a higher priority than a priority level of the second audio notification.
(Feature 3) The method of feature 1, wherein the audio content excludes audio notifications, wherein adjusting playback of the audio content comprises ducking the audio content, and wherein playing back the audio notification comprises playing back the audio notification concurrently with the ducked audio content.
(Feature 4) The method of feature 1, wherein adjusting playback of the audio content comprises stopping playback of the audio content, and wherein the method further comprises: after playing back the audio notification, resuming playback of the audio content.
(Feature 5) The method of feature 4, wherein the audio notification is a first audio notification, wherein the audio content comprises a second audio notification, wherein the priority level of the first audio notification is higher than a priority level of the second audio notification, and wherein stopping playback of the audio content comprises stopping playback of the second audio notification based on the priority level of the first audio notification being higher than the priority level of the second audio notification.
(Feature 6) The method of feature 1, wherein the audio notification is a first audio notification, wherein the audio content comprises a second audio notification, and wherein adjusting playback of the audio content comprises: determining, based on the particular queue position of the first audio notification, that the first audio notification is ready for playback; determining that the playback device has been playing back the second audio notification for a threshold amount of time corresponding to a partially-played back notification; and based on both (i) the first audio notification being ready for playback and (ii) the playback device having played back the second audio notification for the threshold amount of time corresponding to a partially-played back notification, stopping playback of the second audio notification and starting the playback of the first audio notification.
(Feature 7) The method of feature 1, wherein the audio notification is a first audio notification, wherein the notification queue comprises a second audio notification, and wherein the method further comprises: determining that the second audio notification has been in the notification queue for a threshold amount of time corresponding to an expired audio notification; and responsive to determining that the second audio notification has been in the notification queue for the threshold amount of time corresponding to the expired audio notification, removing the second audio notification from the notification queue.
(Feature 8) The method of feature 1, further comprising: sending, via the network interface to a mobile device having a graphical user interface, an instruction that causes the mobile device to display, via the graphical user interface, an indication that the playback device is playing back the audio notification.
(Feature 9) The method of feature 1, further comprising: receiving, via the network interface from a mobile device, an instruction to dismiss the audio notification; and in response to receiving the instruction to dismiss the audio notification, stopping playback of the audio notification and resuming playback of the audio content.
(Feature 10) A playback device configured to perform the method of any of features 1-9.
(Feature 11) Tangible, non-transitory, computer-readable media storing instructions executable by one or more processors of a playback device to cause the playback device to perform the method of any of features 1-9.
(Feature 12) A system configured to perform the method of any of features 1-9.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only ways) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one example embodiment of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. As such, the embodiments described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other embodiments.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain embodiments of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the embodiments. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the foregoing description of embodiments.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
This application claims the benefit under 35 U.S.C. § 119 of U.S. provisional App. No. 62/723,942 filed on Aug. 28, 2018, entitled “Playback Device Control,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4741038 | Elko et al. | Apr 1988 | A |
4941187 | Slater | Jul 1990 | A |
5440644 | Farinelli et al. | Aug 1995 | A |
5588065 | Tanaka et al. | Dec 1996 | A |
5740260 | Odom | Apr 1998 | A |
5761320 | Farinelli et al. | Jun 1998 | A |
5923902 | Inagaki | Jul 1999 | A |
6032202 | Lea et al. | Feb 2000 | A |
6088459 | Hobelsberger | Jul 2000 | A |
6256554 | Dilorenzo | Jul 2001 | B1 |
6301603 | Maher et al. | Oct 2001 | B1 |
6311157 | Strong | Oct 2001 | B1 |
6404811 | Cvetko et al. | Jun 2002 | B1 |
6408078 | Hobelsberger | Jun 2002 | B1 |
6469633 | Wachter et al. | Oct 2002 | B1 |
