Field
Embodiments related to audio speakers and audio speaker suspension systems are disclosed. More particularly, an embodiment related to an audio speaker surround having a film that undulates in a peripheral direction around a speaker diaphragm, is disclosed.
Background Information
An audio speaker, such as a loudspeaker, converts an electrical audio input signal into an emitted sound. Audio speakers typically include a moving assembly that is connected to a stationary assembly by a suspension system. The moving assembly may include a diaphragm connected with a driving element, e.g., one of either a voicecoil or a magnet, while the stationary assembly may include a frame and a complementary driving element, e.g., the other of the voicecoil or the magnet. The suspension system typically includes elements that keep the moving assembly centered relative to the stationary assembly. For example, a surround may connect the diaphragm with the frame and/or a spider may connect the driving element with the frame. Thus, when the electrical audio input signal is input to the voicecoil, a mechanical force may be generated that moves the moving assembly from a neutral position in an axial direction relative to the frame. This axial motion is referred to as pistonic motion. The moving assembly may also experience a degree of non-axial motion, i.e., non-pistonic motion. In fact, at certain resonant frequencies, the non-pistonic modes of motion, i.e., the “racing modes,” may tend to dominate pistonic motion. The non-pistonic motion in these racing modes may cause the voicecoil to stretch and/or rub against the magnet, and over time, this can lead to issues with the emitted sound quality or cause failure of the audio speaker.
Audio speakers having a suspension system including a surround to support a diaphragm within a frame and to reduce non-pistonic motion of the diaphragm at several resonant frequencies, are disclosed. In an embodiment, an audio speaker includes a frame having an inner rim, a diaphragm having an outer rim separated from the inner rim by a radial gap, and a surround supporting the diaphragm relative to the frame. The audio speaker may be a single-suspension audio speaker, i.e., may include the surround but no spider. The speaker surround may include a film, e.g., an elastic film, which undulates in a peripheral direction along the radial gap around the outer rim. More particularly, the film may include several surround segments with respective surface boundaries surrounding one or more undulations. The respective surface boundaries may be defined by an inner edge of the film attached to the outer rim, an outer edge of the film attached to the inner rim, and respective pairs of radial line segments extending from the inner edge to the outer edge, e.g., across or along the radial gap. The undulation(s) within a respective surface boundary may include an upper undulation disposed above the radial gap and/or a lower undulation disposed below the radial gap. Each undulation may have a respective smooth surface curvature extending across the respective surface boundary. Furthermore, in an example, in addition to portions of the surround having the surround segments, the surround may extend along a corner region of the outer rim, and the undulating film may have no undulations along the corner region. As such, stresses may concentrate in the undulations along the outer rim sides (non-corner regions) to control and limit non-pistonic motion, rather than being concentrated along the corner regions, which could exacerbate non-pistonic motion. Accordingly, the audio speaker may include a driving element coupled with the diaphragm to drive the diaphragm at several resonant frequencies such that the diaphragm and the driving element move within an axial degree of freedom and one or more non-axial degrees of freedom at each resonant frequency, and the undulating film of the surround may maintain participation in the axial degree of freedom to not less than within one order of magnitude of participation in each non-axial degree of freedom at each resonant frequency.
In an embodiment, a speaker surround includes a film with an inner edge separated from an outer edge along a radial plane, and the film may have an undulating film surface that includes several upper undulations above the radial gap and several lower undulations below the radial gap. The upper undulations and lower undulations may have respective surface boundaries and the undulations may also include respective smooth surface curvatures extending across the boundaries. For example, the smooth curvatures may be partly defined by respective peripheral chords intersecting respective radial chords at respective curvature apices. The respective peripheral chords of different undulation curvatures may be contiguous with each other, e.g., a peripheral chord of an upper undulation may be contiguous with a peripheral chord of a lower undulation such that the upper undulation and lower undulation are sequentially arranged in the peripheral direction around the outer rim of the diaphragm. Furthermore, in an embodiment, respective surface boundaries of the sequentially arranged upper and lower undulations may share a radial line segment such that the undulations are contiguous, e.g., immediately adjacent to each other, in the peripheral direction. The shared radial line segment may be a straight line extending across the radial gap, or alternatively, the shared radial line segment may be a curvilinear line extending across the radial gap. Thus, the undulations may be side-by-side in a peripheral direction, but not side-by-side in a radial direction.
