The present invention relates to an audio signal synthesizer for generating a synthesis audio signal, an audio signal encoder and a data stream, comprising an encoded audio signal.
Natural audio coding and speech coding are two major classes of codecs for audio signals. Natural audio coders are commonly used for music or arbitrary signals at medium bit rates and generally offer wide audio bandwidths. Speech coders are basically limited to speech reproduction and may be used at very low bit rate. Wide band speech provides a major subjective quality improvement over narrow band speech. Increasing the bandwidth not only improves the naturalness of speech, but also the speaker's recognition and intelligibility. Wide band speech coding is thus an important issue in the next generation of telephone systems. Further, due to the tremendous growth of the multimedia field, transmission of music and other non-speech signals at high quality over telephone systems as well as storage and, for example, transmission for radio/TV or other broadcast systems is a desirable feature.
To drastically reduce the bit rate, source coding can be performed using split-band perceptual audio codecs. These natural audio codecs exploit perceptual irrelevancy and statistical redundancy in the signal. In case exploitation of the above alone is not sufficient with respect to the given bitrate constraints, the sample rate is reduced. It is also common to decrease the number of composition levels, allowing occasional audible quantization distortion, and to employ degradation of the stereo field through joint stereo coding or parametric coding of two or more channels. Excessive use of such methods results in annoying perceptual degradation. In order to improve the coding performance, bandwidth extension methods such as spectral band replication (SBR) are used as an efficient method to generate high frequency signals in an HFR (high frequency reconstruction) based codec.
In the process of replicating the high frequency signals, a certain transformation may, for example, be applied on the low frequency signals and the transformed signals are then inserted as high frequency signals. This process is also known as patching and different transformations may be used. The MPEG-4 Audio standard uses only one patching algorithm for all audio signals. Hence, it lacks the flexibility to adapt the patching on different signals or coding schemes.
On the one hand, the MPEG-4 standard provides a sophisticated processing of regenerated high-band, in which many important SBR parameters are applied. These important SBR parameters are the data on the spectral envelope, the data on the noise floor to be added to the regenerated spectral portion, information on the inverse filtering tool in order to adapt the tonality of the regenerated high-band to the tonality of the original high-band, and additional spectral band replication processing data such as data on missing harmonics etc. This well-established processing of the replicated spectrum which is provided by a patching of consecutive bandpass signals within the filterbank domain is proven to be efficient to provide high quality and to be implementable with reasonable resources regarding processing power, memory requirements, and power requirements.
On the other hand, patching takes place in the same filterbank as the further processing of the patched signal takes place, so that there is a strong link between the patching operation and the further processing of the result of the patching operation. Therefore, the implementation of different patching algorithms is problematic in this combined approach.
WO 98/57436 discloses transposition methods used in spectral band replication, which are combined with spectral envelope adjustment.
WO 02/052545 teaches that signals can be classified either in pulse-train-like or non-pulse-train-like and based on this classification an adaptive switched transposer is proposed. The switched transposer performs two patching algorithms in parallel and a mixing unit combines both patched signals dependent on the classification (pulse train or non pulse train). The actual switching between or mixing of the transposers is performed in an envelope-adjusting filterbank in response to envelope and control data. Furthermore, for pulse-train-like signals, the base band signal is transformed into a filterbank domain, a frequency translating operation is performed and an envelope adjustment of the result of the frequency translation is performed. This is a combined patching/further processing procedure. For non-pulse-train-like signals, a frequency domain transposer (FD transposer) is provided and the result of the frequency domain transposer is then transformed into the filterbank domain, in which the envelope adjustment is performed. Thus, implementation and flexibility of this procedure which has, in one alternative, a combined patching/further processing approach and which has, in the other alternative, a frequency domain transposer which is positioned outside of the filterbank in which the envelope adjustment takes place is problematic with respect to flexibility and implementation possibilities.
According to an embodiment, an audio signal synthesizer for generating a synthesis audio signal having a first frequency band and a second synthesized frequency band derived from the first frequency band may have: a patch generator for performing at least two different patching algorithms, wherein each patching algorithm generates a raw signal having signal components in the second synthesized frequency band using an audio signal having signal components in the first frequency band, and wherein the patch generator is adapted to select one of the at least two different patching algorithms in response to a control information for a first time portion and another of the at least two different patching algorithms in response to the control information for a second time portion different from the first time portion to acquire the raw signal for the first and the second time portion outside of a spectral domain; a spectral converter for converting the raw signal for the first and the second time portion from outside of a spectral domain into the spectral domain to acquire a raw signal spectral representation for the first and the second time portion; a raw signal processor for processing the raw signal spectral representation for the first and the second time portion in response to spectral domain spectral band replication parameters to acquire an adjusted raw signal spectral representation for the first and the second time portion; and a combiner for combining the audio signal having signal components in the first band or a signal derived from the audio signal with the adjusted raw signal spectral representation or with a further signal derived from the adjusted raw signal spectral representation to acquire the synthesis audio signal.
According to another embodiment, an audio signal encoder for generating from an audio signal a data stream having components of the audio signal in a first frequency band, control information and spectral band replication parameters may have: a frequency selective filter to generate the components of the audio signal in the first frequency band; a generator for generating the spectral band replication parameter from the components of the audio signal in a second frequency band; a control information generator to generate the control information, the control information identifying a patching algorithm from a first or a second different patching algorithm, wherein each patching algorithm generates a raw signal having signal components in the second replicated frequency band using the components of the audio signal in the first frequency band, wherein the control information generator is adapted to identify the patching algorithm by comparing the audio signal with patched audio signals for the first and for the second patching algorithms, wherein differently patched audio signals are derived from different raw signals related to the first and the second patching algorithms by applying raw signal adjusting in response to spectral band replication parameters with a spectral band replication tool.