6522886 | Youngs et al. | Feb 2003 | B1 |
6594347 | Calder et al. | Jul 2003 | B1 |
6594630 | Zlokarnik et al. | Jul 2003 | B1 |
6611537 | Edens et al. | Aug 2003 | B1 |
6611604 | Irby et al. | Aug 2003 | B1 |
6631410 | Kowalski et al. | Oct 2003 | B1 |
6757517 | Chang et al. | Jun 2004 | B2 |
6778869 | Champion | Aug 2004 | B2 |
7130608 | Hollstrom et al. | Oct 2006 | B2 |
7130616 | Janik | Oct 2006 | B2 |
7143939 | Henzerling | Dec 2006 | B2 |
7236773 | Thomas | Jun 2007 | B2 |
7295548 | Blank et al. | Nov 2007 | B2 |
7391791 | Balassanian et al. | Jun 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7630501 | Blank et al. | Dec 2009 | B2 |
7643894 | Braithwaite et al. | Jan 2010 | B2 |
7657910 | McAulay et al. | Feb 2010 | B1 |
7661107 | Van Dyke et al. | Feb 2010 | B1 |
7702508 | Bennett | Apr 2010 | B2 |
7792311 | Holmgren et al. | Sep 2010 | B1 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7961892 | Fedigan | Jun 2011 | B2 |
7987294 | Bryce et al. | Jul 2011 | B2 |
8014423 | Thaler et al. | Sep 2011 | B2 |
8041565 | Bhardwaj et al. | Oct 2011 | B1 |
8045952 | Qureshey et al. | Oct 2011 | B2 |
8073125 | Zhang et al. | Dec 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8234395 | Millington et al. | Jul 2012 | B2 |
8239206 | Lebeau et al. | Aug 2012 | B1 |
8255224 | Singleton et al. | Aug 2012 | B2 |
8284982 | Bailey | Oct 2012 | B2 |
8290603 | Lambourne et al. | Oct 2012 | B1 |
8340975 | Rosenberger et al. | Dec 2012 | B1 |
8364481 | Strope et al. | Jan 2013 | B2 |
8385557 | Tashev et al. | Feb 2013 | B2 |
8386261 | Mellott et al. | Feb 2013 | B2 |
8423893 | Ramsay et al. | Apr 2013 | B2 |
8428758 | Naik et al. | Apr 2013 | B2 |
8453058 | Coccaro et al. | May 2013 | B1 |
8483853 | Lambourne et al. | Jul 2013 | B1 |
8484025 | Moreno et al. | Jul 2013 | B1 |
8831761 | Kemp et al. | Sep 2014 | B2 |
8831957 | Taubman et al. | Sep 2014 | B2 |
8938394 | Faaborg et al. | Jan 2015 | B1 |
8942252 | Balassanian et al. | Jan 2015 | B2 |
8983383 | Haskin | Mar 2015 | B1 |
8983844 | Thomas et al. | Mar 2015 | B1 |
9042556 | Kallai et al. | May 2015 | B2 |
9094539 | Noble | Jul 2015 | B1 |
9215545 | Dublin et al. | Dec 2015 | B2 |
9251793 | Lebeau et al. | Feb 2016 | B2 |
9253572 | Beddingfield, Sr. et al. | Feb 2016 | B2 |
9262612 | Cheyer | Feb 2016 | B2 |
9288597 | Carlsson et al. | Mar 2016 | B2 |
9300266 | Grokop | Mar 2016 | B2 |
9307321 | Unruh | Apr 2016 | B1 |
9318107 | Sharifi | Apr 2016 | B1 |
9319816 | Narayanan | Apr 2016 | B1 |
9335819 | Jaeger et al. | May 2016 | B1 |
9368105 | Freed et al. | Jun 2016 | B1 |
9374634 | Macours | Jun 2016 | B2 |
9412392 | Lindahl et al. | Aug 2016 | B2 |
9426567 | Lee et al. | Aug 2016 | B2 |
9431021 | Scalise et al. | Aug 2016 | B1 |
9443527 | Watanabe et al. | Sep 2016 | B1 |
9472201 | Sleator | Oct 2016 | B1 |
9472203 | Ayrapetian et al. | Oct 2016 | B1 |
9484030 | Meaney et al. | Nov 2016 | B1 |
9489948 | Chu et al. | Nov 2016 | B1 |
9494683 | Sadek | Nov 2016 | B1 |
9509269 | Rosenberg | Nov 2016 | B1 |
9510101 | Polleros | Nov 2016 | B1 |
9514752 | Sharifi | Dec 2016 | B2 |
9536541 | Chen et al. | Jan 2017 | B2 |
9548053 | Basye et al. | Jan 2017 | B1 |
9548066 | Jain et al. | Jan 2017 | B2 |
9552816 | Vanlund et al. | Jan 2017 | B2 |
9560441 | McDonough, Jr. et al. | Jan 2017 | B1 |
9576591 | Kim et al. | Feb 2017 | B2 |
9601116 | Casado et al. | Mar 2017 | B2 |
9615170 | Kirsch et al. | Apr 2017 | B2 |
9615171 | O'Neill et al. | Apr 2017 | B1 |
9626695 | Balasubramanian et al. | Apr 2017 | B2 |
9632748 | Faaborg et al. | Apr 2017 | B2 |
9633186 | Ingrassia, Jr. et al. | Apr 2017 | B2 |
9633368 | Greenzeiger et al. | Apr 2017 | B2 |
9633660 | Haughay et al. | Apr 2017 | B2 |
9633671 | Giacobello et al. | Apr 2017 | B2 |
9633674 | Sinha et al. | Apr 2017 | B2 |
9640179 | Hart et al. | May 2017 | B1 |
9640183 | Jung et al. | May 2017 | B2 |
9641919 | Poole et al. | May 2017 | B1 |
9646614 | Bellegarda et al. | May 2017 | B2 |
9653060 | Hilmes et al. | May 2017 | B1 |
9653075 | Chen et al. | May 2017 | B1 |
9659555 | Hilmes et al. | May 2017 | B1 |
9672821 | Krishnaswamy et al. | Jun 2017 | B2 |
9685171 | Yang | Jun 2017 | B1 |
9691378 | Meyers et al. | Jun 2017 | B1 |
9691379 | Mathias et al. | Jun 2017 | B1 |
9697826 | Sainath et al. | Jul 2017 | B2 |
9697828 | Prasad et al. | Jul 2017 | B1 |
9698999 | Mutagi et al. | Jul 2017 | B2 |
9704478 | Vitaladevuni et al. | Jul 2017 | B1 |
9721566 | Newendorp et al. | Aug 2017 | B2 |
9721568 | Polansky et al. | Aug 2017 | B1 |
9721570 | Beal et al. | Aug 2017 | B1 |
9728188 | Rosen et al. | Aug 2017 | B1 |
9734822 | Sundaram et al. | Aug 2017 | B1 |
9747011 | Lewis et al. | Aug 2017 | B2 |
9747899 | Pogue et al. | Aug 2017 | B2 |
9747920 | Ayrapetian et al. | Aug 2017 | B2 |
9747926 | Sharifi et al. | Aug 2017 | B2 |
9754605 | Chhetri | Sep 2017 | B1 |
9762967 | Clarke et al. | Sep 2017 | B2 |
9811314 | Plagge et al. | Nov 2017 | B2 |
9813810 | Nongpiur | Nov 2017 | B1 |
9813812 | Berthelsen et al. | Nov 2017 | B2 |
9820036 | Tritschler et al. | Nov 2017 | B1 |
9820039 | Lang | Nov 2017 | B2 |
