AUDIO PROCESSING FOR DETECTING OCCURRENCES OF LOUD SOUND CHARACTERIZED BY BRIEF AUDIO BURSTS

Information

  • Patent Application
  • 20220180892
  • Publication Number
    20220180892
  • Date Filed
    February 25, 2022
    2 years ago
  • Date Published
    June 09, 2022
    2 years ago
Abstract
A boundary of a highlight of audiovisual content depicting an event is identified. The audiovisual content may be a broadcast, such as a television broadcast of a sporting event. The highlight may be a segment of the audiovisual content deemed to be of particular interest. Audio data for the audiovisual content is stored, and the audio data is automatically analyzed to detect one or more audio events indicative of one or more occurrences to be included in the highlight. Each audio event may be a brief, high-energy audio burst such as the sound made by a tennis serve. A time index within the audiovisual content, before or after the audio event, may be designated as the boundary, which may be the beginning or end of the highlight.
Description
TECHNICAL FIELD

The present document relates to techniques for identifying multimedia content and associated information on a television device or a video server delivering multimedia content, and enabling embedded software applications to utilize the multimedia content to provide content and services synchronous with that multimedia content. Various embodiments relate to methods and systems for providing automated audio analysis to identify and extract information from television programming content depicting sporting events, so as to create metadata associated with video highlights for in-game and post-game viewing.


DESCRIPTION OF THE RELATED ART

Enhanced television applications such as interactive advertising and enhanced program guides with pre-game, in-game and post-game interactive applications have long been envisioned. Existing cable systems that were originally engineered for broadcast television are being called on to support a host of new applications and services including interactive television services and enhanced (interactive) programming guides.


Some frameworks for enabling enhanced television applications have been standardized. Examples include the OpenCable™ Enhanced TV Application Messaging Specification, as well as the Tru2way specification, which refer to interactive digital cable services delivered over a cable video network and which include features such as interactive program guides, interactive ads, games, and the like. Additionally, cable operator “OCAP” programs provide interactive services such as e-commerce shopping, online banking, electronic program guides, and digital video recording. These efforts have enabled the first generation of video-synchronous applications, synchronized with video content delivered by the programmer/broadcaster, and providing added data and interactivity to television programming.


Recent developments in video/audio content analysis technologies and capable mobile devices have opened up an array of new possibilities in developing sophisticated applications that operate synchronously with live TV programming events. These new technologies and advances in audio signal processing and computer vision, as well as improved computing power of modern processors, allow for real-time generation of sophisticated programming content highlights accompanied by metadata that are currently lacking in the television and other media environments.


SUMMARY

A system and method are presented to enable automatic real-time processing of audio signals extracted from sporting event television programming content, for detecting, selecting, and tracking short bursts of high-energy audio events, such as tennis ball hits in a tennis match.


In at least one embodiment, initial audio signal analysis is performed in the time domain, so as to detect short bursts of high-energy audio and generate an indicator of potential occurrence of audio events of interest.


In at least one embodiment, detected time-domain audio events are further processed and revised by invoking consideration of spectral characteristics of the audio signal in the neighborhood of detected time-domain audio events. A spectrogram is constructed for the analyzed audio signal, and pronounced spectral magnitude peaks are extracted by maximum magnitude suppression in a sliding 2-D diamond-shaped time-frequency area filter. In addition, a spectrogram time-spread range is constructed around audio event points previously obtained by the time-domain analysis, and a qualifier for each audio event point is established by counting spectral magnitude peaks in this time-spread range. The time-spread range can be established in any of a multitude of ways; for example, the spectral neighborhood of the time-domain detected audio events can be analyzed immediately before the audio event occurred, or immediately after the audio event occurred, or in a time and frequency range around the detected audio event. In one embodiment, as an exemplary case, only audio events obtained by time-domain analysis with associated qualifier value below a threshold are accepted as viable audio events.


Any of a number of spectral neighborhood analysis methods can be applied, including, but not limited to, spectral analysis performed by counting pronounced spectral peaks in various time-spread ranges in the neighborhoods of detected time-domain audio events, as described in the previous paragraph.


In at least one embodiment, a schedule of minimal time distance between adjacent audio event points is considered. Undesirable redundant audio events that are in close proximity to each other are removed, and a final audio event timeline for the game is formed.


In at least one embodiment, once the audio event information has been extracted, it is automatically appended to sporting event metadata associated with the sporting event video highlights, and can be subsequently used in connection with automatic generation of highlights.


In at least one embodiment, a method may be used to identify a boundary of a highlight of audiovisual content depicting an event. The method may include, at a data store, storing audio data depicting at least part of the event. The method may further include, at a processor, automatically analyzing the audio data to detect an audio event indicative of an occurrence to be included in the highlight, and designating a time index, within the audiovisual content, before or after the audio event as the boundary, the boundary comprising one of a beginning of the highlight and an end of the highlight.


The audiovisual content may include a television broadcast.


The audiovisual content may include an audiovisual stream. The method may further include, prior to storing audio data depicting at least part of the event, extracting the audio data from the audiovisual stream.


The audiovisual content may include stored audiovisual content. The method may further include, prior to storing audio data depicting at least part of the event, extracting the audio data from the stored audiovisual content.


In at least one embodiment, the event may be a sporting event. The highlight may depict a portion of the sporting event deemed to be of particular interest to at least one user. The occurrence may be any occurrence associated with a sporting event, such as for example a tennis serve.


The method may further include, at an output device, playing at least one of the audiovisual content and the highlight during detection of the audio event.


The method may further include, prior to detecting the audio event, pre-processing the audio data by resampling the audio data to a desired sampling rate.


The method may further include, prior to detecting the audio event, pre-processing the audio data by filtering the audio data to perform at least one of reducing noise, and selecting a spectral band of interest.


Automatically analyzing the audio data to detect the audio events may include processing the audio data, in a time domain, to generate initial row indicators of occurrences of distinct energy burst events.


Processing the audio data may include selecting an analysis time window size, selecting an analysis window overlap region size, sliding an analysis time window along the audio data, computing a normalized magnitude for window samples at each position of the analysis time window, calculating an average sample magnitude at each position of the analysis time window, generating a log magnitude indicator at each position of the analysis time window, and using the normalized magnitude, average sample magnitude, and log magnitude indicator to populate a row time-domain event vector with a computed indicator and associated position values.


The method may further include processing the audio data to generate a spectrogram for the audio data, and analyzing the audio data and the spectrogram in a joint time-frequency domain to generate qualifying indicators of occurrences of the audio events, comprising distinct energy burst events detected in the time domain.


Analyzing the audio data and the spectrogram in the joint time-frequency domain may include constructing a 2-D diamond-shaped spectrogram area filter to facilitate detection and selection of pronounced time-frequency magnitude peaks, sliding the area filter along time and frequency spectrogram axes, checking a central peak magnitude against all remaining peak magnitudes at each time-frequency position of the area filter, retaining only central peak magnitudes that are greater than all other peak magnitudes at each time-frequency position of the area filter, and populating a spectral event vector with all retained central peak magnitudes.


The method may further include, in the time domain and in a frequency domain, performing joint analysis of audio events detected in the time domain.


The method may further include determining a spectrogram time-spread range around each of the audio events, and using the time-spread ranges for event qualifier computation.


Using the time-spread ranges for event qualifier computation may include counting spectral event vector elements positioned in the spectrogram time-spread range around the audio events detected in the time domain, recording the spectral event vector elements as qualifiers for each of the audio events, counting a number of spectrogram magnitude peaks within a time spread range to obtain a count, and generating a revised event vector containing only time-domain event points at which the count is below a threshold.


Using the time-spread ranges for event qualifier computation may further include comparing the qualifier associated with each of the audio events detected in the time domain, against a threshold, suppressing all time-domain detected events with a qualifier above the threshold, and generating a qualifier revised event vector.


The method may further include processing the qualifier revised event vector according to a schedule of minimal time distances between adjacent events, and suppressing undesirable, redundant audio events to obtain a final desired event timeline for the event.


The method may further include automatically appending at least one of the audio events, the time index, and an indicator of the occurrence to metadata associated with the highlight.


In at least one embodiment, the occurrence may be associated with a short audio burst.


In at least one embodiment, the event may be a sporting event. For example, the event may be a tennis game, and the occurrence may be a tennis serve.


Further details and variations are described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, together with the description, illustrate several embodiments. One skilled in the art will recognize that the particular embodiments illustrated in the drawings are merely exemplary, and are not intended to limit scope.



FIG. 1A is a block diagram depicting a hardware architecture according to a client/server embodiment, wherein event content is provided via a network-connected content provider.



FIG. 1B is a block diagram depicting a hardware architecture according to another client/server embodiment, wherein event content is stored at a client-based storage device.



FIG. 1C is a block diagram depicting a hardware architecture according to a standalone embodiment.



FIG. 1D is a block diagram depicting an overview of a system architecture, according to one embodiment.



FIG. 2 is a schematic block diagram depicting examples of data structures that may be incorporated into the audio data, user data, and highlight data of FIGS. 1A, B, and 1C, according to one embodiment.



FIG. 3A depicts an example of an audio waveform graph showing exemplary occurrences of high-energy audio events (e.g., tennis serves) in an audio signal extracted from sporting event television programming content in a time domain, according to one embodiment.



FIG. 3B depicts an example of a spectrogram corresponding to the audio waveform graph of FIG. 3A, in a time-frequency domain, according to one embodiment.