According to another embodiment, a method for generating a synthesis audio signal having a first frequency band and a second replicated frequency band derived from the first frequency band may have the steps of: performing at least two different patching algorithms, wherein each patching algorithm generates a raw signal having signal components in the second replicated frequency band using an audio signal having signal components in the first frequency band, and wherein the patching is performed such that one of the at least two different patching algorithms is selected in response to a control information for a first time portion and the other of the at least two different patching algorithms is selected in response to the control information for a second time portion different from the first time portion to acquire the raw signal for the first and the second time portion outside of a spectral domain; converting the raw signal for the first and the second time portion from outside of a spectral domain into the spectral domain to acquire a raw signal spectral representation for the first and the second time portion; processing the raw signal spectral representation for the first and the second time portion in response to spectral domain spectral band replication parameters to acquire an adjusted raw signal spectral representation for the first and the second time portion; and combining the audio signal having signal components in the first band or a signal derived from the audio signal with the adjusted raw signal spectral representation or with a further signal derived from the adjusted raw signal spectral representation to acquire the synthesis audio signal.
According to another embodiment, a method for generating a data stream having components of an audio signal in a first frequency band, control information and spectral band replication parameters may have the steps of: frequency selective filtering the audio signal to generate the components of the audio signal in the first frequency band; generating the spectral band replication parameter from the components of the audio signal in a second frequency band; generating the control information identifying a patching algorithm from a first or a second different patching algorithm, wherein each patching algorithm generates a raw signal having signal components in the second replicated frequency band using the components of the audio signal in the first frequency band, wherein the patching algorithm is identified by comparing the audio signal with patched audio signals for the first and for the second patching algorithms, wherein differently patched audio signals are derived from, different raw signals related to the first and the second patching algorithms by applying raw signal adjusting in response to spectral band replication parameters with a spectral band replication tool.
According to another embodiment, a computer program for performing, when running on a processor, a method for generating a synthesis audio signal having a first frequency band and a second replicated frequency band derived from the first frequency band, which method may have the steps of: performing at least two different patching algorithms, wherein each patching algorithm generates a raw signal having signal components in the second replicated frequency band using an audio signal having signal components in the first frequency band, and wherein the patching is performed such that one of the at least two different patching algorithms is selected in response to a control information for a first time portion and the other of the at least two different patching algorithms is selected in response to the control information for a second time portion different from the first time portion to acquire the raw signal for the first and the second time portion outside of a spectral domain; converting the raw signal for the first and the second time portion from outside of a spectral domain into the spectral domain to acquire a raw signal spectral representation for the first and the second time portion; processing the raw signal spectral representation for the first and the second time portion in response to spectral domain spectral band replication parameters to acquire an adjusted raw signal spectral representation for the first and the second time portion; and combining the audio signal having signal components in the first band or a signal derived from the audio signal with the adjusted raw signal spectral representation or with a further signal derived from the adjusted raw signal spectral representation to acquire the synthesis audio signal.
According to another embodiment, a computer program for performing, when running on a processor, a method for generating a data stream having components of an audio signal in a first frequency band, control information and spectral band replication parameters, which method may have the steps of: frequency selective filtering the audio signal to generate the components of the audio signal in the first frequency band; generating the spectral band replication parameter from the components of the audio signal in a second frequency band; generating the control information identifying a patching algorithm from a first or a second different patching algorithm, wherein each patching algorithm generates a raw signal having signal components in the second replicated frequency band using the components of the audio signal in the first frequency band, wherein the patching algorithm is identified by comparing the audio signal with patched audio signals for the first and for the second patching algorithms, wherein differently patched audio signals are derived from different raw signals related to the first and the second patching algorithms by applying raw signal adjusting in response to spectral band replication parameters with a spectral band replication tool.
The present invention is based on the finding that the patching operation on the one hand and the further processing of the output of the patching operation on the other hand have to be completely performed in independent domains. This provides the flexibility to optimize different patching algorithms within a patching generator on the one hand and to use the same envelope adjustment on the other hand, irrespective of the underlying patching algorithm. Therefore, the creation of any patched signal outside of the spectral domain, in which the envelope adjustment takes place, allows a flexible application of different patching algorithms to different signal portions completely independent of the subsequent SBR further processing, and the designer does not have to care about specifics for patching algorithms coming from the envelope adjustment or does not have to care about specifics of the patching algorithms for a certain envelope adjustment. Instead, the different components of spectral band replication, i.e., the patching operation on the one hand and the further processing of the patching result on the other hand can be performed independently from each other. This means that in the entire spectral band replication, the patching algorithm is performed separately, which has the consequence, that the patching and the remaining SBR operations can be optimized independently from each other and are, therefore, flexible with respect to future patching algorithms etc., which can simply be applied without having to change any of the parameters of the further processing of the patching result which is performed in a spectral domain in which any patching does not take place.
The present invention provides an improved quality, since it allows an easy application of different patching algorithms to signal portions so that each signal portion of the base band signal is patched with the patching algorithm which fits to this signal portion in the best way. Furthermore, the straight-forward, efficient and high quality envelope adjustment tool which operates in the filterbank and which is well-established and already existent in many applications such as the MPEG-4 HE-AAC can still be used. By separating the patching algorithms from the further processing, such that no patching algorithms are applied in the filterbank domain, in which the further processing of the patching result is performed, the well-established further processing of the patching result can be applied for all available patching algorithms. Optionally the patching may, however, also be carried out in the filterbank as well as in other domains.