9826306 | Lang | Nov 2017 | B2 |
9865259 | Typrin et al. | Jan 2018 | B1 |
9865264 | Gelfenbeyn et al. | Jan 2018 | B2 |
9881616 | Beckley et al. | Jan 2018 | B2 |
9916839 | Scalise et al. | Mar 2018 | B1 |
9947316 | Millington et al. | Apr 2018 | B2 |
10079015 | Lockhart et al. | Sep 2018 | B1 |
20010042107 | Palm | Nov 2001 | A1 |
20020022453 | Balog et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020034280 | Infosino | Mar 2002 | A1 |
20020072816 | Shdema et al. | Jun 2002 | A1 |
20020124097 | Isely et al. | Sep 2002 | A1 |
20030040908 | Yang et al. | Feb 2003 | A1 |
20030070869 | Hlibowicki | Apr 2003 | A1 |
20030072462 | Hlibowicki | Apr 2003 | A1 |
20030095672 | Hobelsberger | May 2003 | A1 |
20030157951 | Hasty | Aug 2003 | A1 |
20040024478 | Hans et al. | Feb 2004 | A1 |
20040093219 | Shin et al. | May 2004 | A1 |
20040128135 | Anastasakos et al. | Jul 2004 | A1 |
20050031131 | Browning et al. | Feb 2005 | A1 |
20050031132 | Browning et al. | Feb 2005 | A1 |
20050031133 | Browning et al. | Feb 2005 | A1 |
20050031134 | Leske | Feb 2005 | A1 |
20050031137 | Browning et al. | Feb 2005 | A1 |
20050031138 | Browning et al. | Feb 2005 | A1 |
20050031139 | Browning et al. | Feb 2005 | A1 |
20050031140 | Browning | Feb 2005 | A1 |
20050047606 | Lee et al. | Mar 2005 | A1 |
20050164664 | Difonzo et al. | Jul 2005 | A1 |
20050195988 | Tashev et al. | Sep 2005 | A1 |
20050207584 | Bright | Sep 2005 | A1 |
20050268234 | Rossi et al. | Dec 2005 | A1 |
20050283330 | Laraia et al. | Dec 2005 | A1 |
20060104451 | Browning et al. | May 2006 | A1 |
20060147058 | Wang | Jul 2006 | A1 |
20060190968 | Jung et al. | Aug 2006 | A1 |
20060247913 | Huerta et al. | Nov 2006 | A1 |
20060262943 | Oxford | Nov 2006 | A1 |
20070018844 | Sutardja | Jan 2007 | A1 |
20070019815 | Asada et al. | Jan 2007 | A1 |
20070033043 | Hyakumoto et al. | Feb 2007 | A1 |
20070071255 | Schobben | Mar 2007 | A1 |
20070076131 | Li et al. | Apr 2007 | A1 |
20070076906 | Takagi et al. | Apr 2007 | A1 |
20070140058 | McIntosh et al. | Jun 2007 | A1 |
20070140521 | Mitobe et al. | Jun 2007 | A1 |
20070142944 | Goldberg et al. | Jun 2007 | A1 |
20070147651 | Mitobe et al. | Jun 2007 | A1 |
20080037814 | Shau | Feb 2008 | A1 |
20080090537 | Sutardja | Apr 2008 | A1 |
20080146289 | Korneluk et al. | Jun 2008 | A1 |
20080221897 | Cerra et al. | Sep 2008 | A1 |
20080247530 | Barton et al. | Oct 2008 | A1 |
20080248797 | Freeman et al. | Oct 2008 | A1 |
20080301729 | Broos et al. | Dec 2008 | A1 |
20090003620 | McKillop et al. | Jan 2009 | A1 |
20090005893 | Sugii et al. | Jan 2009 | A1 |
20090010445 | Matsuo et al. | Jan 2009 | A1 |
20090018828 | Nakadai et al. | Jan 2009 | A1 |
20090076821 | Brenner et al. | Mar 2009 | A1 |
20090153289 | Hope et al. | Jun 2009 | A1 |
20090197524 | Haff et al. | Aug 2009 | A1 |
20090228919 | Zott et al. | Sep 2009 | A1 |
20090238377 | Ramakrishnan et al. | Sep 2009 | A1 |
20090264072 | Dai | Oct 2009 | A1 |
20090326949 | Douthitt et al. | Dec 2009 | A1 |
20100014690 | Wolff et al. | Jan 2010 | A1 |
20100023638 | Bowman | Jan 2010 | A1 |
20100035593 | Franco et al. | Feb 2010 | A1 |
20100075723 | Min et al. | Mar 2010 | A1 |
20100092004 | Kuze | Apr 2010 | A1 |
20100172516 | Lastrucci | Jul 2010 | A1 |
20100179874 | Higgins et al. | Jul 2010 | A1 |
20100211199 | Naik et al. | Aug 2010 | A1 |
20110033059 | Bhaskar et al. | Feb 2011 | A1 |
20110035580 | Wang et al. | Feb 2011 | A1 |
20110044489 | Saiki et al. | Feb 2011 | A1 |
20110091055 | Leblanc | Apr 2011 | A1 |
20110145581 | Malhotra et al. | Jun 2011 | A1 |
20110267985 | Wilkinson et al. | Nov 2011 | A1 |
20110276333 | Wang et al. | Nov 2011 | A1 |
20110280422 | Neumeyer et al. | Nov 2011 | A1 |
20110289506 | Trivi et al. | Nov 2011 | A1 |
20110299706 | Sakai | Dec 2011 | A1 |
20120022863 | Cho et al. | Jan 2012 | A1 |
20120078635 | Rothkopf et al. | Mar 2012 | A1 |
20120123268 | Tanaka et al. | May 2012 | A1 |
20120131125 | Seidel et al. | May 2012 | A1 |
20120148075 | Goh et al. | Jun 2012 | A1 |
20120163603 | Abe et al. | Jun 2012 | A1 |
20120177215 | Bose et al. | Jul 2012 | A1 |
20120297284 | Matthews, III et al. | Nov 2012 | A1 |
20120308044 | Vander Mey et al. | Dec 2012 | A1 |
20120308046 | Muza | Dec 2012 | A1 |
20130006453 | Wang et al. | Jan 2013 | A1 |
20130024018 | Chang et al. | Jan 2013 | A1 |
20130039527 | Jensen et al. | Feb 2013 | A1 |
20130058492 | Silzle et al. | Mar 2013 | A1 |
20130066453 | Seefeldt et al. | Mar 2013 | A1 |
20130148821 | Sorensen | Jun 2013 | A1 |
20130179173 | Lee et al. | Jul 2013 | A1 |
20130183944 | Mozer et al. | Jul 2013 | A1 |
20130191122 | Mason | Jul 2013 | A1 |
20130198298 | Li et al. | Aug 2013 | A1 |
20130216056 | Thyssen | Aug 2013 | A1 |
20130317635 | Bates et al. | Nov 2013 | A1 |
20130322665 | Bennett et al. | Dec 2013 | A1 |
20130324031 | Loureiro | Dec 2013 | A1 |
20130329896 | Krishnaswamy et al. | Dec 2013 | A1 |
20130331970 | Beckhardt et al. | Dec 2013 | A1 |
20130332165 | Beckley et al. | Dec 2013 | A1 |
20130343567 | Triplett et al. | Dec 2013 | A1 |
20140003611 | Mohammad et al. | Jan 2014 | A1 |