FIG. 4 is a flowchart depicting a method for pre-processing an audio signal in preparation for identifying boundaries for television programming content highlight generation, according to one embodiment.



FIG. 5 is a flowchart depicting a method for analyzing audio data, such as an audio stream, in the time domain to detect audio events, according to one embodiment.



FIG. 6 is a flowchart depicting a method for analyzing an audio spectrogram for high-energy spectral magnitude peaks, according to one embodiment.



FIG. 7 is a flowchart depicting a method for joint analysis of audio events detected in the time domain and spectral event vector elements obtained by analysis of a spectrogram, according to one embodiment.



FIG. 8 is a flowchart depicting a method for further selection of desired audio events via removal of event vector elements spaced below a minimum time distance between consecutive audio events, according to one embodiment.





DETAILED DESCRIPTION
Definitions

The following definitions are presented for explanatory purposes only, and are not intended to limit scope.

    • Event: For purposes of the discussion herein, the term “event” (not “audio event”) refers to a game, session, match, series, performance, program, concert, and/or the like, or portion thereof (such as an act, period, quarter, half, inning, scene, chapter, or the like). An event may be a sporting event, entertainment event, a specific performance of a single individual or subset of individuals within a larger population of participants in an event, or the like. Examples of non-sporting events include television shows, breaking news, socio-political incidents, natural disasters, movies, plays, radio shows, podcasts, audiobooks, online content, musical performances, and/or the like. An event can be of any length. For illustrative purposes, the technology is often described herein in terms of sporting events; however, one skilled in the art will recognize that the technology can be used in other contexts as well, including highlight shows for any audiovisual, audio, visual, graphics-based, interactive, non-interactive, or text-based content. Thus, the use of the term “sporting event” and any other sports-specific terminology in the description is intended to be illustrative of one possible embodiment, but is not intended to restrict the scope of the described technology to that one embodiment. Rather, such terminology should be considered to extend to any suitable non-sporting context as appropriate to the technology. For ease of description, the term “event” is also used to refer to an account or representation of an event, such as an audiovisual recording of an event, or any other content item that includes an accounting, description, or depiction of an event.
    • Highlight: An excerpt or portion of an event, or of content associated with an event that is deemed to be of particular interest to one or more users. A highlight can be of any length. In general, the techniques described herein provide mechanisms for identifying and presenting a set of customized highlights (which may be selected based on particular characteristics and/or preferences of the user) for any suitable event. “Highlight” can also be used to refer to an account or representation of a highlight, such as an audiovisual recording of a highlight, or any other content item that includes an accounting, description, or depiction of a highlight. Highlights need not be limited to depictions of events themselves, but can include other content associated with an event. For example, for a sporting event, highlights can include in-game audio/video, as well as other content such as pre-game, in-game, and post-game interviews, analysis, commentary, and/or the like. Such content can be recorded from linear television (for example, as part of the audiovisual stream depicting the event itself), or retrieved from any number of other sources. Different types of highlights can be provided, including for example, occurrences (plays), strings, possessions, and sequences, all of which are defined below. Highlights need not be of fixed duration, but may incorporate a start offset and/or end offset, as described below.
    • Clip: A portion of an audio, visual, or audiovisual representation of an event. A clip may correspond to or represent a highlight. In many contexts herein, the term “segment” is used interchangeably with “clip”. A clip may be a portion of an audio stream, video stream, or audiovisual stream, or it may be a portion of stored audio, video, or audiovisual content.
    • Content Delineator: One or more video frames that indicate the start or end of a highlight.
    • Occurrence: Something that takes place during an event. Examples include: a goal, a play, a down, a hit, a save, a shot on goal, a basket, a steal, a snap or attempted snap, a near-miss, a fight, a beginning or end of a game, quarter, half, period, or inning, a pitch, a penalty, an injury, a dramatic incident in an entertainment event, a song, a solo, and/or the like. Occurrences can also be unusual, such as a power outage, an incident with an unruly fan, and/or the like. Detection of such occurrences can be used as a basis for determining whether or not to designate a particular portion of an audiovisual stream as a highlight. Occurrences are also referred to herein as “plays”, for ease of nomenclature, although such usage should not be construed to limit scope. Occurrences may be of any length, and the representation of an occurrence may be of varying length. For example, as mentioned above, an extended representation of an occurrence may include footage depicting the period of time just before and just after the occurrence, while a brief representation may include just the occurrence itself. Any intermediate representation can also be provided. In at least one embodiment, the selection of a duration for a representation of an occurrence can depend on user preferences, available time, determined level of excitement for the occurrence, importance of the occurrence, and/or any other factors.
    • Offset: The amount by which a highlight length is adjusted. In at least one embodiment, a start offset and/or end offset can be provided, for adjusting start and/or end times of the highlight, respectively. For example, if a highlight depicts a goal, the highlight may be extended (via an end offset) for a few seconds so as to include celebrations and/or fan reactions following the goal. Offsets can be configured to vary automatically or manually, based for example on an amount of time available for the highlight, importance and/or excitement level of the highlight, and/or any other suitable factors.
    • String: A series of occurrences that are somehow linked or related to one another. The occurrences may take place within a possession (defined below), or may span multiple possessions. The occurrences may take place within a sequence (defined below), or may span multiple sequences. The occurrences can be linked or related because of some thematic or narrative connection to one another, or because one leads to another, or for any other reason. One example of a string is a set of passes that lead to a goal or basket. This is not to be confused with a “text string,” which has the meaning ordinarily ascribed to it in the computer programming arts.
    • Possession: Any time-delimited portion of an event. Demarcation of start/end times of a possession can depend on the type of event. For certain sporting events wherein one team may be on the offensive while the other team is on the defensive (such as basketball or football, for example), a possession can be defined as a time period while one of the teams has the ball. In sports such as hockey or soccer, where puck or ball possession is more fluid, a possession can be considered to extend to a period of time wherein one of the teams has substantial control of the puck or ball, ignoring momentary contact by the other team (such as blocked shots or saves). For baseball, a possession is defined as a half-inning. For football, a possession can include a number of sequences in which the same team has the ball. For other types of sporting events as well as for non-sporting events, the term “possession” may be somewhat of a misnomer, but is still used herein for illustrative purposes. Examples in a non-sporting context may include a chapter, scene, act, or the like. For example, in the context of a music concert, a possession may equate to performance of a single song. A possession can include any number of occurrences.
    • Sequence: A time-delimited portion of an event that includes one continuous time period of action. For example, in a sporting event, a sequence may begin when action begins (such as a face-off, tipoff, or the like), and may end when the whistle is blown to signify a break in the action. In a sport such as baseball or football, a sequence may be equivalent to a play, which is a form of occurrence. A sequence can include any number of possessions, or may be a portion of a possession.
    • Highlight show: A set of highlights that are arranged for presentation to a user. The highlight show may be presented linearly (such as an audiovisual stream), or in a manner that allows the user to select which highlight to view and in which order (for example by clicking on links or thumbnails). Presentation of highlight show can be non-interactive or interactive, for example allowing a user to pause, rewind, skip, fast-forward, communicate a preference for or against, and/or the like. A highlight show can be, for example, a condensed game. A highlight show can include any number of contiguous or noncontiguous highlights, from a single event or from multiple events, and can even include highlights from different types of events (e.g. different sports, and/or a combination of highlights from sporting and non-sporting events).
    • User/viewer: The terms “user” or “viewer” interchangeably refer to an individual, group, or other entity that is watching, listening to, or otherwise experiencing an event, one or more highlights of an event, or a highlight show. The terms “user” or “viewer” can also refer to an individual, group, or other entity that may at some future time watch, listen to, or otherwise experience either an event, one or more highlights of an event, or a highlight show. The term “viewer” may be used for descriptive purposes, although the event need not have a visual component, so that the “viewer” may instead be a listener or any other consumer of content.
    • Excitement level: A measure of how exciting or interesting an event or highlight is expected to be for a particular user or for users in general. Excitement levels can also be determined with respect to a particular occurrence or player. Various techniques for measuring or assessing excitement level are discussed in the above-referenced related applications. As discussed, excitement level can depend on occurrences within the event, as well as other factors such as overall context or importance of the event (playoff game, pennant implications, rivalries, and/or the like). In at least one embodiment, an excitement level can be associated with each occurrence, string, possession, or sequence within an event. For example, an excitement level for a possession can be determined based on occurrences that take place within that possession. Excitement level may be measured differently for different users (e.g. a fan of one team vs. a neutral fan), and it can depend on personal characteristics of each user.
    • Metadata: Data pertaining to and stored in association with other data. The primary data may be media such as a sports program or highlight.
    • Video data. A length of video, which may be in digital or analog form. Video data may be stored at a local storage device, or may be received in real-time from a source such as a TV broadcast antenna, a cable network, or a computer server, in which case it may also be referred to as a “video stream”. Video data may or may not include an audio component; if it includes an audio component, it may be referred to as “audiovisual data” or an “audiovisual stream”.
    • Audio data. A length of audio, which may be in digital or analog form. Audio data may be the audio component of audiovisual data or an audiovisual stream, and may be isolated by extracting the audio data from the audiovisual data. Audio data may be stored at a local storage, or may be received in real-time from a source such as a TV broadcast antenna, a cable network, or a computer server, in which case it may also be referred to as an “audio stream”.
    • Stream. An audio stream, video stream, or audiovisual stream.
    • Time index. An indicator of a time, within audio data, video data, or audiovisual data, at which an audio event occurs or that otherwise pertains to a designated segment, such as a highlight.
    • Spectrogram. A visual representation of the spectrum of frequencies of a signal, such as an audio stream, as it varies with time. A spectrogram may be, for example, a two-dimensional time-frequency representation of audio signal derived by applying a Short Time Fourier Transform (STFT) to the audio signal.
    • Analysis window. A designated subset of video data, audio data, audiovisual data, spectrogram, stream, or otherwise processed version of a stream or data, at which one step of analysis is to be focused. The audio data, video data, audiovisual data, or spectrogram may be analyzed, for example, in segments using a moving analysis window and/or a series of analysis windows covering different segments of the data or spectrogram.
    • Boundary. A demarcation separating one audio, video, and/or audiovisual segment from another. A boundary may be the beginning or end of a segment such as a highlight of audiovisual content such as a television broadcast. A boundary may be tentative (i.e., preliminary and/or intended for subsequent replacement) or final. In some embodiments, a highlight may first be identified with tentative boundaries. Audio analysis may be performed to identify audio events that are then used to locate (in time) the final boundaries of the highlight.
    • Audio Event. A portion of an audio, video, or audiovisual stream representing an audible occurrence within an event. An audio event may be used to locate a boundary of a highlight, and may optionally include sounds of short duration and high intensity. One exemplary audio event is the sound made by a tennis racket hitting a tennis ball during a tennis serve.