Furthermore, this feature provides scalability, since, for low level applications, patching algorithms can be used which make do with less resources while, for high-level applications, patching algorithms can be used which may use more resources, which result in a better audio quality. Alternatively, the patching algorithms can be kept the same, but the complexity of the further processing of the patching result can be adapted to different needs. For low level applications, for example, a reduced frequency resolution for the spectral envelope adjustment can be applied while, for higher-level applications, a finer frequency resolution can be applied which provides a better quality, but which also may use increased resources of memory, processor and power consumption specifically in a mobile device. All this can be done without implications on the corresponding other tool, since the patching tool is not dependent on the spectral envelope adjustment tool and vice versa. Instead, the separation of the patch generation and the processing of the patched raw data by a transform into a spectral representation such as by a filterbank has proven to be an optimum feature.
In accordance with a first aspect of the invention, an audio signal synthesizer generates a synthesis audio signal having a first frequency band and a second synthesized frequency band derived from the first frequency band. The audio signal synthesizer comprises a patch generator, a spectral converter, a raw signal processor and a combiner. The patch generator performs at least two different patching algorithms, wherein each patching algorithm generates a raw signal having signal components in the second synthesized frequency band using an audio signal having signal components in the first frequency band. The patch generator is adapted to select one of the at least two different patching algorithms in response to a control information for a first time portion and another of the at least two different patching algorithms in response to the control information for a second time portion different from the first time portion to obtain the raw signal for the first and the second time portion. The spectral converter converts the raw signal into a raw signal spectral representation. The raw signal processor processes the raw signal spectral representation in response to spectral domain spectral band replication parameters to obtain an adjusted raw signal spectral representation. The combiner combines an audio signal having signal components in the first band or a signal derived from the audio signal with the adjusted raw signal spectral representation or with a further signal derived from the adjusted raw signal spectral representation to obtain the synthesis audio signal.
In further embodiments the audio signal synthesizer is configured so that the at least two patching algorithms are different from each other in that a signal component of the audio signal at a frequency in the first frequency band is patched to a target frequency in the second frequency band, and the target frequency is different for both patching algorithms. The patch generator may be further adapted to operate in the time domain for both patching algorithms.
In accordance with another aspect of the present invention, an audio signal encoder generates from an audio signal a data stream comprising components of the audio signal in a first frequency band, control information and spectral band replication parameters. The audio signal encoder comprises a frequency selective filter, a generator and a control information generator. The frequency selective filter generates the components of the audio signal in the first frequency band. The generator generates the spectral band replication parameter from the components of the audio signal in a second frequency band. The control information generator generates the control information, the control information identifying an advantageous patching algorithm from a first or a second different patching algorithm. Each patching algorithm generates a raw signal having signal components in the second replicated frequency band using the components of the audio signal in the first frequency band.
In accordance with yet another aspect of the present invention, an audio signal bit stream transmitted over a transmission line connected to a computer comprises an encoded audio signal in the first frequency band, control information and the spectral band replication parameters
Therefore, the present invention relates to a method for switching between different patching algorithms in spectral band replication, wherein the used patching algorithm depends on encoder side on a decision made in the encoder and, on decoder side, on information transmitted in the bitstream. By employing a spectral band replication (SBR), the generation of the high frequency components may, for example, be done by copying the low frequency signal components in a QMF-filter bank (QMF=Quadrature Mirror Filter) onto high frequency bands. This copying is also known as patching and according to embodiments of the present invention this patching is replaced or supplemented by alternative methods, which may also be performed in the time domain. Examples for the alternative patching algorithms are:
The alternative patching algorithms may also be performed within the encoder, in order to obtain the spectral band replication parameters, which are used, e.g., by SBR tools like noise filling, inverse filtering, missing harmonics, etc. According to embodiments, the patching algorithm within a patching generator is replaced while still using the remaining spectral band replication tools.
The concrete choice for the patching algorithm depends on the applied audio signal. For example, the phase vocoder severely alters the characteristic of speech signals and therefore the phase vocoder does not provide a suitable patching algorithm, for example, for speech or speech-like signals. Hence, depending on the audio signal type, a patch generator selects a patching algorithm out of different possibilities for generating patches for the high frequency band. For example, the patch generator can switch between the conventional SBR tool (copy of QMF bands) and the phase vocoder or any other patching algorithms.
In contrast to the conventional SBR-implementation (for example implemented in MPEG-4) embodiments of the present invention thus use the patching generator for generating the high frequency signal. The patching generator may not only operate in the frequency, but also in the time domain and implements patching algorithms as for example: mirroring and/or up sampling and/or a phase vocoder and/or non-linear distortion. Whether the spectral band replication is done in the frequency or in the time domain depends on the concrete signal (i.e. it is signal adaptive), which will be explained in more detail below.
Spectral band replication relies on the fact that for many purposes it is sufficient to transmit an audio signal only within a core frequency band and to generate the signal components in the upper frequency band in the decoder. The resulting audio signal will still maintain a high perceptual quality, since for speech and music for example, high frequency components often have a correlation with respect to the low frequency components in the core frequency band. Therefore, by using an adapted patching algorithm, which generates the missing high frequency components, it is possible to obtain an audio signal in high perceptual quality. At the same time, the parameter driven generation of the upper bands results in a significant decrease of the bit rate to encode an audio signal, because only the audio signal within the core frequency band is encoded compressed and transmitted to the decoder. For the remaining frequency components only control information and spectral band replication parameters are transmitted, which control the decoder in the process of generating an estimate of the original highband signal. So, strictly speaking this process involves three aspects: (i) the parametric HF band estimation (calculation of SBR parameter), (ii) the raw paten generation (actual patching) and (iii) provisions for further processing (e.g. noise floor adjustment).