In an embodiment, a speaker surround includes a film with an inner edge separated from an outer edge along a radial plane, and the film may have an undulating film surface that includes a repeating surround segment. The repeating surround segment may be repeated in a peripheral direction along the film. The repeating surround segment may include a surface boundary defined by the inner edge and the outer edge of the speaker surround, as well as a respective pair of radial line segments extending from the inner edge to the outer edge. Furthermore, the repeating surround segment may undulate in the peripheral direction along an intermediate line disposed between the inner edge and the outer edge, and thus, the radial line segments may intersect the intermediate line. The repeating surround segment may include one or more of an upper undulation above the radial gap or a lower undulation below the radial gap, and the upper undulation and lower undulation, if present, may have respective smooth surface curvatures extending across the surface boundary. For example, in an embodiment, the repeating surround segment includes both an upper undulation and a lower undulation. In such a case, the upper undulation and the lower undulation may be radially separated by the intermediate line, e.g., the upper undulation and the lower undulation may have respective smooth surface curvatures that intersect at the intermediate line. As such, the upper undulation may include a respective peripheral chord on an opposite side of the intermediate line relative to a respective peripheral chord of the lower undulation. Thus, an upper apex of the upper undulation may not be aligned along a same peripheral chord with a lower apex of the lower undulation, i.e., the apices may be radially offset. The upper undulation and the lower undulation may nonetheless provide a contiguous surface curvature extending across the surface boundary of the repeating surround segment, i.e., the repeating surround segment may include a continuous smooth surface having portions above and below the radial gap. Thus, the undulations may be side-by-side in a peripheral direction and/or side-by-side in a radial direction.
In an embodiment, several repeating surround segments having surface contours with portions above and below a radial plane may be arranged sequentially in the peripheral direction, and may share radial line segments such that the repeating surround segments are contiguous in the peripheral direction. The shared radial line segments of immediately adjacent surround segments may be curvilinear, rather than straight. For example, a shared radial line segment may be a sinusoidal line segment that intersects an intermediate line on the radial plane at a point between an inner edge and an outer edge of the contour. The intersection point of the intermediate line and the radial line segment may be at an inflection point of the radial line segment coinciding with a location where an upper undulation transitions into a lower undulation.
The above summary does not include an exhaustive list of all aspects of the present invention. It is contemplated that the invention includes all systems and methods that can be practiced from all suitable combinations of the various aspects summarized above, as well as those disclosed in the Detailed Description below and particularly pointed out in the claims filed with the application. Such combinations have particular advantages not specifically recited in the above summary.
Embodiments describe suspension systems having an undulating film to reduce non-pistonic motion of an oscillating mass at several resonant frequencies, particularly for use in audio speaker applications. While some embodiments are described with specific regard to integration within single-suspension audio speakers, the embodiments are not so limited and certain embodiments may also be applicable to audio speakers having two or more suspenders. Furthermore, a surround as described below may be applicable to other uses, e.g., non-acoustic applications having a moving assembly driven at various resonant frequencies for which non-pistonic motion is undesirable.
In various embodiments, description is made with reference to the figures. Certain embodiments, however, may be practiced without one or more of these specific details, or in combination with other known methods and configurations. In the following description, numerous specific details are set forth, such as specific configurations, dimensions, and processes, in order to provide a thorough understanding of the embodiments. In other instances, well-known processes and manufacturing techniques have not been described in particular detail in order to not unnecessarily obscure the description. Reference throughout this specification to “one embodiment,” “an embodiment,” or the like, means that a particular feature, structure, configuration, or characteristic described is included in at least one embodiment. Thus, the appearance of the phrase “one embodiment,” “an embodiment,” or the like, in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures, configurations, or characteristics may be combined in any suitable manner in one or more embodiments.