20140003625 | Sheen et al. | Jan 2014 | A1 |
20140003635 | Mohammad et al. | Jan 2014 | A1 |
20140005813 | Reimann | Jan 2014 | A1 |
20140006026 | Lamb et al. | Jan 2014 | A1 |
20140034929 | Hamada et al. | Feb 2014 | A1 |
20140064501 | Olsen et al. | Mar 2014 | A1 |
20140075306 | Rega | Mar 2014 | A1 |
20140094151 | Klappert et al. | Apr 2014 | A1 |
20140100854 | Chen et al. | Apr 2014 | A1 |
20140122075 | Bak et al. | May 2014 | A1 |
20140145168 | Ohsawa et al. | May 2014 | A1 |
20140167931 | Lee et al. | Jun 2014 | A1 |
20140195252 | Gruber et al. | Jul 2014 | A1 |
20140219472 | Huang et al. | Aug 2014 | A1 |
20140244013 | Reilly | Aug 2014 | A1 |
20140249817 | Hart et al. | Sep 2014 | A1 |
20140252386 | Ito et al. | Sep 2014 | A1 |
20140254805 | Su et al. | Sep 2014 | A1 |
20140258292 | Thramann et al. | Sep 2014 | A1 |
20140270282 | Tammi et al. | Sep 2014 | A1 |
20140274185 | Luna et al. | Sep 2014 | A1 |
20140274203 | Ganong, III et al. | Sep 2014 | A1 |
20140277650 | Zurek et al. | Sep 2014 | A1 |
20140291642 | Watabe et al. | Oct 2014 | A1 |
20140340888 | Ishisone et al. | Nov 2014 | A1 |
20140363022 | Dizon et al. | Dec 2014 | A1 |
20140369491 | Kloberdans et al. | Dec 2014 | A1 |
20140372109 | Iyer et al. | Dec 2014 | A1 |
20150010169 | Popova et al. | Jan 2015 | A1 |
20150014680 | Yamazaki et al. | Jan 2015 | A1 |
20150016642 | Walsh et al. | Jan 2015 | A1 |
20150036831 | Klippel | Feb 2015 | A1 |
20150063580 | Huang et al. | Mar 2015 | A1 |
20150086034 | Lombardi et al. | Mar 2015 | A1 |
20150104037 | Lee et al. | Apr 2015 | A1 |
20150106085 | Lindahl | Apr 2015 | A1 |
20150110294 | Chen et al. | Apr 2015 | A1 |
20150112672 | Giacobello et al. | Apr 2015 | A1 |
20150154976 | Mutagi | Jun 2015 | A1 |
20150169279 | Duga | Jun 2015 | A1 |
20150170645 | Di Censo et al. | Jun 2015 | A1 |
20150180432 | Gao et al. | Jun 2015 | A1 |
20150181318 | Gautama et al. | Jun 2015 | A1 |
20150189438 | Hampiholi et al. | Jul 2015 | A1 |
20150200454 | Heusdens et al. | Jul 2015 | A1 |
20150221678 | Yamazaki et al. | Aug 2015 | A1 |
20150222987 | Angel, Jr. et al. | Aug 2015 | A1 |
20150228274 | Leppänen et al. | Aug 2015 | A1 |
20150228803 | Koezuka et al. | Aug 2015 | A1 |
20150237406 | Ochoa et al. | Aug 2015 | A1 |
20150249889 | Iyer et al. | Sep 2015 | A1 |
20150253292 | Larkin et al. | Sep 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150263174 | Yamazaki et al. | Sep 2015 | A1 |
20150271593 | Sun et al. | Sep 2015 | A1 |
20150280676 | Holman et al. | Oct 2015 | A1 |
20150296299 | Klippel et al. | Oct 2015 | A1 |
20150302856 | Kim et al. | Oct 2015 | A1 |
20150319529 | Klippel | Nov 2015 | A1 |
20150338917 | Steiner et al. | Nov 2015 | A1 |
20150341406 | Rockefeller et al. | Nov 2015 | A1 |
20150346845 | Di Censo et al. | Dec 2015 | A1 |
20150355878 | Corbin | Dec 2015 | A1 |
20150363061 | de Nigris, III et al. | Dec 2015 | A1 |
20150363401 | Chen et al. | Dec 2015 | A1 |
20150371657 | Gao et al. | Dec 2015 | A1 |
20150380010 | Srinivasan et al. | Dec 2015 | A1 |
20160007116 | Holman | Jan 2016 | A1 |
20160021458 | Johnson et al. | Jan 2016 | A1 |
20160029142 | Isaac et al. | Jan 2016 | A1 |
20160035321 | Cho et al. | Feb 2016 | A1 |
20160036962 | Rand et al. | Feb 2016 | A1 |
20160042748 | Jain et al. | Feb 2016 | A1 |
20160044151 | Shoemaker et al. | Feb 2016 | A1 |
20160057522 | Choisel et al. | Feb 2016 | A1 |
20160077710 | Lewis et al. | Mar 2016 | A1 |
20160088036 | Corbin et al. | Mar 2016 | A1 |
20160088392 | Huttunen et al. | Mar 2016 | A1 |
20160093304 | Kim et al. | Mar 2016 | A1 |
20160094917 | Wilk et al. | Mar 2016 | A1 |
20160098393 | Hebert | Apr 2016 | A1 |
20160111110 | Gautama et al. | Apr 2016 | A1 |
20160134982 | Iyer | May 2016 | A1 |
20160155443 | Khan et al. | Jun 2016 | A1 |
20160157035 | Russell et al. | Jun 2016 | A1 |
20160173578 | Sharma et al. | Jun 2016 | A1 |
20160173983 | Berthelsen et al. | Jun 2016 | A1 |
20160189716 | Lindahl et al. | Jun 2016 | A1 |
20160212538 | Fullam et al. | Jul 2016 | A1 |
20160225385 | Hammarqvist | Aug 2016 | A1 |
20160232451 | Scherzer | Aug 2016 | A1 |
20160234204 | Rishi et al. | Aug 2016 | A1 |
20160239255 | Chavez et al. | Aug 2016 | A1 |
20160260431 | Newendorp et al. | Sep 2016 | A1 |
20160302018 | Russell et al. | Oct 2016 | A1 |
20160314782 | Klimanis | Oct 2016 | A1 |
20160336519 | Seo et al. | Nov 2016 | A1 |
20160343866 | Koezuka et al. | Nov 2016 | A1 |
20160343949 | Seo et al. | Nov 2016 | A1 |
20160343954 | Seo et al. | Nov 2016 | A1 |
20160345114 | Hanna et al. | Nov 2016 | A1 |
20160352915 | Gautama | Dec 2016 | A1 |
20160353218 | Starobin et al. | Dec 2016 | A1 |
20160366515 | Mendes et al. | Dec 2016 | A1 |
20160372688 | Seo et al. | Dec 2016 | A1 |
20170003931 | Dvortsov et al. | Jan 2017 | A1 |
20170012207 | Seo et al. | Jan 2017 | A1 |
20170012232 | Kataishi et al. | Jan 2017 | A1 |
20170019732 | Mendes et al. | Jan 2017 | A1 |
20170025615 | Seo et al. | Jan 2017 | A1 |
20170025630 | Seo et al. | Jan 2017 | A1 |
20170026769 | Patel | Jan 2017 | A1 |
20170060526 | Barton et al. | Mar 2017 | A1 |