The core frequency band may be defined by the so-called crossover frequency, which defines a threshold within the frequency band up to which an encoding of the audio signal is performed. The core coder encodes the audio signal within the core frequency band limited by the cross-over frequency. Starting with the crossover frequency, the signal components will be generated by the spectral band replication. In using conventional methods for the spectral band replication, it often happens that some signals comprise unwanted artifacts at the crossover frequency of the core coder.
By using embodiments of the present invention, it is possible to determine a patching algorithm, which avoids these artifacts or at least modifies these artifacts in a way that they do not have a perceptual effect. For example, by using mirroring as patching algorithm in the time domain the spectral band replication is performed similarly to the bandwidth extension (BWE) within AMR-WB+ (extended adaptive multi-rate wide band codec). In addition, the possibility to change the patching algorithm depending on the signal offers the possibility that for speech and for music, for example, different bandwidth extensions can be used. But also for a signal that cannot be clearly identified as music or speech (i.e. mixed signal) the patching algorithm can be changed within short time periods. For example, for any given time period an advantageous patching algorithm may be used for the patching. This advantageous patching algorithm may be determined by the encoder that may, for example, compare for each processed block of input data the patching results with the original audio signal. This improves significantly the perceptive quality of the resulting audio signal generated by the audio signal synthesizer.
Further advantages of the present invention are due to the separation of the patching generator from the raw signal processor, which may comprise standard SBR tools. Due to this separation, the usual SBR tools can be employed, which may comprise an inverse filtering, adding a noise floor or missing harmonics or others. Therefore, the standard SBR-tools can still be used while the patching can be adjusted flexibly. In addition, since the standard SBR-tools are used in the frequency domain, separating the patch generator from the SBR-tools, allows for a computation of the patching either in the frequency domain or in the time domain.
Embodiments of the present invention will be detailed subsequently referring to the appended drawings, in which:
The present invention will now be described by way of illustrated examples. Features of the invention will be more readily appreciated and better understood by reference to the following detailed description, which should be considered with reference to the accompanying drawings, in which:
The embodiments described below are merely illustrative for the principle of the present invention for improving the spectral band replication, for example used with an audio decoder. It is understood that modifications and variations of the arrangements and the details described herein will be apparent to others skilled in the art. It is the intent, therefore, not to be limited by the specific details present by way of the description and the explanation of embodiments herein.
In further embodiments the combiner 140 is adapted to use as the signal derived from the audio signal 105 the raw signal spectral representation 125. The signal derived from the audio signal used by the combiner can also be the audio signal processed by a time/spectral converter such as an analysis filterbank or a low band signal as generated by a patch generator operating in the time domain or in the spectral domain or a delayed audio signal or the audio signal processed by an upsampling operation so that the signals to be combined have the same underlying sampling rate.
In yet another embodiment the audio signal synthesizer further comprises an analyzer for analyzing a characteristic of the audio signal 105 having signal components in the first frequency band 201 and to provide the control information 112, which identifies the first patching algorithm or the second patching algorithm.
In further embodiments the analyzer is adapted to identify a non-harmonic patch algorithm for a time portion having a degree of voice or a harmonic patch algorithm for a distinguished time portion in the audio signal 105.
In yet further embodiments the audio signal 105 is encoded together with meta data into a data stream, and wherein the patch generator 110 is adapted to obtain the control information 112 from the Meta data in the data stream.
In yet further embodiments the spectral converter 120 comprises an analysis filter bank or the at least two different patching algorithms comprise a phase vocoder algorithm or an up sampling patching algorithm or a non-linear distortion patching algorithm or a copying algorithm.
In yet further embodiments the raw signal processor 130 is adapted to perform an energy adjustment of the spectral bands or an inverse filtering in the spectral bands or to add a noise floor to the spectral band or to acid missing harmonics to the spectral band.
In
The mirroring as shown in
A second patching algorithm as shown in
The patching algorithm using distortion (for example, by squaring the signal) is shown in
For simplicity
The different patching algorithms as shown in
For example, the mirroring in the frequency domain if shown in
Advantages of this patching algorithm can be summarized as follows. Using this method, the signal time structure is better preserved than using similar methods in the frequency domain. Moreover, by spectral mirroring frequency lines close to the Nyquist frequency are mapped onto lines, which are also close to the Nyquist frequency. This is an advantage, because after mirroring the spectral regions around the mirroring frequency (i.e. the Nyquist frequency of the original audio signal 105) are similar in many respects, as for example, with respect to the property of the spectral flatness, the tonal property, the accumulation or the distinctness of frequency points, etc. By this method, the spectrum is continued to the next frequency band in a more moderate way as, for example, by using the techniques of copying, in which frequency regions end up close to each other, which originate from completely different regions in the original spectrum and thus display very different characteristics. In copying: the first sample becomes again the first sample in the replicated band, whereas in mirroring the last sample becomes the first sample in the replicated band. This softer continuation of the spectrum can in turn reduce perceptual artifacts, which are caused by non-continuous characteristics of the reconstructed spectrum generated by other patching algorithms.