The use of relative terms throughout the description, such as “above” and “below” may denote a relative position or direction. For example, an undulation may be described as being “above” a radial gap to indicate that the undulation may be located on one side of a geometric plane extending through the radial gap, while an undulation may be described as being “below” the radial gap to indicate that the undulation may be located on the other side of the geometric plane. Nonetheless, such terms are not intended to limit the use of an audio speaker to a specific configuration described in the various embodiments below. For example, an audio speaker having a surround with an undulation “above” a certain location may nonetheless be directed in any direction with respect to an external environment, including such that the undulation is directed toward the ground.
In an aspect, a speaker surround includes a film that undulates around a perimeter of a speaker diaphragm such that a combination of upper undulations above a radial gap and lower undulations below the radial gap support the diaphragm within a speaker frame. For example, a sequence of repeating upper undulations spaced apart by repeating lower undulations may support the diaphragm within the speaker frame. Thus, loads applied by the moving diaphragm may be distributed within the undulations in a complementary manner, i.e., upper undulations may be placed in tension while lower undulations are placed in compression, and vice versa. Such complementary stress distribution can control and/or limit non-pistonic motion, e.g., racing modes, of a moving assembly of the audio speaker at certain resonant frequencies. For example, participation of the moving assembly in the non-pistonic modes may be reduced as compared to participation by the moving assembly in those modes when supported by a traditional half-arc, non-undulating speaker surround. Therefore, an undulating surround film as described below may prevent rub and buzz, sound distortion, and speaker failure issues that can arise with traditional speaker surrounds.
In an aspect, an undulating speaker surround provides a low-cost solution to the racing mode issues described above. Since racing modes typically occur at only a few resonant frequencies within the range of frequencies used during sound reproduction, the frequency response of an audio speaker may be electronically adjusted around those frequencies to mitigate rub and buzz issues. Such electronic compensation, however, may be relatively complex and costly to implement in a media player used to control the audio speaker. Furthermore, since the racing mode frequencies may change based on thermal considerations and speaker aging, electronic compensation may be ineffective as temperatures change or the audio speaker is used over time. By contrast, an undulating speaker surround as described below may be manufactured using low-cost manufacturing techniques, such as thermoforming, and once fabricated, may limit rocking of the diaphragm within racing modes at any resonant frequency, regardless of whether the resonant frequency shifts due to time or temperature changes.
Referring to
Diaphragm 108 may have a concave upper profile, such as a cone or dome, and be formed from a rigid, low-mass material, e.g., plastic or metal. Diaphragm 108 may be concentrically supported within frame 102 with a gap between an outer rim of diaphragm 108 and an inner rim of frame 102. The outer rim of diaphragm 108 may be any of several shapes, including circular, as shown in
In an embodiment, the suspension system centers voicecoil 106 within the magnetic annulus of magnet 104 and may also provide a restoring force that biases diaphragm 108 toward a neutral position in a direction opposite to the mechanical force that moves the diaphragm 108 back and forth. The suspension system may be a single-suspension system or a double-suspension system. For example, in an embodiment, the suspension system is a single-suspension system having a surround 110 to support diaphragm 108 within frame 102 without the aid of a spider 112. Alternatively, the suspension system may be a double-suspension system having spider 112, in addition to surround 110, to support voicecoil 106 relative to frame 102 and/or magnet 104, as shown in
Referring to
Referring to
Any suspension element of the suspension system may include portions having half-arc 206 or corrugation 306 profiles. For example, surround 110 may support a perimeter of diaphragm 108, and thus, some portions of surround 110 in the peripheral direction, i.e., along the perimeter, may incorporate a half-arc profile 206 while other portions of surround 110 in the peripheral direction may incorporate a corrugated profile 306. Accordingly, surround 110 or spider 112 may incorporate a combination of segments having different film structures that respond differently to various modes of motion of the moving assembly of audio speaker 100.