20170062734 | Suzuki et al. | Mar 2017 | A1 |
20170070478 | Park et al. | Mar 2017 | A1 |
20170076720 | Gopalan et al. | Mar 2017 | A1 |
20170078824 | Heo | Mar 2017 | A1 |
20170083285 | Meyers et al. | Mar 2017 | A1 |
20170084292 | Yoo | Mar 2017 | A1 |
20170090864 | Jorgovanovic | Mar 2017 | A1 |
20170092278 | Evermann et al. | Mar 2017 | A1 |
20170092297 | Sainath et al. | Mar 2017 | A1 |
20170092889 | Seo et al. | Mar 2017 | A1 |
20170092890 | Seo et al. | Mar 2017 | A1 |
20170103755 | Jeon et al. | Apr 2017 | A1 |
20170110144 | Sharifi et al. | Apr 2017 | A1 |
20170117497 | Seo et al. | Apr 2017 | A1 |
20170123251 | Nakada et al. | May 2017 | A1 |
20170125037 | Shin | May 2017 | A1 |
20170125456 | Kasahara | May 2017 | A1 |
20170140748 | Roberts et al. | May 2017 | A1 |
20170140759 | Kumar et al. | May 2017 | A1 |
20170177585 | Rodger et al. | Jun 2017 | A1 |
20170178662 | Ayrapetian et al. | Jun 2017 | A1 |
20170188150 | Brunet et al. | Jun 2017 | A1 |
20170193999 | Aleksic et al. | Jul 2017 | A1 |
20170206896 | Ko et al. | Jul 2017 | A1 |
20170214996 | Yeo | Jul 2017 | A1 |
20170236512 | Williams et al. | Aug 2017 | A1 |
20170242651 | Lang et al. | Aug 2017 | A1 |
20170242653 | Lang et al. | Aug 2017 | A1 |
20170243576 | Millington et al. | Aug 2017 | A1 |
20170243587 | Plagge et al. | Aug 2017 | A1 |
20170245076 | Kusano et al. | Aug 2017 | A1 |
20170257686 | Gautama et al. | Sep 2017 | A1 |
20170270919 | Parthasarathi et al. | Sep 2017 | A1 |
20170287485 | Civelli et al. | Oct 2017 | A1 |
20170352357 | Fink | Dec 2017 | A1 |
20170353789 | Kim et al. | Dec 2017 | A1 |
20170357475 | Lee | Dec 2017 | A1 |
20180033428 | Kim et al. | Feb 2018 | A1 |
20180040324 | Wilberding et al. | Feb 2018 | A1 |
20180062871 | Jones et al. | Mar 2018 | A1 |
20180091913 | Hartung et al. | Mar 2018 | A1 |
20180130469 | Gruenstein et al. | May 2018 | A1 |
20180137861 | Ogawa et al. | May 2018 | A1 |
20180225933 | Park | Aug 2018 | A1 |
20180233136 | Torok et al. | Aug 2018 | A1 |
20180324756 | Ryu | Nov 2018 | A1 |
20190173687 | MacKay | Jun 2019 | A1 |
20190297388 | Panchaksharaiah | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
2017100486 | Jun 2017 | AU |
2017100581 | Jun 2017 | AU |
103546616 | Jan 2014 | CN |
1349146 | Oct 2003 | EP |
1389853 | Feb 2004 | EP |
2683147 | Jan 2014 | EP |
2351021 | Sep 2017 | EP |
2001236093 | Aug 2001 | JP |
2004347943 | Dec 2004 | JP |
2004354721 | Dec 2004 | JP |
2005284492 | Oct 2005 | JP |
2008079256 | Apr 2008 | JP |
2008158868 | Jul 2008 | JP |
2010141748 | Jun 2010 | JP |
2013037148 | Feb 2013 | JP |
2014071138 | Apr 2014 | JP |
2014137590 | Jul 2014 | JP |
20100111071 | Oct 2010 | KR |
200153994 | Jul 2001 | WO |
2003093950 | Nov 2003 | WO |
2015037396 | Mar 2015 | WO |
2015178950 | Nov 2015 | WO |
2016014142 | Jan 2016 | WO |
2016022926 | Feb 2016 | WO |
2016033364 | Mar 2016 | WO |
2016057268 | Apr 2016 | WO |
2017039632 | Mar 2017 | WO |
Entry |
---|
US 9,299,346 B1, 03/2016, Hart et al. (withdrawn) |
Notice of Allowance dated Aug. 14, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 10 pages. |
Notice of Allowance dated Feb. 14, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Jun. 14, 2017, issued in connection with U.S. Appl. No. 15/282,554, filed Sep. 30, 2016, 11 pages. |
Notice of Allowance dated Nov. 14, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 5 pages. |
Notice of Allowance dated Dec. 15, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Notice of Allowance dated Aug. 16, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 9 pages. |
Notice of Allowance dated Aug. 17, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 9 pages. |
Notice of Allowance dated Sep. 17, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 6 pages. |
Notice of Allowance dated Dec. 19, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 9 pages. |
Notice of Allowance dated Jul. 19, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 7 pages. |
Notice of Allowance dated Mar. 20, 2018, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 7 pages. |
Notice of Allowance dated Sep. 20, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 7 pages. |
Notice of Allowance dated Aug. 22, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Sep. 22, 2016, 5 pages. |
Notice of Allowance dated Jan. 22, 2018, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 9 pages. |
Notice of Allowance dated Dec. 29, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 13 pages. |
Notice of Allowance dated Jul. 30, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 5 pages. |
Notice of Allowance dated Nov. 30, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Oct. 5, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2018, 10 pages. |
Notice of Allowance dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 11 pages. |
Notice of Allowance dated Mar. 9, 2018, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 8 pages. |
Palm, Inc., “Handbook for the Palm VII Handheld,” May 2000, 311 pages. |
Presentations at WinHEC 2000, May 2000, 138 pages. |
Restriction Requirement dated Aug. 9, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 8 pages. |