Finally, there are signals, which comprise a high number of harmonics, for example, in the lower frequency region (first frequency band 201). These harmonics appear as localized peaks in the spectrum. In the upper part of the spectrum, there may, however, only be very few harmonics present or, in other words, the number of harmonics is smaller in the upper part of the spectrum. By simply using a copying of the spectrum, this would result in a replicated signal in which the lower part of the spectrum with a high number of harmonics is copied directly into the upper frequency region where there were only very few harmonics in the original signal. As a result the upper frequency band of the original signal and the replicated signal are very different regarding the number of harmonics, which is undesired and should be avoided.
The patching algorithm of mirroring can also be applied in the frequency domain (for example, in the QMF-region), in which case the order in the frequency bands are inverted so that a reordering from back to forth happens. In addition, for sub-band samples, a complex conjugate value has to be formed so that the imaginary part of each sample changes its sign. This yields an inversion of the spectrum within the sub-band.
This patching algorithm comprises a high flexibility with respect to the borders of the patch, since a mirroring of the spectrum is not necessarily to be done at the Nyquist frequency, but may also be performed at any sub-band border.
The aliasing cancellation between neighboring QMF-bands at the edges of patches may, however, not happen, which may or may not be tolerable.
By spreading or by using the phase vocoder (see
This patching algorithm is advantageous if the base band 201 is already strongly limited in bandwidth, for example, by using only a very low bit rate. Hence, the reconstruction of the upper frequency components starts already at a relatively low frequency. A typical crossover frequency is, in this case, less than about 5 kHz (or even less than 4 kHz). In this region, the human ear is very sensitive to dissonances due to incorrectly positioned harmonics. This can result in the impression of “unnatural” tones. In addition, spectrally closely spaced tones (with a spectral distance of about 30 Hz to 300 Hz) are perceived as rough tones. A harmonic continuation of the frequency structure of the base band 201 avoids these incorrect and unpleasant hearing impressions.
In the third patching algorithm of copying (see
This patching algorithm also has a high flexibility with respect to the borders of the patch, since the copying of the spectrum may be performed at any sub-band border.
Finally, the patching algorithm of distortion (see
In the embodiment shown in
The frequency domain audio signal 10532 is input into the patch generator 110, which in this embodiment generates the patch within the frequency domain (QMF-domain). The resulting raw signal spectral representation 125 is input into an SBR tool 130a, which may, for example, generate a noise floor, reconstruct missing harmonics or perform an inverse filtering.
On the other hand, the additional information 375 is input into a bit stream parser 380, which analyzes the additional information to obtain different sub-information 385 and input them into, for example, an Huffman decoding and dequantization unit 390 which, for example, extracts the control information 112 and the spectral band replication parameters 132. The control information 112 is input into the SBR tool and the spectral band replication parameters 132 are input into the SBR tool 130a as well as into an envelope adjuster 130b. The envelope adjuster 130b is operative to adjust the envelope for the generated patch. As a result, the envelope adjuster 130b generates the adjusted raw signal 135 and inputs it into a synthesis QMF-bank 140, which combines the adjusted raw signal 135 with the audio signal in the frequency domain 10532. The syntheses QMF-bank may, for example, comprise 64 frequency bands and generates by combining both signals (the adjusted raw signal 135 and the frequency domain audio signal 10532) the synthesis audio signal 145 (for example, an output of PCM samples, PCM=pulse code modulation).
In addition,
This general structure agrees thus with conventional decoders known in conventional technology, but embodiments replace the conventional patch generator by the patch generator 110, configured to perform different adapted patching algorithms in order to improve the perceptual quality of the audio signal. In addition, embodiments may also use a patching algorithm within the time domain and not necessarily the patching in the frequency domain as shown in
Embodiments now distinguish the two cases: the patch generator 110 operates either within the frequency domain (following dotted signal lines) or within the time domain (following dashed signal lines).
If the patch generator operates in the time domain, the output of the AAC core decoder 360 is input into the patch generator 110 (dashed line for audio signal 105) and its output is transmitted to the analysis filter bank 370. The output of the analysis filter bank 370 is the raw signal spectral representation 125, which is input into the SBR tools 130a (which is a part of the raw signal adjuster 130) as well as into synthesis QMF bank 140.
If, on the other hand the patching algorithm uses the frequency domain (as shown in
Hence, the embodiment either performs a first processing mode using the dotted lines (frequency domain patching) or a second processing mode using the dashed lines (time domain patching), where all solid lines between other functional elements are used in both processing modes.
It is advantageous that the time processing mode of the patch generator (dashed lines) is so that the output of the patch generator includes the low band signal and the high band signal, i.e., that the output signal of the patch generator is a broadband signal consisting of the low band signal and the high band signal. The low band signal is input into block 140 and the high band signal is input into block 130a. The band separations may be performed in the analysis bank 370, but can be performed alternatively as well. Furthermore, the AAC decoder output signal can be fed directly into block 370 so that the low band portion of the patch generator output signal is not used at all and the original low band portion is used in the combiner 140.
In the frequency domain processing mode (dotted lines), the patch generator advantageously only outputs the high band signal, and the original low band signal is fed directly to block 370 for feeding the synthesis bank 140. Alternatively, the patch generator can also generate a full bandwidth output signal and feed the low band signal into block 140.
Again, the Huffman decoding and dequantization unit 390 generates the spectral band replication parameter 132 and the control information 112, which is input into the patch generator 110. In addition, the spectral band replication parameters 132 are transmitted to the envelope adjuster 130b as well as to the SBR tools 130a. The output of the envelope adjuster 130b is the adjusted raw signal 135 which is combined in the combiner 140 (synthesis QMF bank) with the spectral band audio signal 10532 (for the frequency domain patching) or with raw signal spectral representation 125 (for the time domain patching) to generate the synthesis audio signal 145, which again may comprise output PCM samples.