Overview

According to various embodiments, methods and systems are provided for automatically creating time-based metadata associated with highlights of television programming of a sporting event or the like, wherein such video highlights and associated metadata are generated synchronously with the television broadcast of a sporting event or the like, or while the sporting event video content is being streamed via a video server from a storage device after the television broadcast of a sporting event.


In at least one embodiment, an automated video highlights and associated metadata generation application may receive a live broadcast audiovisual stream, or a digital audiovisual stream received via a computer server. The application may then process an extracted audio signal, for example using digital signal processing techniques, to detect short bursts of high energy audio events, such as tennis ball hits in a tennis match or the like.


Interactive television applications may enable timely, relevant presentation of highlighted television programming content to users watching television programming either on a primary television display, or on a secondary display such as tablet, laptop or a smartphone. In at least one embodiment, a set of video clips representing television broadcast content highlights may be generated and/or stored in real-time, along with a database containing time-based metadata describing, in more detail, the occurrences presented by the highlight video clips.


In various embodiments, the metadata accompanying the video clips can be any information such as textual information, images, and/or any type of audiovisual data. Metadata may be associated with in-game and/or post-game video content highlights, and may present occurrences detected by real-time processing of audio signals extracted from sporting event television programming. Event information may be detected by analyzing an audio signal to identify key occurrences in the game, such as important plays. Audio events indicating such key occurrences may include, for example, tennis ball hits in tennis matches, or a cheering crowd noise following an audio event, audio announcements, music, and/or the like. In various embodiments, the system and method described herein enable automatic metadata generation and video highlight processing, wherein boundaries of audio events (for example, the beginning or end of an audio event) can be detected and determined by analyzing a digital audio stream.


In at least one embodiment, a system receives a broadcast audiovisual stream, or other audiovisual content obtained via a computer server, extracts an audio portion of the audiovisual stream or content, and processes the extracted audio signal using digital signal processing techniques, so as to detect distinct high-energy audio bursts, such as for example those associated with tennis ball hits in tennis games. Such processing can include, for example, any or all of the following steps:

    • Receiving, decoding, and/or resampling a received compressed audio signal (for example, to a desired sampling rate);
    • Pre-filtering the audio signal for noise reduction, click removal, and/or audience noise reduction through use of any of a number of interchangeable digital filtering stages;
    • Performing time-domain analysis on the audio signal;
    • Generating a time-frequency spectrogram for the audio signal;
    • Performing a time-frequency analysis of the audio signal;
    • Detecting audio events indicative of exciting occurrences in successive stages, with time-domain detection results fed into a spectral neighborhood analysis;
    • Two-level filtering of the audio signal with back adjustments of time intervals between audio events;
    • Analyzing a distinct spectral spread in the audio time-frequency representation at audio events pointed to by time-domain analysis to generate a unique qualifier for time-domain detected audio events;
    • Analyzing the qualifier to reduce false positive detections due to undesirable audio peaking attributed to audience noise such as clapping and cheering;
    • Adjusting audio event positions in accordance with a schedule of minimal time distances between consecutive audio events; and
    • Automatically appending the extracted information regarding high-energy audio bursts to metadata associated with video highlights for the event.


In at least one embodiment, an initial audio signal analysis is performed in the time domain, so as to detect short bursts of high-energy audio and generate of audio events representing potential exciting occurrences. An analyzing time window of a selected size may be used to compute an indicator of the average level of audio energy at overlapping window positions. Subsequently, a row event vector may be populated with indicator/position pairs.


In at least one embodiment, time-domain detected audio events are revised by considering spectral characteristics of the audio signal in the neighborhood of audio events. A spectrogram may be constructed for the analyzed audio signal, and a 2-D diamond-shaped time-frequency area filtering process may be performed to detect and extract pronounced spectral magnitude peaks. A spectral event vector may be populated with magnitude and time-frequency coordinates for each selected peak.


In at least one embodiment, one or more spectrogram time-spread range(s) are constructed around audio event time positions obtained in the time-domain analysis. By counting and recording spectral event vector peaks in a particular time spread range, an audio event qualifier may be established for each time-domain detected audio event. In at least one embodiment, audio event time positions having an audio event qualifier value below a certain threshold are accepted as viable audio event points, and any remaining audio event time positions are suppressed. In general, qualification of the time-domain detected audio events can be performed based on spectral analysis of each individual time range around a detected audio event, or it can be based on a spectral analysis of a combination of time ranges around a detected audio event.


In at least one embodiment, the spectrogram-based revised (qualified) audio event time positions are processed by considering a schedule of minimal time distances between consecutive audio events, and by subsequent removal of undesirable, redundant audio events, to obtain a final desired audio event timeline for the game.


In various embodiments, any or all of the above-described techniques can be applied singly or in any suitable combination.


In various embodiments, a method for identifying a boundary of a highlight may include some or all of the following steps:

    • Capturing audiovisual content, such as television programming content or an audiovisual stream;
    • Extracting and processing a digital audio stream from the audiovisual content;
    • Performing time-domain analysis of the audio signal for detection of distinct high-energy audio events;
    • Generating a time-frequency audio spectrogram;
    • Performing joined time-frequency analysis of the audio signal to detect pronounced magnitude peaks;
    • Generating a qualifier for the time-domain detected audio events based on analysis of the spectral neighborhood of the time-domain detected audio events;
    • Revising the time-domain generated audio events based on the qualifier value; and
    • Performing audio event distance filtering by imposing minimum intervals between consecutive audio events.


In addition, initial pre-processing of decoded audio stream can be performed for at least one of noise reduction, click removal, and audience noise reduction, with a choice of interchangeable digital filtering stages.


In at least one embodiment, independent pre-processing may be performed to analyze the audio signal in the time domain and/or the frequency domain. Audio signal analysis may be performed in the time domain for generating initial indicators of occurrences of distinct high-energy audio events. An analyzing time window size may be selected together with a size of an analysis window overlap region. The analyzing time window may be advanced along the audio signal. At each window position, a normalized magnitude for window samples may be computed, followed by expansion to full-scale dynamic range.


An average sample magnitude may be calculated for the analysis window, and a log magnitude indicator may be generated at each analysis window position. A time-domain event vector may be populated with computed pairs of analysis window indicator and associated position.


A spectrogram may be constructed for the analysis of audio signal in the frequency domain. A 2-D diamond-shaped spectrogram area filter may be constructed for detection and selection of pronounced time-frequency magnitude peaks. The area filter may be advanced along the time and frequency spectrogram axes, and at each time-frequency position, an area filter central peak magnitude may be checked against all remaining peak magnitudes. In at least one embodiment, the area filter central peak magnitude is retained only if it is greater than all other area filter peak magnitudes. The spectral event vector may be populated with all retained area filter central peak magnitudes.


A joint analysis of audio events detected in the time domain and in the time-frequency domain may be performed. A spectrogram time-spread range around selected time-domain audio events may be determined, and may be used for audio event qualifier computation. Spectral event vector elements positioned in the spectrogram time-spread range at time-domain detected points may be counted and recorded as qualifiers for time-domain detected audio event. The qualifier associated with each time-domain detected audio event may be compared against a threshold, and all time-domain detected audio events with a qualifier above the threshold may be suppressed.


A qualifier revised event vector may be generated. The qualifier revised event vector may further be processed according to a schedule of minimal time distances between adjacent audio events. By subsequent suppression of undesirable, redundant audio events, a final desired audio event timeline for the game may be obtained. The audio event information may further be processed and automatically appended to metadata associated with the sporting event television programming highlights.


System Architecture

According to various embodiments, the system can be implemented on any electronic device, or set of electronic devices, equipped to receive, store, and present information. Such an electronic device may be, for example, a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box (STB), game system, wearable device, consumer electronic device, and/or the like.


Although the system is described herein in connection with an implementation in particular types of computing devices, one skilled in the art will recognize that the techniques described herein can be implemented in other contexts, and indeed in any suitable device capable of receiving and/or processing user input, and presenting output to the user. Accordingly, the following description is intended to illustrate various embodiments by way of example, rather than to limit scope.