Referring to
Referring to
As described above, surround 110 may have a film 506 including a thin flexible sheet formed between outer rim 502 and inner rim 504. For example, film 506 may extend between inner edge 202 and outer edge 204 across the gap between diaphragm 108 and frame 102 and have a cross-sectional profile of half-arc 206 or corrugated profile 306. The half-arc or corrugated profile, as well as any other cross-sectional profile, may be uniform in a peripheral direction over a portion of surround 110. For example, as shown in
In an embodiment, at least a portion of surround 110 does not have a uniform cross-sectional profile in the peripheral direction. Film 506 may undulate in the peripheral direction such that cross-sections of film 506 taken immediately adjacent to one another are not identical. Accordingly, film 506 may include several undulating surround segments 508 that are periodically and/or sequentially arranged in the peripheral direction around at least a portion of outer rim 502.
Film 506 portions, including those with uniform cross-sectional profiles and non-uniform cross-sectional profiles in the peripheral direction, may be thin and flexible. For example, film 506 may be formed from a thin elastic material, such as soft rubber or another elastomeric material. Film 506 may be single-layered or multi-layered, e.g., film 506 may include laminated layers of one or more flexible materials. Furthermore, film 506 may be fabricated from such materials using a variety of manufacturing techniques. In an embodiment, surround 110 and/or film 506 are thermoformed using thermoplastic polyurethane. Given that film 506 may be formed from a thin elastic material, in an embodiment, surround 110 may provide minimal resistance to movement of diaphragm 108 in the axial direction.
Referring to
As described above, surround 110 may include several surround segments 508, and in an embodiment, these surround segments 508 may be further described as including one or more upper undulation 606 and/or one or more lower undulation 608. Upper undulations 606 may be formed in film 506 above radial gap 604, e.g., on a front side of radial plane 602 along which radial gap 604 lies between outer rim 502 and inner rim 504. Similarly, lower undulations 608 may be formed in film 506 below radial gap 604, e.g., on a rear side of radial plane 602. Thus, regardless of a location in the peripheral direction (into the page through radial gap 604 in
Referring to
In an embodiment, with the undulation surface boundary forming a base of a surround segment 508, upper undulation 606 may project upward above radial gap 604. Upper undulation 606 may have an upper surface curvature extending across the boundary. For example, the upper surface curvature may be partly defined by a peripheral chord 704 extending between the pair of radial line segments 702 in the peripheral direction, as well as by a radial chord 706 extending between inner edge 202 and outer edge 204 in the radial direction. The chords may partly define a contour of a concave downward surface curvature extending above radial gap 604.
Surround 110 may include a surround segment 508 having a single lower undulation 608 disposed adjacent to the surround segment 508 having upper undulation 606. More particularly, lower undulation 608 may be immediately adjacent and contiguous with upper undulation 606, or spaced apart from upper undulation 606 in the peripheral direction. Similar to upper undulation 606, lower undulation 608 may include a surface boundary that is defined between one or more lines that lie on or below radial gap 604 between outer rim 502 and inner rim 504. For example, a surface boundary of lower undulation 608 may include inner edge 202, outer edge 204, and a pair of lines extending between inner edge 202 and outer edge 204, e.g., radial line segments 702. With such a surface boundary forming a base of the surround segment 508 having lower undulation 608, lower undulation 608 may have a lower surface curvature extending across the boundary. For example, the lower surface may be partly defined by a peripheral chord 704 extending between the pair of radial line segments 702 in the peripheral direction, and a radial chord 706 extending between inner edge 202 and outer edge 204 in the radial direction. The chords may partly define a contour of a concave upward surface extending below radial gap 604.