Also in this embodiment the patch generator 110 uses one of the patching algorithms (as, for example, shown in
The patch generator 110 receives the audio signal 105 from the AAC core decoder 360 and now performs the patching within the time domain to generate the raw signal 115, which is input into the spectral converter 120 (for example, an analysis QMF bank comprising 64 bands). Out of many possibilities, one patching algorithm in the time domain performed by the patch generator 110 results in a raw signal 115 comprising the doubled sample rate, if the patch generator 110 performs the patching by introducing additional samples between existing samples (which are close to zero values, for example). The output of the spectral converter 120 are the raw signal spectral representation 125, which are input into the raw signal adjuster 130, which again comprises the SBR tool 130a on the one hand and the envelope adjuster 130b on the other hand. As for the embodiments shown before the output of the envelope adjuster comprises the adjusted raw signal 135 which is combined with the audio signal in the frequency domain 105f in the combiner 140 which, again, comprises a synthesis QMF bank of 64 frequency bands, for example.
Hence, the main difference is that, e.g., the mirroring is performed in the time domain and the upper frequency data are already reconstructed before the signal 115 is input into the analysis 64 band filter bank 120 meaning that the signal already comprises the doubled sampled rate (in the dual rate SBR). After this patching operation, a normal SBR tool can be employed, which may again comprise an inverse filtering, adding a noise floor or adding missing harmonics. Although the reconstruction of the high frequency region occurs in the time domain an analysis/synthesis is performed in the QMF domain so that the remaining SBR mechanisms could still be used.
In the
In a further embodiment, the patch generator 110 comprises a time domain input interface and/or a time domain output interface (time-domain interface), and the processing within this block can take place in any domain such as a QMF domain or a frequency domain such as a DFT, FFT, DCT, DST or any other frequency domain. Then, the time domain input interface is connected to a time/frequency converter or generally a converter for converting from the time domain into a spectral representation. The spectral representation is, then, processed using at least two different patching algorithms operating on frequency domain data. Alternatively, a first patching algorithm operates in the frequency domain and a second patching algorithm operates in the time domain. The patched frequency domain data is converted back into a time domain representation, which is then input into block 120 via the time domain output interface. In the embodiment, in which the signal on line 115 does not comprise the full band, but only comprises the low band, the filtering is advantageously performed in the spectral domain before converting the spectral signal back into the time domain.
Advantageously, the spectral resolution in block 110 is higher than the spectral resolution obtained by block 120. In one embodiment, the spectral resolution in block 110 is at least twice as nigh as in the block 120.
By isolating the patching algorithm in a separate functional block, which is implemented by this embodiment, it is possible to apply arbitrary spectral replication methods completely independent from the use of the SBR tools. In an alternative implementation it is also possible to generate the high frequency component by patching in the time domain parallel to inputting the AAC decoder signal into a 32-band analysis filter bank. Base band and the patched signals will be combined only after the QMF analysis.
The embodiment as shown in
After this exemplary subtraction of the frequency components in the base frequency band 201, the output is again input into the spectral band replication tool 130a, which, in turn, forwards the resulting signal to the envelope adjuster 130b. The envelope adjuster 130b generates again the adjusted raw signal 135 which is combined in the combiner 140 with the output of the analysis 32 band filter bank 370, so that the combiner 140 combines the patched frequency components (in the second and third frequency band 202 and 203, for example) with the base band components output by the analysis 32 band filter bank 370. Again, the combiner 140 may comprise a synthesis QMF filter bank of 64 bands yielding the synthesis audio signal comprising, for example, output PCM samples.
In the
In a further embodiment, the patch generator 110 comprises a time domain input interface and/or a time domain output interface (time-domain interface), and the processing within this block can take place in any domain such as a QMF domain or a frequency domain such as a DFT, FFT, OCT, MDCT, DST or any other frequency domain. Then, the time domain input interface is connected to a time/frequency converter or generally a converter for converting from the time domain into a spectral representation. The spectral representation is, then, processed using at least two different patching algorithms operating on frequency domain data. Alternatively, a first patching algorithm operates in the frequency domain and a second patching algorithm operates in the time domain. The patched frequency domain data is converted back into a time domain representation, which is then input into block 120 via the time domain output interface.
Advantageously, the spectral resolution in block 110 is higher than the spectral resolution obtained by block 120. In one embodiment, the spectral resolution in block 110 is at least twice as high as in the block 120.
The
Further embodiments comprise also a method for generating a synthesis audio signal 145 having a first frequency band and a second replicated frequency band 202 derived from the first frequency band 201. The method comprises a performing at least two different patching algorithms, converting the raw signal 115 into a raw signal spectral representation 125, processing the raw signal spectral representation 125. Each patching algorithm generates a raw signal 115 having signal components in the second replicated frequency band 202 using an audio signal 105 having signal components in the first frequency band 201. The patching is performed such that one of the at least two different patching algorithms is selected in response to a control information 112 for a first time portion and the other of the at least two different patching algorithms is selected in response to the control information 112 for a second time portion different from the first time portion to obtain the raw signal 115 for the first and the second time portion. The processing of the raw signal spectral representation 125 is performed in response to spectral domain spectral band replication parameters 132 to obtain an adjusted raw signal spectral representation 135. Finally, the method comprises a combining of the audio signal 105 having signal components in the first band 201 or a signal derived from the audio signal 105 with the adjusted raw signal spectral representation 135 or with a further signal derived from the adjusted raw signal spectral representation 135 to obtain the synthesis audio signal 145.