Souden et al. “An Integrated Solution for Online Multichannel Noise Tracking and Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19. No. 7, Sep. 7, 2011, 11 pages. |
Souden et al. “Gaussian Model-Based Multichannel Speech Presence Probability” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 5, Jul. 5, 2010, 6pages. |
Souden et al. “On Optimal Frequency-Domain Multichannel Linear Filtering for Noise Reduction.” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, No. 2, Feb. 2010, 17pages. |
Steven J. Nowlan and Geoffrey E. Hinton “Simplifying Neural Networks by Soft Weight-Sharing” Neural Computation 4, 1992, 21 pages. |
Tsiami et al. “Experiments in acoustic source localization using sparse arrays in adverse indoors environments”, 2014 22nd European Signal Processing Conference, Sep. 1, 2014, 5 pages. |
Tweet: “How to start using Google app voice commands to make your life easier Share This Story shop @Bullet”, Jan. 21, 2016, https://bgr.com/2016/01/21/best-ok-google-voice-commands/, 3 page. |
Ullrich et al. “Soft Weight-Sharing for Neural Network Compression.” ICLR 2017, 16 pages. |
U.S. Appl. No. 60/490,768, filed Jul. 28, 2003, entitled “Method for synchronizing audio playback between multiple networked devices,” 13 pages. |
U.S. Appl. No. 60/825,407, filed Sep. 12, 2006, entitled “Controlling and manipulating groupings in a multi-zone music or media system,” 82 pages. |
UPnP; “Universal Plug and Play Device Architecture,” Jun. 8, 2000; version 1.0; Microsoft Corporation; pp. 1-54. |
Vacher at al. “Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment” Signal Processing Conference 2012 Proceedings of the 20th European, IEEE, Aug. 27, 2012, 5 pages. |
Wung et al. “Robust Acoustic Echo Cancellation in the Short-Time Fourier Transform Domain Using Adaptive Crossband Filters” IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP, 2014, p. 1300-1304. |
Xiao et al. “A Learning-Based Approach to Direction of Arrival Estimation in Noisy and Reverberant Environments,” 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 19, 2015, 5 pages. |
Yamaha DME 64 Owner's Manual; copyright 2004, 80 pages. |
Yamaha DME Designer 3.5 setup manual guide; copyright 2004, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated May 23, 2017, issued in connection with International Application No. PCT/US2017/018739, Filed on Feb. 21, 2017, 10 pages. |
Newman, Jared. “Chromecast Audio's multi-room support has arrived,” Dec. 11, 2015, https://www.pcworld.com/article/3014204/customer-electronic/chromcase-audio-s-multi-room-support-has . . . , 1 page. |
Morales-Cordovilla et al. “Room Localization for Distant Speech Recognition,” Proceedings of Interspeech 2014, Sep. 14, 2014, 4 pages. |
Maja Taseska and Emanual A.P. Habets, “MMSE-Based Blind Source Extraction in Diffuse Noise Fields Using a Complex Coherence-Based a Priori Sap Estimator.” International Workshop on Acoustic Signal Enhancement 2012, Sep. 4-6, 2012, 4pages. |
Louderback, Jim, “Affordable Audio Receiver Furnishes Homes With MP3,” TechTV Vault. Jun. 28, 2000 retrieved Jul. 10, 2014, 2 pages. |
Jose Alvarez and Mathieu Salzmann “Compression-aware Training of Deep Networks” 31st Conference on Neural Information Processing Systems, Nov. 13, 2017, 12pages. |
Jones, Stephen, “Dell Digital Audio Receiver: Digital upgrade for your analog stereo,” Analog Stereo, Jun. 24, 2000 retrieved Jun. 18, 2014, 2 pages. |
Jo et al., “Synchronized One-to-many Media Streaming with Adaptive Playout Control,” Proceedings of SPIE, 2002, pp. 71-82, vol. 4861. |
International Searching Authority, International Search Report and Written Opinion dated May 30, 2017, issued in connection with International Application No. PCT/US2017/018728, Filed on Feb. 21, 2017, 11 pages. |
Yamaha DME Designer 3.5 User Manual; Copyright 2004, 507 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 23, 2017, issued in connection with International Application No. PCT/US2017/042170, filed on Jul. 14, 2017, 15 pages. |
International Searching Authority, International Search Report and Written Opinion dated Oct. 24, 2017, issued in connection with International Application No. PCT/US2017/042227, filed on Jul. 14, 2017, 16 pages. |
International Searching Authority, International Search Report and Written Opinion dated Jan. 23, 2018, issued in connection with International Application No. PCT/US2017/57220, filed on Oct. 18, 2017, 8 pages. |
Advisory Action dated Jun. 28, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 3 pages. |
Advisory Action dated Dec. 31, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 4 pages. |
AudioTron Quick Start Guide, Version 1.0, Mar. 2001, 24 pages. |
AudioTron Reference Manual, Version 3.0, May 2002, 70 pages. |
AudioTron Setup Guide, Version 3.0, May 2002, 38 pages. |
Australian Patent Office, Examination Report dated Oct. 30, 2018, issued in connection with Australian Application No. 2017222436, 3 pages. |
“Automatic Parameter Tying in Neural Networks” ICLR 2018, 14 pages. |