Peripheral chords 704 and radial chords 706 of upper undulation 606 and lower undulation 608 may be variously shaped, and thus, the contour of upper or lower surfaces of respective undulations may also have a variety of forms. For example, in an embodiment, each of peripheral chord 704 and radial chord 706 may be multi-segmented line segments, e.g., v-shaped, with apices that meet at a common vertex at the center of the projected boundary area. Accordingly, an upper surface of upper undulation 606 or a lower surface of lower undulation 608 may be pyramidal rather than curved. Alternatively, the upper surface of upper undulation 606 and/or lower surface of lower undulation 608 may include a smooth curvature, defined by peripheral chord 704 and radial chord 706 that are smooth curved lines. Thus, the upper surface and/or the lower surface may include contours that are bulbous or cup-like, as shown in
Referring to
Referring to
Referring to
Lower undulation 608 may have other contour shapes, such as the curvilinear and/or stepped contour described with respect to upper undulation 606 in
Referring to
Shaping upper undulations 606 and lower undulations 608 to have asymmetric surface contours across radial gap 604 may allow for surround 110 stiffness to be tuned. For example, creating upper undulations 606 with larger radii, e.g., as in the case where upper apical distances are greater than lower apical distances, may result in upper undulations 606 that are less stiff with respect to loading in a particular direction. More particularly, forming surround segments 508 that are asymmetric across radial gap 604 can allow for surround 110 to be tuned to be more resistant to tilting motion 410 in one direction as compared to tilting motion 410 in another direction. Similarly, creating surround segments 508 that differ in geometry in a peripheral direction, e.g., locating surround segments 508 having upper undulations 606 near corners 507 of surround 110 that include larger radii than upper undulations 606 of surround segments 508 farther from corners 507, may provide for surround 110 that is more or less resistant to tipping or tilting in a particular radial direction, e.g., resists tilting toward diaphragm 108 sides more than tilting toward diaphragm 108 corners. Thus, undulation geometry may vary between upper undulations 606 and lower undulations 608 of different surround segments 508, as well as between undulations of the same class within surround segments 508. For example, some surround segments 508 having upper undulations 606 may have apical distances that differ from other upper undulations 606 of other surround segments 508, and/or respective lower undulations 608 of different surround segments 508 may vary similarly. More particularly, film 506 undulations may be shaped to alter participation of driven mass 402 in a range of different modes of motion. Furthermore, altering contour geometry may alter resonant frequencies of audio speaker 100. For example, surround 110 having surround segments 508 that include upper undulations 606 with larger average radii than other surround segments 508 that include lower undulations 608 may shift the resonant frequencies of audio speaker 100, i.e., the eigenfrequencies, upward. Accordingly, undulation geometry may be altered to tune eigenfrequencies such that modes that dissipate vibrational energy in non-pistonic directions tend to occur within frequency ranges that are less commonly generated during popular music reproduction.
Referring to
It will be appreciated that the description related to the contour geometry of upper undulation 606 may be equally applied to lower undulation 608 of surround 110. For example, the geometry of upper undulation 606 illustrated in
In an embodiment, surround segments 508 of film 506 do not overlap with one another around outer rim 502. For example, although a surround segment 508 having upper undulation 606 and another surround segment 508 having lower undulation 608 may be adjacent, and in some cases immediately adjacent as shown in
It will be apparent then from the description above that surround segments 508 having upper undulations 606 and surround segments 508 having lower undulations 608 may be arranged sequentially in the peripheral direction around outer rim 502. More particularly, around the perimeter of diaphragm 108, film 506 may periodically rise and fall in a wave-like, up and down, undulating manner. Thus, in an embodiment, each surround segment 508 having an upper undulation 606 of film 506 may be separated from other surround segments 508 having other upper undulations 606 by one or more surround segment 508 having a lower undulation 608. For example, at least one lower undulation 608 may be disposed between each pair of upper undulations 606 of film 506. Similarly, each lower undulation 608 of film 506 may be separated from other lower undulations 608 by one or more upper undulations 606. For example, at least one upper undulation 606 may be disposed between each pair of lower undulations 608. Accordingly, surround segments 508 of film 506 may be arranged in a series in the peripheral direction such that each upper undulation 606 is followed by a lower undulation 608, each lower undulation 608 is followed by an upper undulation 606, and so on.