In addition, the low pass filtered audio signal 315 is input into a control information generator 340, which is adapted to generate the control information 112 so that an advantageous patching algorithm can be identified, which in turn is selected by the patch generator 110. The high pass filtered audio signal 325 is input into a spectral band data generator 328 which generates the spectral band parameters 132, which are input on one hand into the patch selector. The encoder of
The spectral band parameters 132 may depend on the patching method, i.e. for different patching algorithms the spectral band parameters may or may not differ, and it may not be necessary to determine the SBR parameter 132 for all patching algorithms (
Finally, the control information generator 340 comprises comparison units adapted to compare the original audio signal 305 and especially the higher frequency components of the audio signal 305 with the replicated audio signal 347. Again, the comparison may be performed for each patching algorithm so that a first comparison unit 348a compares the audio signal 305 with a first replicated audio signal 347a output by the first SBR tools block 346a. Similarly, a second comparison unit 348b compares the audio signal 305 with a second replicated audio signal 347b from the second SBR tools block 346b. The comparison units 348 determine a deviation of the replicated audio signals 347 in the high frequency bands from the original audio signal 305 so that finally an evaluation unit 349 can compare the deviation between the original audio signal 305 with the replicated audio signals 347 using different patching algorithms and determines from this an advantageous patching algorithm or a number of suitable or not suitable patching algorithms. The control information 112 comprise information, which allows identifying one of the advantageous patching algorithms. The control information 112 may, for example, comprise an identification number for the advantageous patching algorithm, which may be determined on the basis of the least deviation between the original audio signal 305 and the replicated audio signal 347. Alternatively, the control information 112 may provide a number of patching algorithms or a ranking of patching algorithms, which yield sufficient agreement between the audio signal 305 and the patched audio signal 347. The evaluation can, for example, be performed with respect to the perceptual quality so that the replicated audio signal 347 is, in an ideal situation for a human indistinguishable or close to be indistinguishable from the original audio signal 305.
The means for analyzing 307 provides, for example, the characteristic of the audio signal and may be adapted to identify non-harmonic signal components for a time portion having a degree of voice or a harmonic signal component for a distinguished time portion. If the audio signal 305 is purely speech or voice the degree of voice is high, whereas for a mixture of voice and, for example, music the degree of voice is lower. The calculation of the SBR parameter 132 can be performed dependent on this characteristic and the advantageous patching algorithm.
Yet another embodiment comprise a method for a data stream 345 comprising components of an audio signal 305 in a first frequency band 201, control information 112 and spectral band replication parameters 132. The method comprises a frequency selective filtering the audio signal 305 to generate the components of the audio signal 305 in the first frequency band 201. The method further comprises a generating of the spectral band replication parameter 132 from the components of the audio signal 305 in a second frequency band 202. Finally, the method comprises a generating of the control information 112 identifying an advantageous patching algorithm from a first or a second different patching algorithm, wherein each patching algorithm generates a raw signal 115 having signal components in the second replicated frequency band 202 using the components of the audio signal 305 in the first frequency band 201.
Although some embodiments specifically in
Although some aspects have been described in the context of an apparatus, it is clear that these aspects also represent a description of the corresponding method, where a block or device corresponds to a method step or a feature of a method step. Analogously, aspects described in the context of a method step also represent a description of a corresponding block or item or feature of a corresponding apparatus.
The inventive encoded audio signal or bitstream can be stored on a digital storage medium or can be transmitted on a transmission medium such as a wireless transmission medium or a wired transmission medium such as the Internet.
Depending on certain implementation requirements, embodiments of the invention can be implemented in hardware or in software. The implementation can be performed using a digital storage medium, for example a floppy disk, a DVD, a CD, a ROM, a PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable control signals stored thereon, which cooperate (or are capable of cooperating) with a programmable computer system such that the respective method is performed.
Some embodiments according to the invention comprise a data carrier having electronically readable control signals, which are capable of cooperating with a programmable computer system, such that one of the methods described herein is performed. Generally, embodiments of the present invention can be implemented as a computer program product with a program code, the program code being operative for performing one of the methods when the computer program product runs on a computer. The program code may for example be stored on a machine readable carrier. Other embodiments comprise the computer program for performing one of the methods described herein, stored on a machine readable carrier. In other words, an embodiment of the inventive method is, therefore, a computer program having a program code for performing one of the methods described herein, when the computer program runs on a computer. A further embodiment of the inventive methods is, therefore, a data carrier (or a digital storage medium, or a computer-readable medium) comprising, recorded thereon, the computer program for performing one of the methods described herein. A further embodiment of the inventive method is, therefore, a data stream or a sequence of signals representing the computer program for performing one of the methods described herein. The data stream or the sequence of signals may for example be configured to be transferred via a data communication connection, for example via the Internet. A further embodiment comprises a processing means, for example a computer, or a programmable logic device, configured to or adapted to perform one of the methods described herein. A further embodiment comprises a computer having installed thereon the computer program for performing one of the methods described herein. In some embodiments, a programmable logic device (for example a field programmable gate array) may be used to perform some or all of the functionalities of the methods described herein. In some embodiments, a field programmable gate array may cooperate with a microprocessor in order to perform one of the methods described herein. Generally, the methods are advantageously performed by any hardware apparatus.