Referring now to FIG. 1A, there is shown a block diagram depicting hardware architecture of a system 100 for automatically analyzing audio data to detect an audio event to designate a boundary of a highlight, according to a client/server embodiment. Event content, such as an audiovisual stream including audio content, may be provided via a network-connected content provider 124. An example of such a client/server embodiment is a web-based implementation, wherein each of one or more client devices 106 runs a browser or app that provides a user interface for interacting with content from various servers 102, 114, 116, including data provider(s) servers 122, and/or content provider(s) servers 124, via communications network 104. Transmission of content and/or data in response to requests from client device 106 can take place using any known protocols and languages, such as Hypertext Markup Language (HTML), Java, Objective C, Python, JavaScript, and/or the like.


Client device 106 can be any electronic device, such as a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, and/or the like. In at least one embodiment, client device 106 has a number of hardware components well known to those skilled in the art. Input device(s) 151 can be any component(s) that receive input from user 150, including, for example, a handheld remote control, keyboard, mouse, stylus, touch-sensitive screen (touchscreen), touchpad, gesture receptor, trackball, accelerometer, five-way switch, microphone, or the like. Input can be provided via any suitable mode, including for example, one or more of: pointing, tapping, typing, dragging, gesturing, tilting, shaking, and/or speech. Display screen 152 can be any component that graphically displays information, video, content, and/or the like, including depictions of events, highlights, and/or the like. Such output may also include, for example, audiovisual content, data visualizations, navigational elements, graphical elements, queries requesting information and/or parameters for selection of content, metadata, and/or the like. In at least one embodiment, where only some of the desired output is presented at a time, a dynamic control, such as a scrolling mechanism, may be available via input device(s) 151 to choose which information is currently displayed, and/or to alter the manner in which the information is displayed.


Processor 157 can be a conventional microprocessor for performing operations on data under the direction of software, according to well-known techniques. Memory 156 can be random-access memory, having a structure and architecture as are known in the art, for use by processor 157 in the course of running software for performing the operations described herein. Client device 106 can also include local storage (not shown), which may be a hard drive, flash drive, optical or magnetic storage device, web-based (cloud-based) storage, and/or the like.


Any suitable type of communications network 104, such as the Internet, a television network, a cable network, a cellular network, and/or the like can be used as the mechanism for transmitting data between client device 106 and various server(s) 102, 114, 116 and/or content provider(s) 124 and/or data provider(s) 122, according to any suitable protocols and techniques. In addition to the Internet, other examples include cellular telephone networks, EDGE, 3G, 4G, long term evolution (LTE), Session Initiation Protocol (SIP), Short Message Peer-to-Peer protocol (SMPP), SS7, Wi-Fi, Bluetooth, ZigBee, Hypertext Transfer Protocol (HTTP), Secure Hypertext Transfer Protocol (SHTTP), Transmission Control Protocol/Internet Protocol (TCP/IP), and/or the like, and/or any combination thereof. In at least one embodiment, client device 106 transmits requests for data and/or content via communications network 104, and receives responses from server(s) 102, 114, 116 containing the requested data and/or content.


In at least one embodiment, the system of FIG. 1A operates in connection with sporting events; however, the teachings herein apply to nonsporting events as well, and it is to be appreciated that the technology described herein is not limited to application to sporting events. For example, the technology described herein can be utilized to operate in connection with a television show, movie, news event, game show, political action, business show, drama, and/or other episodic content, or for more than one such event.


In at least one embodiment, system 100 identifies highlights of audiovisual content depicting an event, such as a broadcast of a sporting event, by analyzing audio content representing the event. This analysis may be carried out in real-time. In at least one embodiment, system 100 includes one or more web server(s) 102 coupled via a communications network 104 to one or more client devices 106. Communications network 104 may be a public network, a private network, or a combination of public and private networks such as the Internet. Communications network 104 can be a LAN, WAN, wired, wireless and/or combination of the above. Client device 106 is, in at least one embodiment, capable of connecting to communications network 104, either via a wired or wireless connection. In at least one embodiment, client device may also include a recording device capable of receiving and recording events, such as a DVR, PVR, or other media recording device. Such recording device can be part of client device 106, or can be external; in other embodiments, such recording device can be omitted. Although FIG. 1A shows one client device 106, system 100 can be implemented with any number of client device(s) 106 of a single type or multiple types.


Web server(s) 102 may include one or more physical computing devices and/or software that can receive requests from client device(s) 106 and respond to those requests with data, as well as send out unsolicited alerts and other messages. Web server(s) 102 may employ various strategies for fault tolerance and scalability such as load balancing, caching and clustering. In at least one embodiment, web server(s) 102 may include caching technology, as known in the art, for storing client requests and information related to events.


Web server(s) 102 may maintain, or otherwise designate, one or more application server(s) 114 to respond to requests received from client device(s) 106. In at least one embodiment, application server(s) 114 provide access to business logic for use by client application programs in client device(s) 106. Application server(s) 114 may be co-located, co-owned, or co-managed with web server(s) 102. Application server(s) 114 may also be remote from web server(s) 102. In at least one embodiment, application server(s) 114 interact with one or more analytical server(s) 116 and one or more data server(s) 118 to perform one or more operations of the disclosed technology.


One or more storage devices 153 may act as a “data store” by storing data pertinent to operation of system 100. This data may include, for example, and not by way of limitation, audio data 154 representing one or more audio signals. Audio data 154 may, for example, be extracted from audiovisual streams or stored audiovisual content representing sporting events and/or other events.


Audio data 154 can include any information related to audio embedded in the audiovisual stream, such as an audio stream that accompanies video imagery, processed versions of the audiovisual stream, and metrics and/or vectors related to audio data 154, such as time indices, durations, magnitudes, and/or other parameters of events. User data 155 can include any information describing one or more users 150, including for example, demographics, purchasing behavior, audiovisual stream viewing behavior, interests, preferences, and/or the like. Highlight data 164 may include highlights, highlight identifiers, time indicators, categories, excitement levels, and other data pertaining to highlights. Audio data 154, user data 155, and highlight data 164 will be described in detail subsequently.


Notably, many components of system 100 may be, or may include, computing devices. Such computing devices may each have an architecture similar to that of client device 106, as shown and described above. Thus, any of communications network 104, web servers 102, application servers 114, analytical servers 116, data providers 122, content providers 124, data servers 118, and storage devices 153 may include one or more computing devices, each of which may optionally have an input device 151, display screen 152, memory 156, and/or a processor 157, as described above in connection with client devices 106.


In an exemplary operation of system 100, one or more users 150 of client devices 106 view content from content providers 124, in the form of audiovisual streams. The audiovisual streams may show events, such as sporting events. The audiovisual streams may be digital audiovisual streams that can readily be processed with known computer vision techniques.


As the audiovisual streams are displayed, one or more components of system 100, such as client devices 106, web servers 102, application servers 114, and/or analytical servers 116, may analyze the audiovisual streams, identify highlights within the audiovisual streams, and/or extract metadata from the audiovisual stream, for example, from an audio component of the stream. This analysis may be carried out in response to receipt of a request to identify highlights and/or metadata for the audiovisual stream. Alternatively, in another embodiment, highlights and/or metadata may be identified without a specific request having been made by user 150. In yet another embodiment, the analysis of audiovisual streams can take place without an audiovisual stream being displayed.


In at least one embodiment, user 150 can specify, via input device(s) 151 at client device 106, certain parameters for analysis of audio data 154 (such as, for example, what event/games/teams to include, how much time user 150 has available to view the highlights, what metadata is desired, and/or any other parameters). User preferences can also be extracted from storage, such as from user data 155 stored in one or more storage devices 153, so as to customize analysis of audio data 154 without necessarily requiring user 150 to specify preferences. In at least one embodiment, user preferences can be determined based on observed behavior and actions of user 150, for example, by observing website visitation patterns, television watching patterns, music listening patterns, online purchases, previous highlight identification parameters, highlights and/or metadata actually viewed by user 150, and/or the like.


Additionally, or alternatively, user preferences can be retrieved from previously stored preferences that were explicitly provided by user 150. Such user preferences may indicate which teams, sports, players, and/or types of events are of interest to user 150, and/or they may indicate what type of metadata or other information related to highlights, would be of interest to user 150. Such preferences can therefore be used to guide analysis of the audiovisual stream to identify highlights and/or extract metadata for the highlights.


Analytical server(s) 116, which may include one or more computing devices as described above, may analyze live and/or recorded feeds of play-by-play statistics related to one or more events from data provider(s) 122. Examples of data provider(s) 122 may include, but are not limited to, providers of real-time sports information such as STATS™, Perform (available from Opta Sports of London, UK), and SportRadar of St. Gallen, Switzerland. In at least one embodiment, analytical server(s) 116 generate different sets of excitement levels for events; such excitement levels can then be stored in conjunction with highlights identified by or received by system 100 according to the techniques described herein.


Application server(s) 114 may analyze the audiovisual stream to identify the highlights and/or extract the metadata. Additionally, or alternatively, such analysis may be carried out by client device(s) 106. The identified highlights and/or extracted metadata may be specific to a user 150; in such case, it may be advantageous to identify the highlights in client device 106 pertaining to a particular user 150. Client device 106 may receive, retain, and/or retrieve the applicable user preferences for highlight identification and/or metadata extraction, as described above. Additionally, or alternatively, highlight generation and/or metadata extraction may be carried out globally (i.e., using objective criteria applicable to the user population in general, without regard to preferences for a particular user 150). In such a case, it may be advantageous to identify the highlights and/or extract the metadata in application server(s) 114.