Bluetooth. “Specification of the Bluetooth System: The ad hoc SCATTERNET for affordable and highly functional wireless connectivity,” Core, Version 1.0 A, Jul. 26, 1999, 1068 pages. |
Bluetooth. “Specification of the Bluetooth System: Wireless connections made easy,” Core, Version 1.0 B, Dec. 1, 1999, 1076 pages. |
Canadian Patent Office, Canadian Office Action dated Nov. 14, 2018, issued in connection with Canadian Application No. 3015491, 3 pages. |
Corrected Notice of Allowability dated Mar. 8, 2017, issued in connection with U.S. Appl. No. 15/229,855, filed Aug. 5, 2016, 6 pages. |
Dell, Inc. “Dell Digital Audio Receiver: Reference Guide,” Jun. 2000, 70 pages. |
Dell, Inc. “Start Here,” Jun. 2000, 2 pages. |
“Denon 2003-2004 Product Catalog,” Denon, 2003-2004, 44 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 177570702, 8 pages. |
European Patent Office, European Extended Search Report dated Jan. 3, 2019, issued in connection with European Application No. 17757075.1, 9 pages. |
European Patent Office, European Extended Search Report dated Oct. 30, 2017, issued in connection with EP Application No. 17174435.2, 11 pages. |
European Patent Office, European Office Action dated Jan. 22, 2019, issued in connection with European Application No. 17174435.2, 9 pages. |
Final Office Action dated Oct. 6, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 25 pages. |
Final Office Action dated Aug. 11, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 7 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 18 pages. |
Final Office Action dated Apr. 13, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 20 pages. |
Final Office Action dated Jun. 15, 2017, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Final Office Action dated Oct. 15, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 10 pages. |
Final Office Action dated Feb. 21, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 12 pages. |
Final Office Action dated Feb. 5, 2019, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 17 pages. |
Fiorenza Arisio et al. “Deliverable 1.1 User Study, analysis of requirements and definition of the application task,” May 31, 2012, http://dirha.fbk.eu/sites/dirha.fbk.eu/files/docs/DIRHA_D1.1., 31 pages. |
Freiberger, Karl, “Development and Evaluation of Source Localization Algorithms for Coincident Microphone Arrays,” Diploma Thesis, Apr. 1, 2010, 106 pages. |
Giacobello et al. “A Sparse Nonuniformly Partitioned Multidelay Filter for Acoustic Echo Cancellation,” 2013, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2013, New Paltz, NY, 4 pages. |
Giacobello et al. “Tuning Methodology for Speech Enhancement Algorithms using a Simulated Conversational Database and Perceptual Objective Measures,” 2014, 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays HSCMA, 2014, 5 pages. |
Han et al. “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.” ICLR 2016, Feb. 15, 2016, 14 pages. |
Helwani et al “Source-domain adaptive filtering for MIMO systems with application to acoustic echo cancellation”, Acoustics Speech and Signal Processing, 2010 IEEE International Conference, Mar. 14, 2010, 4 pages. |
Hirano et al. “A Noise-Robust Stochastic Gradient Algorithm with an Adaptive Step-Size Suitable for Mobile Hands-Free Telephones,” 1995, International Conference on Acoustics, Speech, and Signal Processing, vol. 2, 4 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018728, filed on Feb. 21, 2017, 8 pages. |
International Bureau, International Preliminary Report on Patentability, dated Sep. 7, 2018, issued in connection with International Application No. PCT/US2017/018739, filed on Feb. 21, 2017, 7 pages. |
International Searching Authority, International Search Report and Written Opinion dated Dec. 19, 2018, in connection with International Application No. PCT/US2018/053517, 13 pages. |
International Searching Authority, International Search Report and Written Opinion dated Nov. 22, 2017, issued in connection with International Application No. PCT/US2017/054063, filed on Sep. 28, 2017, 11 pages. |
Ngo et al. “Incorporating the Conditional Speech Presence Probability in Multi-Channel Wiener Filter Based Noise Reduction in Hearing Aids.” EURASIP Journal on Advances in Signal Processing vol. 2009, Jun. 2, 2009, 11 pages. |
Non-Final Office Action dated Jun. 1, 2017, issued in connection with U.S. Appl. No. 15/223,218, filed Jul. 29, 2016, 7 pages. |
Non-Final Office Action dated Nov. 2, 2017, issued in connection with U.S. Appl. No. 15/584,782, filed May 2, 2017, 11 pages. |
Non-Final Office Action dated Nov. 3, 2017, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 11 pages. |
Non-Final Office Action dated Feb. 7, 2017, issued in connection with U.S. Appl. No. 15/131,244, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 8, 2017, issued in connection with U.S. Appl. No. 15/098,892, filed Apr. 14, 2016, 17 pages. |
Non-Final Office Action dated Mar. 9, 2017, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 15 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/229,868, filed Aug. 5, 2016, 13 pages. |