The above described embodiments are merely illustrative for the principles of the present invention. It is understood that modifications and variations of the arrangements and the details described herein will be apparent to others skilled in the art. It is the intent, therefore, to be limited only by the scope of the impending patent claims and not by the specific details presented by way of description and explanation of the embodiments herein.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and compositions of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations and equivalents as fall within the true spirit and scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 14/250,139 filed Apr. 10, 2014 (now U.S. Pat. No. 10,014,000), which is a divisional of U.S. patent application Ser. No. 13/004,248, filed Jan. 11, 2011 (now U.S. Pat. No. 8,731,948), which is a continuation of PCT Application No. PCT/EP2009/004451 filed Jun. 19, 2009, and claims priority to U.S. Patent Application No. 61/079,839, filed Jul. 11, 2008, and additionally claims priority from U.S. Patent Application No. 61/103,820, filed Oct. 8, 2008, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5898605 | Smarandoiu et al. | Apr 1999 | A |
6680972 | Liljeryd et al. | Jan 2004 | B1 |
6978236 | Liljeryd et al. | Dec 2005 | B1 |
7260520 | Henn et al. | Aug 2007 | B2 |
8015368 | Sharma et al. | Sep 2011 | B2 |
20020118845 | Henn et al. | Aug 2002 | A1 |
20030158726 | Philippe et al. | Aug 2003 | A1 |
20040078205 | Liljeryd et al. | Apr 2004 | A1 |
20040125878 | Lijeryd et al. | Jul 2004 | A1 |
20040131203 | Liljeryd et al. | Jul 2004 | A1 |
20040138876 | Kallio et al. | Jul 2004 | A1 |
20040174911 | Kim et al. | Sep 2004 | A1 |
20040260545 | Gao et al. | Dec 2004 | A1 |
20050096917 | Kjorling et al. | May 2005 | A1 |
20050165611 | Mehrotra et al. | Jul 2005 | A1 |
20050177360 | Schuijers et al. | Aug 2005 | A1 |
20050246164 | Ojala et al. | Nov 2005 | A1 |
20060190245 | Iser et al. | Aug 2006 | A1 |
20070016427 | Thumpudi et al. | Jan 2007 | A1 |
20070106503 | Kim et al. | May 2007 | A1 |
20070174063 | Mehrotra et al. | Jul 2007 | A1 |
20070299656 | Son et al. | Dec 2007 | A1 |
20110173006 | Nagel et al. | Jul 2011 | A1 |
20110231195 | Nongpiur et al. | Sep 2011 | A1 |
20120069899 | Mehrotra et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2003-235044 | Aug 2003 | JP |
2005223533 | Aug 2005 | JP |
2006-180521 | Jul 2006 | JP |
2006-279333 | Oct 2006 | JP |
2006279333 | Oct 2006 | JP |
2007-300455 | Nov 2007 | JP |
2008-098751 | Apr 2008 | JP |
2204176 | May 2003 | RU |
2257556 | Jul 2005 | RU |
2325046 | May 2008 | RU |
1998057436 | Dec 1998 | WO |
2002052545 | Jul 2002 | WO |
2004044894 | May 2004 | WO |
2005093717 | Oct 2005 | WO |
2010003479 | Jan 2012 | WO |
Entry |
---|
Friedrich, et al., “Spectral Band Replication Tool for Very Low Delay Audio Coding Applications”, Oct. 21-24, 2007. |
Hsu, H et al., “Audio Patch Method in MPEG-4 HE-AAC Decoder”, Presented at the 117th AES Convention. San Francisco, CA, USA., Oct. 28, 2004, 1-11. |
Karwowski, Damian et al., “Improved-Context-Adaptive Arithmetic Coding in H.264/AVC”, H.264/AVC 17th European Signal Processing Conference (EUSIPCO 2009), Aug. 24, 2009. |
Marpe, et al., “Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No. 7, XP011099255, Jul. 2003, pp. 620-636. |
Marpe, Detlez et al., “Context-Based Adaptive Binary Arithmetic Coding in JVT/H.26L”, Int'l Conference on Image Processing, vol. 2, pp. 513-516; Rochester, NY., vol. 2, Sep. 1, 2002, 513-516. |
Meine, et al., “Improved Quantization and Lossless Coding for Subband Audio Coding”, 118th AES Convention, vol. 1-4, May 31, 2005, XP040507276, 1-9. |
Meine, et al., “Improved Quantization and Lossless Coding for Subband Audio Coding”, 118th AES Convention, vol. 1-4, XP040507276, May 2005, pp. 1-9., May 31, 2005, 1-9. |
Neuendorf, Max et al., “WD3 of USAC”, ISO/IEC JTCI/SC29/WG11, MPEG2009/N10661, Apr. 2009. |
Wolters, M et al., “A Closer Look into MPEG-4 High Efficiency AAC”, Preprints of Papers Presented at the 115th AES Convention. vol. 115. XP008063876., Oct. 10, 2003, 16 Pages. |
Yu, , “MPEG-4 Scalable to Lossless Audio Coding”, 117th AES Convention, Oct. 31, 2004, XP040372512, 1-14. |
Yu, et al., “MPEG-4 Scalable to Lossless Audio Coding”, 117th AES Convention, SP040372512, Oct. 2004, pp. 10-14. |
Number | Date | Country | |
---|---|---|---|
20180350387 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
61079839 | Jul 2008 | US | |
61103820 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13004248 | Jan 2011 | US |
Child | 14250139 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14250139 | Apr 2014 | US |
Child | 16001572 | US | |
Parent | PCT/EP2009/004451 | Jun 2009 | US |
Child | 13004248 | US |