Content that facilitates highlight identification, audio analysis, and/or metadata extraction may come from any suitable source, including from content provider(s) 124, which may include websites such as YouTube, MLB.com, and the like; sports data providers; television stations; client- or server-based DVRs; and/or the like. Alternatively, content can come from a local source such as a DVR or other recording device associated with (or built into) client device 106. In at least one embodiment, application server(s) 114 generate a customized highlight show, with highlights and metadata, available to user 150, either as a download, or streaming content, or on-demand content, or in some other manner.


As mentioned above, it may be advantageous for user-specific highlight identification, audio analysis, and/or metadata extraction to be carried out at a particular client device 106 associated with a particular user 150. Such an embodiment may avoid the need for video content or other high-bandwidth content to be transmitted via communications network 104 unnecessarily, particularly if such content is already available at client device 106.


For example, referring now to FIG. 1B, there is shown an example of a system 160 according to an embodiment wherein at least some of audio data 154 and highlight data 164 are stored at client-based storage device 158, which may be any form of local storage device available to client device 106. An example is a DVR on which events may be recorded, such as for example video content for a complete sporting event. Alternatively, client-based storage device 158 can be any magnetic, optical, or electronic storage device for data in digital form; examples include flash memory, magnetic hard drive, CD-ROM, DVD-ROM, or other device integrated with client device 106 or communicatively coupled with client device 106. Based on the information provided by application server(s) 114, client device 106 may extract highlights and/or metadata from audiovisual content (for example, including audio data 154) stored at client-based storage device 158 and store the highlights and/or metadata as highlight data 164 without having to retrieve other content from a content provider 124 or other remote source. Such an arrangement can save bandwidth, and can usefully leverage existing hardware that may already be available to client device 106.


Returning to FIG. 1A, in at least one embodiment, application server(s) 114 may identify different highlights and/or extract different metadata for different users 150, depending on individual user preferences and/or other parameters. The identified highlights and/or extracted metadata may be presented to user 150 via any suitable output device, such as display screen 152 at client device 106. If desired, multiple highlights may be identified and compiled into a highlight show, along with associated metadata. Such a highlight show may be accessed via a menu, and/or assembled into a “highlight reel,” or set of highlights, that plays for user 150 according to a predetermined sequence. User 150 can, in at least one embodiment, control highlight playback and/or delivery of the associated metadata via input device(s) 151, for example to:

    • select particular highlights and/or metadata for display;
    • pause, rewind, fast-forward;
    • skip forward to the next highlight;
    • return to the beginning of a previous highlight within the highlight show; and/or
    • perform other actions.


Additional details on such functionality are provided in the above-cited related U.S. patent applications.


In at least one embodiment, one or more data server(s) 118 are provided. Data server(s) 118 may respond to requests for data from any of server(s) 102, 114, 116, for example to obtain or provide audio data 154, user data 155, and/or highlight data 164. In at least one embodiment, such information can be stored at any suitable storage device 153 accessible by data server 118, and can come from any suitable source, such as from client device 106 itself, content provider(s) 124, data provider(s) 122, and/or the like.


Referring now to FIG. 1C, there is shown a system 180 according to an alternative embodiment wherein system 180 is implemented in a stand-alone environment. As with the embodiment shown in FIG. 1B, at least some of audio data 154, user data 155, and highlight data 164 may be stored at a client-based storage device 158, such as a DVR or the like. Alternatively, client-based storage device 158 can be flash memory or a hard drive, or other device integrated with client device 106 or communicatively coupled with client device 106.


User data 155 may include preferences and interests of user 150. Based on such user data 155, system 180 may extract highlights and/or metadata to present to user 150 in the manner described herein. Additionally, or alternatively, highlights and/or metadata may be extracted based on objective criteria that are not based on information specific to user 150.


Referring now to FIG. 1D, there is shown an overview of a system 190 with architecture according to an alternative embodiment. In FIG. 1D, system 190 includes a broadcast service such as content provider(s) 124, a content receiver in the form of client device 106 such as a television set with a STB, a video server such as analytical server(s) 116 capable of ingesting and streaming audiovisual content, such as television programming content, and/or other client devices 106 such as a mobile device and a laptop, which are capable of receiving and processing audiovisual content, such as television programming content, all connected via a network such as communications network 104. A client-based storage device 158, such as a DVR, may be connected to any of client devices 106 and/or other components, and may store an audiovisual stream, highlights, highlight identifiers, and/or metadata to facilitate identification and presentation of highlights and/or extracted metadata via any of client devices 106.


The specific hardware architectures depicted in FIGS. 1A, 1B, 1C, and 1D are merely exemplary. One skilled in the art will recognize that the techniques described herein can be implemented using other architectures. Many components depicted therein are optional and may be omitted, consolidated with other components, and/or replaced with other components.


In at least one embodiment, the system can be implemented as software written in any suitable computer programming language, whether in a standalone or client/server architecture. Alternatively, it may be implemented and/or embedded in hardware.


Data Structures


FIG. 2 is a schematic block diagram depicting examples of data structures that may be incorporated into audio data 154, user data 155, and highlight data 164, according to one embodiment.


As shown, audio data 154 may include a record for each of a plurality of audio streams 200. For illustrative purposes, audio streams 200 are depicted, although the techniques described herein can be applied to any type of audio data 154 or content, whether streamed or stored. The records of audio data 154 may include, in addition to the audio streams 200, other data produced pursuant to, or helpful for, analysis of the audio streams 200. For example, audio data 154 may include, for each audio stream 200, a spectrogram 202, one or more analysis windows 204, vectors 206, and time indices 208.


Each audio stream 200 may reside in the time domain. Each spectrogram 202 may be computed for the corresponding audio stream 200 in the time-frequency domain. Spectrogram 202 may be analyzed to more easily locate audio events.


Analysis windows 204 may be designations of predetermined time and/or frequency intervals of the spectrograms 202. Computationally, a single moving (i.e., “sliding”) analysis window 204 may be used to analyze a spectrogram 202, or a series of displaced (optionally overlapping) analysis windows 204 may be used.


Vectors 206 may be data sets containing interim and/or final results from analysis of audio stream 200 and/or corresponding spectrogram 202.


Time indices 208 may indicate times, within audio stream 200 (and/or the audiovisual stream from which audio stream 200 is extracted) at which key audio events occur. For example, time indices 208 may be the times, within the audiovisual content, at which the audio events begin, are centered, or end. Thus, time indices 208 may indicate the beginnings or ends of particularly interesting parts of the audiovisual stream, such as, in the context of a sporting event, important or impressive plays, or plays that may be of particular interest to a particular user 150.


As further shown, user data 155 may include records pertaining to users 150, each of which may include demographic data 212, preferences 214, viewing history 216, and purchase history 218 for a particular user 150.


Demographic data 212 may include any type of demographic data, including but not limited to age, gender, location, nationality, religious affiliation, education level, and/or the like.


Preferences 214 may include selections made by user 150 regarding his or her preferences. Preferences 214 may relate directly to highlight and metadata gathering and/or viewing, or may be more general in nature. In either case, preferences 214 may be used to facilitate identification and/or presentation of the highlights and metadata to user 150.


Viewing history 216 may list television programs, audiovisual streams, highlights, web pages, search queries, sporting events, and/or other content retrieved and/or viewed by user 150.


Purchase history 218 may list products or services purchased or requested by user 150.


As further shown, highlight data 164 may include records for j highlights 220, each of which may include an audiovisual stream 222 and/or metadata 224 for a particular highlight 220.


Audiovisual stream 222 may include audio and/or video depicting highlight 220, which may be obtained from one or more audiovisual streams of one or more events (for example, by cropping the audiovisual stream to include only audiovisual stream 222 pertaining to highlight 220). Within metadata 224, identifier 223 may include time indices (such as time indices 208 of audio data 154) and/or other indicia that indicate where highlight 220 resides within the audiovisual stream of the event from which it is obtained.


In some embodiments, the record for each of highlights 220 may contain only one of audiovisual stream 222 and identifier 223. Highlight playback may be carried out by playing audiovisual stream 222 for user 150, or by using identifier 223 to play only the highlighted portion of the audiovisual stream for the event from which highlight 220 is obtained. Storage of identifier 223 is optional; in some embodiments, identifier 223 may only be used to extract audiovisual stream 222 for highlight 220, which may then be stored in place of identifier 223. In either case, time indices 208 for highlight 220 may be extracted from audio data 154 and stored, at least temporarily, as metadata 224 that is either appended to highlight 220, or to the audiovisual stream from which audio data 154 and highlight 220 are obtained. In some embodiments, time indices 208 may be stored as boundaries 232 of identifier 223.


In addition to or in the alternative to identifier 223, metadata 224 may include information about highlight 220, such as the event date, season, and groups or individuals involved in the event or the audiovisual stream from which highlight 220 was obtained, such as teams, players, coaches, anchors, broadcasters, and fans, and/or the like. Among other information, metadata 224 for each highlight 220 may include a phase 226, clock 227, score 228, a frame number 229, and/or an excitement level 230.


Phase 226 may be the phase of the event pertaining to highlight 220. More particularly, phase 226 may be the stage of a sporting event in which the start, middle, and/or end of highlight 220 resides. For example, phase 226 may be “third quarter,” “second inning,” “bottom half,” or the like.