In an embodiment, sequentially arranged surround segments 508 may have respective chords that are contiguous with one another. For example, a peripheral chord 704 of an upper undulation 606 may meet a peripheral chord 704 of a lower undulation 608 at a radial line segment 702 shared by the sequential surround segments 508. That is, the peripheral chord 704 of the upper undulation 606 may intersect radial gap 604 on the radial plane 602 at the same location that the peripheral chord 704 of the lower undulation 608 intersects the radial gap 604. Accordingly, the immediately adjacent surround segments 508 may be contiguous in the peripheral direction, since the surround segments 508 meet along the same radial line segment 702. In an embodiment, the surround segments 508 may be contiguous along the entire length of the shared radial line segment 702. Alternatively, the surround segments 508 may be contiguous, i.e., share a surface boundary line over a portion of the length between inner edge 202 and outer edge 204, and the undulation boundaries may be separated from each other over another portion of the length between inner edge 202 and outer edge 204.
Referring to
Still referring to
Referring to
Referring to
Referring to
In an embodiment, film 506 may have no corner region. For example, an outer rim of diaphragm 108 and an inner rim of frame 102 may both be circular, and thus, film 506 may have an annular structure with an inner and outer radius. Nonetheless, stresses may distribute in surround segments 508 along the annular structure of surround 110 to promote balanced motion at all resonant frequencies.
Just as the cross-sectional profiles of surround segments 508 may vary, so may the cross-sectional profiles of corner segments vary, too. For example, a cross-sectional profile of a radial cross-section taken through a corner segment of surround 110 may be sinusoidal. In an embodiment, the surface morphology of the corner segments is smooth and continuous. That is, cross-sectional profiles taken through the corner segments may include a radial chord that is continuous and progresses smoothly from inner edge 202 to outer edge 204, without any bends, angles, or folds along the path.
Referring to
As described above, the radial gap may extend across a radial plane 602 that is intersected by a central axis of diaphragm 108 and passes in a radial direction between the outer rim 204 of diaphragm 108 and the inner rim 202 of frame 102. As such, film 506 may extend across the radial gap, e.g., radial gap 604, to provide a hermetic barrier between a space above radial plane 602 and a space below radial plane 602 across radial gap 604. The hermetic barrier may be provided by hermetically sealing inner edge 202 to the outer rim of diaphragm 108 and outer edge 204 to the inner rim of frame 102 using adhesive or welding, as is known in the art.
Surround 110 may include a film 506 formed in part from a thin flexible sheet extending along the radial gap 604 between the inner edge 202 and the outer edge 204 and having a radial width along radial plane 602. At least a portion of film 506 may undulate in the peripheral direction such that cross-sections of film 506 taken immediately adjacent to one another are not identical. Accordingly, film 506 may include several surround segments 508 that are periodically and/or sequentially arranged in the peripheral direction around at least a portion of the outer rim of diaphragm 108.
Film 506 may be formed from a thin, single-layered or multi-layered material. Furthermore, film 506 may be formed from a flexible material, such as soft rubber or another elastomeric material. In another embodiment, film 506 may be formed from more rigid materials. For example, film 506 may include several laminated layers of an inelastic material. More particularly, by way of example, film 506 may include a lamination foil of polyether ether ketone (PEEK) capable of elastically deforming in a range of 3-5%.