Non-Final Office Action dated Jan. 10, 2018, issued in connection with U.S. Appl. No. 15/438,725, filed Feb. 21, 2017, 15 pages. |
Non-Final Office Action dated Sep. 10, 2018, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 17 pages. |
Non-Final Office Action dated Dec. 12, 2016, issued in connection with U.S. Appl. No. 15/098,718, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Feb. 12, 2019, issued in connection with U.S. Appl. No. 15/670,361, filed Aug. 7, 2017, 13 pages. |
Non-Final Office Action dated Jan. 13, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 11 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 15/717,621, filed Sep. 27, 2017, 23 pages. |
Non-Final Office Action dated Nov. 13, 2018, issued in connection with U.S. Appl. No. 16/160,107, filed Oct. 15, 2018, 8 pages. |
Non-Final Office Action dated Sep. 14, 2017, issued in connection with U.S. Appl. No. 15/178,180, filed Jun. 9, 2016, 16 pages. |
Non-Final Office Action dated Sep. 14, 2018, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 15 pages. |
Non-Final Office Action dated Jan. 15, 2019, issued in connection with U.S. Appl. No. 16/173,797, filed Oct. 29, 2018, 6 pages. |
Non-Final Office Action dated Mar. 16, 2018, issued in connection with U.S. Appl. No. 15/681,937, filed Aug. 21, 2017, 5 pages. |
Non-Final Office Action dated Oct. 16, 2018, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 16 pages. |
Non-Final Office Action dated Apr. 18, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 14 pages. |
Non-Final Office Action dated Jan. 18, 2019, issued in connection with U.S. Appl. No. 15/721,141, filed Sep. 29, 2017, 18 pages. |
Non-Final Office Action dated Apr. 19, 2017, issued in connection with U.S. Appl. No. 15/131,776, filed Apr. 18, 2016, 12 pages. |
Non-Final Office Action dated Feb. 20, 2018, issued in connection with U.S. Appl. No. 15/211,748, filed Jul. 15, 2016, 31 pages. |
Non-Final Office Action dated May 22, 2018, issued in connection with U.S. Appl. No. 15/946,599, filed Apr. 5, 2018, 19 pages. |
Non-Final Office Action dated Aug. 24, 2017, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 13 pages. |
Non-Final Office Action dated Jul. 25, 2017, issued in connection with U.S. Appl. No. 15/273,679, filed Jul. 22, 2016, 11 pages. |
Non-Final Office Action dated Dec. 26, 2018, issued in connection with U.S. Appl. No. 16/154,469, filed Oct. 8, 2018, 7 pages. |
Non-Final Office Action dated Jan. 26, 2017, issued in connection with U.S. Appl. No. 15/098,867, filed Apr. 14, 2016, 16 pages. |
Non-Final Office Action dated Oct. 26, 2017, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 12 pages. |
Non-Final Office Action dated Jun. 27, 2018, issued in connection with U.S. Appl. No. 15/438,749, filed Feb. 21, 2017, 16 pages. |
Non-Final Office Action dated Jun. 30, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 13 pages. |
Non-Final Office Action dated Jan. 4, 2019, issued in connection with U.S. Appl. No. 15/948,541, filed Apr. 9, 2018, 6 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/211,689, filed Jul. 15, 2016, 32 pages. |
Non-Final Office Action dated Feb. 6, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 6 pages. |
Non-Final Office Action dated Sep. 6, 2017, issued in connection with U.S. Appl. No. 15/131,254, filed Apr. 18, 2016, 13 pages. |
Non-Final Office Action dated Sep. 6, 2018, issued in connection with U.S. Appl. No. 15/098,760, filed Apr. 14, 2016, 29 pages. |
Non-Final Office Action dated Apr. 9, 2018, issued in connection with U.S. Appl. No. 15/804,776, filed Nov. 6, 2017, 18 pages. |
Non-Final Office Action dated May 9, 2018, issued in connection with U.S. Appl. No. 15/818,051, filed Nov. 20, 2017, 22 pages. |
Notice of Allowance dated Dec. 4, 2017, issued in connection with U.S. Appl. No. 15/277,810, filed Sep. 27, 2016, 5 pages. |
Notice of Allowance dated Jul. 5, 2018, issued in connection with U.S. Appl. No. 15/237,133, filed Aug. 15, 2016, 5 pages. |
Notice of Allowance dated Jul. 9, 2018, issued in connection with U.S. Appl. No. 15/438,741, filed Feb. 21, 2017, 5 pages. |
Notice of Allowance dated Aug. 1, 2018, issued in connection with U.S. Appl. No. 15/297,627, filed Oct. 19, 2016, 9 pages. |
Notice of Allowance dated Apr. 11, 2018, issued in connection with U.S. Appl. No. 15/719,454, filed Sep. 28, 2017, 15 pages. |
Notice of Allowance dated Dec. 12, 2018, issued in connection with U.S. Appl. No. 15/811,468, filed Nov. 13, 2017, 9 pages. |
Notice of Allowance dated Jul. 12, 2017, issued in connection with U.S. Appl. No. 15/098,805, filed Apr. 14, 2016, 8 pages. |
Notice of Allowance dated Sep. 12, 2018, issued in connection with U.S. Appl. No. 15/438,744, filed Feb. 21, 2017, 15 pages. |
Notice of Allowance dated Dec. 13, 2017, issued in connection with U.S. Appl. No. 15/784,952, filed Oct. 16, 2017, 9 pages. |
Notice of Allowance dated Feb. 13, 2019, issued in connection with U.S. Appl. No. 15/959,907, filed Apr. 23, 2018, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20200073731 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62723942 | Aug 2018 | US |