Clock 227 may be the game clock pertaining to highlight 220. More particularly, clock 227 may be the state of the game clock at the start, middle, and/or end of highlight 220. For example, clock 227 may be “15:47” for a highlight 220 that begins, ends, or straddles the period of a sporting event at which fifteen minutes and forty-seven seconds are displayed on the game clock.


Score 228 may be the game score pertaining to highlight 220. More particularly, score 228 may be the score at the beginning, end, and/or middle of highlight 220. For example, score 228 may be “45-38,” “7-0,” “30-love,” or the like.


Frame number 229 may be the number of the video frame, within the audiovisual stream from which highlight 220 is obtained, or audiovisual stream 222 pertaining to highlight 220, that relates to the start, middle, and/or end of highlight 220.


Excitement level 230 may be a measure of how exciting or interesting an event or highlight is expected to be for a particular user 150, or for users in general. In at least one embodiment, excitement level 230 may be computed as indicated in the above-referenced related applications. Additionally, or alternatively, excitement level 230 may be determined, at least in part, by analysis of audio data 154, which may be a component that is extracted from audiovisual stream 222 and/or audio stream 200. For example, audio data 154 that contains higher levels of crowd noise, announcements, and/or up-tempo music may be indicative of a high excitement level 230 for associated highlight 220. Excitement level 230 need not be static for a highlight 220, but may instead change over the course of highlight 220. Thus, system 100 may be able to further refine highlights 220 to show a user only portions that are above a threshold excitement level 230.


The data structures set forth in FIG. 2 are merely exemplary. Those of skill in the art will recognize that some of the data of FIG. 2 may be omitted or replaced with other data in the performance of highlight identification and/or metadata extraction. Additionally, or alternatively, data not specifically shown in FIG. 2 or described in this application may be used in the performance of highlight identification and/or metadata extraction.


Analysis of Audio Data

In at least one embodiment, the system performs several stages of analysis of audio data 154 in both the time and time-frequency domains, so as to detect bursts of energy (i.e., audio volume) due to occurrences during an audiovisual program, such as a broadcast of a sporting event. One example of such a burst of high-energy audio is a tennis ball hit during the delivery of a tennis serve.


First, a compressed audio signal may be read, decoded, and resampled to a desired sampling rate. Next, a resulting PCM audio signal may be pre-filtered for noise reduction, click removal, and/or audience noise reduction, using any of a number of interchangeable digital filtering stages.


Subsequently, time-domain analysis may be performed on the audio data 154, followed by time-frequency spectrogram generation and a joined time-frequency analysis. Audio event detection may be performed in successive stages, with time-domain detection results fed into the spectral neighborhood analysis. Detection of distinct spectral spread in time-frequency at time positions obtained by time-domain analysis may be applied to reduce false positive detections generated by strong audio energy peaking due to audience noise such as clapping and cheering. Finally, two-level filtering with back adjustments of time intervals between desired audio event detections may be applied to an event vector to obtain a final desired audio event timeline for the entire sporting event.


Time indices 208 before and/or after the high-energy audio bursts may be used as boundaries 232 (for example, beginnings or ends) of highlights 220. In some embodiments, these time indices 208 may be used to identify the actual beginning and/or ending points of highlights 220 that have already been identified (for example, with tentative boundaries 232 which may be tentative beginning and ending points that can subsequently be adjusted based on identification of audio events). Highlights 220 may be extracted and/or identified, within the video stream, for subsequent viewing by the user.



FIG. 3A depicts an example of an audio waveform graph 300 in an audio stream 310 extracted from sporting event television programming content in a time domain, according to one embodiment. Highlighted areas show exemplary audio events 320 of high intensity, such as, for example, tennis ball hits from serves in a tennis match. The amplitude of captured audio may be relatively high and of short duration in the audio events 320, representing relatively high-energy audio bursts within audio stream 310.



FIG. 3B depicts an example of a spectrogram 350 corresponding to audio waveform graph 300 of FIG. 3A, in a time-frequency domain, according to one embodiment. In at least one embodiment, detecting and marking of audio events 320 is performed in the time-frequency domain, and boundaries 232 for highlight generation (not shown in FIGS. 3A and 3B) are presented in real-time to the video highlights and metadata generation application. These boundaries 232 may be used to extract one or more highlights 220 from the video stream, or to determine, with greater accuracy, the beginning and/or ending of each highlight 220 within the video stream so that highlight 220 can be played without inadvertently playing other content representing portions of the video stream that are not part of the highlight. Boundaries 232 may be used, for example, to locate the beginning of a highlight closer to reduce abruptness in transitions from one highlight 220 to another, by helping in determining appropriate transition points in the content, such as at the end of sentences or during pauses in the audio. In some embodiments, boundaries 232 may be incorporated into metadata 224, such as in identifiers 223 that identify the beginning and/or end of a highlight 220, as set forth in the description of FIG. 2.


Audio Data Analysis and Metadata Extraction


FIG. 4 is a flowchart depicting a method 400 for pre-processing of an audio stream 310 in preparation for identifying boundaries 232 for television programming content highlight generation, according to one embodiment. In at least one embodiment, method 400 may be carried out by an application (for example, running on one of client devices 106 and/or analytical servers 116) that receives audio stream 310 and performs on-the-fly processing of audio data 154 for identification of audio events 320, for example, to ascertain boundaries 232 of highlights 220, according to one embodiment. According to method 400, audio data 154 such as audio stream 310 may be processed to detect audio events 320 in audio data 154 by detecting short, high-energy audio bursts in audio, video, and/or audiovisual programming content.


In at least one embodiment, method 400 (and/or other methods described herein) is performed on audio data 154 that has been extracted from audiovisual stream or other audiovisual content. Alternatively, the techniques described herein can be applied to other types of source content. For example, audio data 154 need not be extracted from an audiovisual stream; rather it may be a radio broadcast or other audio depiction of a sporting event or other event.


In at least one embodiment, method 400 (and/or other methods described herein) may be performed by a system such as system 100 of FIG. 1A; however, alternative systems, including but not limited to system 160 of FIG. 1B, system 180 of FIG. 1C, and system 190 of FIG. 1D, may be used in place of system 100 of FIG. 1A. Further, the following description assumes that audio events 320 of high intensity are to be identified; however, it will be understood that different types of audio events 320 may be identified and used to extract metadata and/or identify boundaries 232 of highlights 220 according to methods similar to those described herein.


Method 400 of FIG. 4 may commence with a step 410 in which audio data 154, such as an audio stream 200, is read; if audio data 154 is in a compressed format, it can optionally be decoded. In a step 420, audio data 154 may be resampled to a desired sampling rate.


In a step 430, audio data 154 may be filtered using any of a number of interchangeable digital filtering stages. Digital filtering of decoded audio data 154 may be different for time-domain analysis as compared to digital filtering for the frequency-domain analysis; accordingly, in at least one embodiment, two lines of filter stages are formed and the results are routed to two independent PCM buffers, one for each domain of processing.


Next, in a step 440, an array of spectrograms 202 may be generated for the filtered audio data 154, for example by computing a Short-time Fourier Transform (STFT) on one-second chunks of the filtered audio data 154. Time-frequency coefficients each for spectrogram 202 may be saved in a two-dimensional array for further processing.


In some embodiments, when the desired audio events 320 can be identified without spectral content, step 440 may be omitted, and further analysis may be simplified by performing such analysis on time-domain audio data 154 only. However, in such a case, undesirable audio event 320 detections may occur due to inherently unreliable indicators based on thresholding of audio volume only, without consideration of spectral content pertinent to particular sounds of interest such as a commentator's voice and/or background audience noise; such sounds may be of low volume in the time domain but may have rich spectral content in the time-frequency domain. Thus, as described below, it can be beneficial to perform analysis of the audio stream in both the time domain and time-frequency domain, with subsequent consolidation of detected audio events into a final result.


Accordingly, in further descriptions in connection with FIGS. 5 through 8 below, it is assumed that step 440 has been carried out, and that the audio analysis steps are performed on audio data 154 in the time domain, and on spectrogram 202 corresponding to audio data 154 in the frequency domain (for example, after decoding, resampling, and/or filtering audio data 154 as described above). The final vector of audio events in the audio stream may be formed with a focus on, but is not necessarily limited to, detection of high intensity, low duration audio events 320 in audio data 154, which may pertain to exciting occurrences within highlights, such as the sound of a tennis racket striking a tennis ball.



FIG. 5 is a flowchart depicting a method 500 for analyzing audio data 154, such as audio stream 200, in the time domain to detect the audio events 320, according to one embodiment. First, in a step 510, an analysis window size and overlap region size may be selected. In some embodiments, a time analysis window 204 of size T is selected, where T is a time span value (for example, ˜100 ms). A window overlap region N may exist between adjacent analysis windows 204, and window sliding step S=(T−N) may be computed (typically ˜20 msec).


The method 500 may proceed to a step 520 in which analysis window 204 slides along the audio data 154 in successive steps S along time axes of the audio data 154. In a step 530, at each position of analysis window 204, a normalized magnitude for audio samples is computed. The normalized magnitudes may be expanded to a full-scale dynamic range. In a step 540, an average sample magnitude is calculated for the analysis window, and a log magnitude indicator is generated at each window position. In a step 550, a time event vector may be populated with detected time-domain audio events described by pairs of magnitude-indicator and associated time-position. This time-domain event vector may subsequently be used in an audio event evaluation/revision process invoking audio signal spectral characteristics in the neighborhood of detected audio events.


As mentioned previously, in some embodiments, a spectrogram 202 is constructed for the analyzed audio data 154. In at least one embodiment, 2-D diamond-shaped time-frequency area filtering may be performed to extract pronounced spectral magnitude peaks. A spectral event vector may be populated with magnitude and time-frequency coordinates for each selected peak. Furthermore, a spectrogram time spread range may be constructed around audio event time positions obtained in the above-described time-domain analysis, and selected spectrogram magnitude peaks in this time spread range may be counted and recorded. In this manner, a qualifier may be established for each point in the time-domain events vector. Only audio event time positions with the qualifier below a certain threshold may be accepted as viable audio event points.



FIG. 6 is a flowchart depicting a method 600 for analyzing spectrogram 202 for high-energy spectral magnitude peaks, according to one embodiment. In a step 610, a row spectral event generator may be activated. In a step 620, a 2-D diamond-shaped spectrogram area filter (“area filter”) for pronounced time-frequency magnitude peak selection may be generated. In a step 630, the area filter may be advanced along time and frequency spectrogram axes through all 2D positions. In a step 640, at each time-frequency position, central peak magnitudes may be checked against all remaining peak magnitudes within the area filter. A query 650 may determine whether the central peak magnitude is greater than all other peak magnitudes. In a step 660, all dominating area filter central peaks having maximum magnitude with respect to all remaining area filter peaks may be retained, and a spectral event vector may be populated with their respective magnitudes and time-frequency coordinates. A query 670 determines whether the time-frequency position of the 2-D diamond-shaped area filter is the last position in the spectrogram 202. If not, the method 600 may return to the step 630 and advance the area filter to the next position in the spectrogram 202.


Once all positions of the 2D diamond-shaped area filter have been analyzed, the method 600 may end, and further processing may be taken in subsequent methods (for example, the method 700 of FIG. 7). In such further processing steps, time-domain generated audio events may be revised based on a qualifier computed by considering the density of spectral event vector elements at neighborhoods of the time-domain generated audio events.



FIG. 7 is a flowchart depicting a method 700 for joint analysis of audio events detected in the time domain and the spectral event vector elements obtained by analysis of spectrogram 202, according to one embodiment. Pursuant to method 700, audio event points detected in the time domain may be revised and/or selected for further analysis. In a step 720, a spectrogram time spread range around selected time-domain audio events may be determined. In a step 730, the frequency-domain events vector generated by method 600 may be compared with the time-domain events vector generated by method 500.


In a step 740, spectral event vector elements positioned in the spectrogram time spread range around selected time-domain audio events may be counted and recorded as qualifiers for each audio event. In a query 750, the qualifier associated with each time-domain audio event may be compared against a threshold. In a step 760, all audio events with a qualifier below the threshold may be accepted. Conversely, in a step 770, all audio events with a qualifier above the threshold may be suppressed. Step 770 may remove most of the dense bursts of high-energy audio events with pronounced spectral peaks extending over the entire spectrogram time spread, thus reducing the incidence of false detection of the desired occurrence. For example, step 770 may reduce the likelihood of false tennis serve detection due to audience clapping, chanting, loud music, etc.


In a query 780, method 700 may determine whether the end of the time event vector has been reached. If not, method 700 may return to step 730 and advance to the next position in the time event vector. If the end of the time event vector has been reached, method 700 may proceed to a step 790 in which a qualifier revised event vector is generated. Processing may then proceed to further audio event selection in accordance to a desired audio event spacing schedule, as will be set forth in method 800 of FIG. 8, as described below.


In at least one embodiment, this further processing of the qualified events vector removes audio events in close proximity to one another that may be redundant and undesirable. In the exemplary case of tennis games, these redundant audio events may be due to a series of densely spaced tennis ball bounces before a serve is delivered. Hence, the qualified audio events may be subjected to a schedule of minimal allowed time distances between consecutive audio events. Thus, method 800 of FIG. 8 may optionally be used to suppress undesirable, redundant detections.



FIG. 8 is a flowchart depicting a method 800 for further selection of desired audio events via removal of event vector elements spaced below a minimum time distance between consecutive audio events, according to one embodiment. In a step 820, the system may step through the event vector elements one at a time. In a query 830, the time distance to the previous audio event position may be tested. In a step 840, if this time distance is below a threshold, that position may be skipped. Conversely, in a step 850, if this time distance is not below the threshold, that position may be accepted. In either case, method 800 may proceed to a query 860 that determines whether the end of the event vector has been reached. If not, the system may proceed to the next event vector element.


Method 800 may be repeated as desired with adjusted time distance thresholding.


The event vector post-processing steps as described above may be performed in any desired order. The depicted steps can be performed in any combination with one another, and some steps can be omitted. At the end of the process (i.e., when the end of the event vector has been reached), a new final event vector may be generated containing a desired audio event timeline for the game. Optionally, the audio events may further be elaborated on with crowd noise detection, announcer voice recognition, and the like in order to further refine identification of the audio events.


In at least one embodiment, the automated video highlights and associated metadata generation application receives a live broadcast program, or a digital audiovisual stream via a computer server, and processes audio data 154 using digital signal processing techniques so as to detect high-energy audio associated with, for example, tennis ball hits and related tennis serve delivery in tennis games, as described above. These audio events may be sorted and selected using the techniques described herein. Extracted information may then be appended to metadata 224 associated with an event, such as a sporting event. Metadata 224 may be associated with the event television programming video highlights, and can be used, for example, to determine boundaries 232 (i.e., start and/or end times) for segments used in highlight generation.


For example, the start of a highlight may be established ten seconds prior to an audio event identified as a tennis serve. Similarly, the end of the highlight may be established ten seconds prior to the next audio event identified as a tennis serve. Thus, one volley of the game may be isolated in a highlight. Of course, boundaries 232 may be identified in many other ways through the techniques used to analyze audio data 154, as presented herein.


The present system and method have been described in particular detail with respect to possible embodiments. Those of skill in the art will appreciate that the system and method may be practiced in other embodiments. First, the particular naming of the components, capitalization of terms, the attributes, data structures, or any other programming or structural aspect is not mandatory or significant, and the mechanisms and/or features may have different names, formats, or protocols. Further, the system may be implemented via a combination of hardware and software, or entirely in hardware elements, or entirely in software elements. Also, the particular division of functionality between the various system components described herein is merely exemplary, and not mandatory; functions performed by a single system component may instead be performed by multiple components, and functions performed by multiple components may instead be performed by a single component.


Reference in the specification to “one embodiment”, or to “an embodiment”, means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least one embodiment. The appearances of the phrases “in one embodiment” or “in at least one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Various embodiments may include any number of systems and/or methods for performing the above-described techniques, either singly or in any combination. Another embodiment includes a computer program product comprising a non-transitory computer-readable storage medium and computer program code, encoded on the medium, for causing a processor in a computing device or other electronic device to perform the above-described techniques.


Some portions of the above are presented in terms of algorithms and symbolic representations of operations on data bits within the memory of a computing device. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps (instructions) leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical, magnetic or optical signals capable of being stored, transferred, combined, compared and otherwise manipulated. It is convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. Furthermore, it is also convenient at times, to refer to certain arrangements of steps requiring physical manipulations of physical quantities as modules or code devices, without loss of generality.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “displaying” or “determining” or the like, refer to the action and processes of a computer system, or similar electronic computing module and/or device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Certain aspects include process steps and instructions described herein in the form of an algorithm. It should be noted that the process steps and instructions can be embodied in software, firmware and/or hardware, and when embodied in software, can be downloaded to reside on and be operated from different platforms used by a variety of operating systems.


The present document also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computing device selectively activated or reconfigured by a computer program stored in the computing device. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, DVD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, flash memory, solid state drives, magnetic or optical cards, application specific integrated circuits (ASICs), or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus. The program and its associated data may also be hosted and run remotely, for example on a server. Further, the computing devices referred to herein may include a single processor or may be architectures employing multiple processor designs for increased computing capability.


The algorithms and displays presented herein are not inherently related to any particular computing device, virtualized system, or other apparatus. Various general-purpose systems may also be used with programs in accordance with the teachings herein, or it may be more convenient to construct specialized apparatus to perform the required method steps. The required structure for a variety of these systems will be apparent from the description provided herein. In addition, the system and method are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings described herein, and any references above to specific languages are provided for disclosure of enablement and best mode.


Accordingly, various embodiments include software, hardware, and/or other elements for controlling a computer system, computing device, or other electronic device, or any combination or plurality thereof. Such an electronic device can include, for example, a processor, an input device (such as a keyboard, mouse, touchpad, track pad, joystick, trackball, microphone, and/or any combination thereof), an output device (such as a screen, speaker, and/or the like), memory, long-term storage (such as magnetic storage, optical storage, and/or the like), and/or network connectivity, according to techniques that are well known in the art. Such an electronic device may be portable or non-portable. Examples of electronic devices that may be used for implementing the described system and method include: a desktop computer, laptop computer, television, smartphone, tablet, music player, audio device, kiosk, set-top box, game system, wearable device, consumer electronic device, server computer, and/or the like. An electronic device may use any operating system such as, for example and without limitation: Linux; Microsoft Windows, available from Microsoft Corporation of Redmond, Wash.; Mac OS X, available from Apple Inc. of Cupertino, Calif.; iOS, available from Apple Inc. of Cupertino, Calif.; Android, available from Google, Inc. of Mountain View, Calif.; and/or any other operating system that is adapted for use on the device.


While a limited number of embodiments have been described herein, those skilled in the art, having benefit of the above description, will appreciate that other embodiments may be devised. In addition, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the subject matter. Accordingly, the disclosure is intended to be illustrative, but not limiting, of scope.

Claims
  • 1. A method of selecting an audio event within an audio data to be included in a highlight of the audio data, the method comprising: analyzing, by a computer in a time domain, an audio data to detect a high energy audio burst corresponding to an audio event within the audio data;determining, by the computer, an event time position within the audio data of the audio event;analyzing, by the computer in a frequency domain, a portion of the audio data within a time spread range containing the event time position to generate a spectral distribution of audio in the time spread range;determining, by the computer, the number of peaks in the spectral distribution of audio in the time spread range; andin response to the computer determining that a number of peaks is below a threshold, adding, by the computer, the audio event in a highlight of the audio data.
  • 2. The method of claim 1, wherein analyzing, in the frequency domain, the portion of the audio data within the time spread range comprises: filtering, by the computer, a spectrogram of the portion of the audio data within the time spread range, the filtering comprising:extracting, using a two-dimensional diamond-shaped spectrogram area filter, a subset of spectral peaks that form the spectral distribution of the audio in the time spread range.
  • 3. The method of claim 2, wherein the filtering comprises: sliding, by the computer, the two-dimensional diamond-shaped spectrogram area filter along time and frequency axes of the spectrogram to a first position;determining, by the computer at the first position of the two-dimensional diamond-shaped spectrogram area filter, whether a central spectral peak magnitude is greater than remaining spectral peak magnitudes; andin response to the computer determining that the central spectral peak magnitude is greater than the remaining spectral peak magnitudes for the first position of the two-dimensional diamond-shaped spectrogram area filter: adding, by the computer, the central spectral peak in the subset of the spectral peaks that form the spectral distribution of the audio in the time spread range.
  • 4. The method of claim 1, wherein analyzing, in the frequency domain, the portion of the audio data within the time spread range comprises: analyzing, by the computer, the portion of the audio data within the time spread range in a joint time-frequency domain.
  • 5. The method of claim 1, wherein analyzing the audio data in the time domain further comprises: selecting, by the computer, an analysis time window;sliding, by the computer, the analysis time window along the audio data;computing, by the computer, normalized magnitudes of audio samples at each position of the analysis time window; anddetecting, by the computer, the high energy audio burst based on the computed normalized magnitudes of the audio samples.
  • 6. The method of claim 1, further comprising: preprocessing, by the computer, the audio data prior to analyzing the audio data in the time domain, by resampling the audio data to a predetermined sampling rate.
  • 7. The method of claim 1, further comprising: preprocessing, by the computer, the audio data prior to analyzing the audio data in the time domain, by filtering the audio data to be within a predetermined spectral band.
  • 8. The method of claim 1, wherein the audio data comprises audio from a sports broadcast.
  • 9. The method of claim 8, wherein the sports comprises tennis, and wherein the event comprises a tennis serve.
  • 10. A system for selecting an audio event within an audio data to be included in a highlight of the audio data, the system comprising: at least one processor; anda computer-readable non-transitory storage medium storing computer program instructions that when executed by the at least one processor cause the system to perform operations comprising: analyzing, in a time domain, an audio data to detect a high energy audio burst corresponding to an audio event within the audio data;determining an event time position within the audio data of the audio event;analyzing, in a frequency domain, a portion of the audio data within a time spread range containing the event time position to generate a spectral distribution of audio in the time spread range;determining the number of peaks in the spectral distribution of audio in the time spread range; andin response to the determining that a number of peaks is below a threshold, adding the audio event in a highlight of the audio data.
  • 11. The system of claim 10, wherein analyzing, in the frequency domain, the portion of the audio data within the time spread range comprises: filtering a spectrogram of the portion of the audio data within the time spread range, the filtering comprising:extracting, using a two-dimensional diamond-shaped spectrogram area filter, a subset of spectral peaks that form the spectral distribution of the audio in the time spread range.
  • 12. The system of claim 11, wherein the filtering comprises: sliding the two-dimensional diamond-shaped spectrogram area filter along time and frequency axes of the spectrogram to a first position;determining, at the first position of the two-dimensional diamond-shaped spectrogram area filter, whether a central spectral peak magnitude is greater than remaining spectral peak magnitudes; andin response to determining that the central spectral peak magnitude is greater than the remaining spectral peak magnitudes for the first position of the two-dimensional diamond-shaped spectrogram area filter: adding the central spectral peak in the subset of the spectral peaks that form the spectral distribution of the audio in the time spread range.
  • 13. The system of claim 10, wherein analyzing, in the frequency domain, the portion of the audio data within the time spread range comprises: analyzing the portion of the audio data within the time spread range in a joint time-frequency domain.
  • 14. The system of claim 10, wherein analyzing the audio data in the time domain further comprises: selecting an analysis time window;sliding the analysis time window along the audio data;computing normalized magnitudes of audio samples at each position of the analysis time window; anddetecting the high energy audio burst based on the computed normalized magnitudes of the audio samples.
  • 15. The system of claim 10, the operations further comprising: preprocessing the audio data prior to analyzing the audio data in the time domain by resampling the audio data to a predetermined sampling rate.
  • 16. The system of claim 10, the operations further comprising: preprocessing the audio data prior to analyzing the audio data in the time domain by filtering the audio data to be within a predetermined spectral band.
  • 17. A non-transitory computer-readable medium storing computer program instructions that when executed cause operations comprising: analyzing, in a time domain, an audio data to detect a high energy audio burst corresponding to an audio event within the audio data;determining an event time position within the audio data of the audio event;analyzing, in a frequency domain, a portion of the audio data within a time spread range containing the event time position to generate a spectral distribution of audio in the time spread range;determining the number of peaks in the spectral distribution of audio in the time spread range; andin response to the determining that a number of peaks is below a threshold, adding the audio event in a highlight of the audio data.
  • 18. The non-transitory computer-readable medium of claim 17, wherein analyzing, in the frequency domain, the portion of the audio data within the time spread range comprises: filtering a spectrogram of the portion of the audio data within the time spread range, the filtering comprising:extracting, using a two-dimensional diamond-shaped spectrogram area filter, a subset of spectral peaks that form the spectral distribution of the audio in the time spread range.
  • 19. The non-transitory computer-readable medium of claim 18, wherein the filtering comprises: sliding the two-dimensional diamond-shaped spectrogram area filter along time and frequency axes of the spectrogram to a first position;determining, at the first position of the two-dimensional diamond-shaped spectrogram area filter, whether a central spectral peak magnitude is greater than remaining spectral peak magnitudes; andin response to determining that the central spectral peak magnitude is greater than the remaining spectral peak magnitudes for the first position of the two-dimensional diamond-shaped spectrogram area filter: adding the central spectral peak in the subset of the spectral peaks that form the spectral distribution of the audio in the time spread range.
  • 20. The non-transitory computer-readable medium of claim 17, wherein analyzing, in the frequency domain, the portion of the audio data within the time spread range comprises: analyzing the portion of the audio data within the time spread range in a joint time-frequency domain.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 16/553,025, filed Aug. 27, 2019, which is a continuation-in-part of U.S. application Ser. No. 16/440,229, filed Jun. 13, 2019, and a continuation-in-part of U.S. application Ser. No. 16/421,391, filed May 23, 2019. U.S. application Ser. No. 16/440,229, filed Jun. 13, 2019, claims the benefit of priority to U.S. Provisional Ser. No. 62/712,041, filed Jul. 30, 2018, and U.S. Provisional Ser. No. 62/746,454, filed Oct. 16, 2018. U.S. application Ser. No. 16/421,391, filed May 23, 2019, claims the benefit of U.S. Provisional Ser. No. 62/680,955, filed Jun. 5, 2018; U.S. Provisional Ser. No. 62/712,041, filed Jul. 30, 2018; and U.S. Provisional Ser. No. 62/746,454, filed Oct. 16, 2018. The present application is also related to U.S. application Ser. No. 13/601,915, filed Aug. 31, 2012 and issued on Jun. 16, 2015 as U.S. Pat. No. 9,060,210; U.S. application Ser. No. 13/601,927, filed Aug. 31, 2012 and issued on Sep. 23, 2014 as U.S. Pat. No. 8,842,007; U.S. application Ser. No. 13/601,933, filed Aug. 31, 2012 and issued on Nov. 26, 2013 as U.S. Pat. No. 8,595,763; U.S. application Ser. No. 14/510,481, filed Oct. 9, 2014; U.S. application Ser. No. 14/710,438, filed May 12, 2015; U.S. application Ser. No. 14/877,691, filed Oct. 7, 2015; U.S. application Ser. No. 15/264,928, filed Sep. 14, 2016; U.S. application Ser. No. 16/411,704, filed May 14, 2019; U.S. application Ser. No. 16/411,710, filed May 14, 2019; U.S. application Ser. No. 16/411,713, filed May 14, 2019, all of which are incorporated herein by reference in their entirety.

Provisional Applications (5)
Number Date Country
62712041 Jul 2018 US
62746454 Oct 2018 US
62680955 Jun 2018 US
62712041 Jul 2018 US
62746454 Oct 2018 US
Continuations (1)
Number Date Country
Parent 16553025 Aug 2019 US
Child 17681115 US
Continuation in Parts (2)
Number Date Country
Parent 16440229 Jun 2019 US
Child 16553025 US
Parent 16421391 May 2019 US
Child 16553025 US