In an embodiment, the surround segments 508 may include several repeating surround segments that include essentially identical surface morphologies. For example, the surround segments 508 may include a repeating surround segment 1502 with an essentially identical surface contour compared to one or more other repeating surround segments 1502 of film 506. The surface contour of repeating surround segment 1502 may extend across a surface boundary defined between inner edge 202 and outer edge 204 that are spaced apart from each other in a radial direction along radial plane 602 across radial gap 604, as well as a pair of radial line segments 702 that are spaced apart from each other in the peripheral direction. In an embodiment, every surround segment 508 along surround length 1504 between adjacent corners 507 may be one of several repeating surround segments 1502, i.e., may have the same surface contour of repeating surround segments 1502. In an embodiment, the entire length of film 506 may include repeating surround segments 1502, e.g., as in the case of an annular film 506 having circular inner edge 202 and outer edge 204 without discrete corners. In
Repeating surround segments 1502 of surround 110 may include several undulations, and in an embodiment, these undulations may be further described as including one or more upper undulation 606 and one or more lower undulation 608. Upper undulations 606 may be formed in film 506 above radial gap 604, e.g., on a front side of radial plane 602 along which radial gap 604 lies between inner edge 202 and outer edge 204. Similarly, lower undulations 608 may be formed in film 506 below radial gap 604, e.g., on a rear side of radial plane 602. Thus, upper undulations 606 and lower undulations 608 may have respective heights on opposite sides of radial gap 604. Accordingly, in an embodiment, undulations of repeating surround segments 1502 may include all of the same aspects as described above with respect to surround segments 508. For example, in some cases immediately adjacent repeating surround segments 1502 may include respective undulations (either upper or lower undulations) that do not overlap along the peripheral direction. That is, in an embodiment, no portion of an upper undulation of a repeating surround segment 1502 lies on the same side of a radial line segment as a lower undulation. Accordingly, one skilled in the art will recognize that the description pertaining to
Referring to
Repeating surround segment 1502 may include one or more upper undulations above radial gap 604 and one or more lower undulations below radial gap 604. The undulations may be arranged beside each other. For example, in an embodiment, repeating surround segment 1502 includes upper undulation 606 above radial gap 604 on a first side of intermediate line 1602, e.g., upper undulation 606 may extend between intermediate line 1602 and outer edge 204 and have a height above radial gap 604. Furthermore, in an embodiment, repeating surround segment 1502 includes lower undulation 608 below radial gap 604 on a second side of intermediate line 1602, e.g., lower undulation 608 may extend between intermediate line 1602 and inner edge 202 and have a height below radial gap 604. Thus, upper undulation 606 may be radially separated from lower undulation 608 by intermediate line 1602. Alternatively, upper undulation 606 may extend between intermediate line 1602 and inner edge 202, and lower undulation 608 may extend between intermediate line 1602 and outer edge 204. In any case, upper undulation 606 and lower undulation 608 of a same repeating surround segment 1502 may be arranged side-by-side.
Upper undulation 606 and lower undulation 608 may have respective surface contours extending across the surface boundary of repeating surround segment 1502, and in an embodiment, the respective surface contours may be smooth. That is, as described above, the surface contours of respective undulations may include smooth curvatures extending smoothly across the surface boundary between a respective inner edge 202 or outer edge 204, and intermediate line 1602. Smoothly extending surface contours may be contrasted with non-smooth contours that include local angulations, corners, or folds.
In an embodiment, upper undulation 606 may include an upper peripheral chord 1604 extending continuously and smoothly in the peripheral direction along the surface of repeating surround segment 1502. Upper peripheral chord 1604 may define a surface contour between intermediate line 1602 and outer edge 204, i.e., on the surface curvature of upper undulation 606. Upper peripheral chord 1604 may intersect an upper radial chord 1606 at an upper apex 1608 of upper undulation 606. Upper apex 1608 may have an upper apical distance, i.e., a height above radial plane 602, that is greater than a distance between radial plane 602 and any other point along the surface of upper undulation 606 on repeating surround segment 1502.
In an embodiment, lower undulation 608 may include a lower peripheral chord 1610 extending smoothly in the peripheral direction along the surface of repeating surround segment 1502. Lower peripheral chord 1610 may define a surface contour between intermediate line 1602 and inner edge 202, i.e., on the surface curvature of lower undulation 608. Lower peripheral chord 1610 may intersect a lower radial chord 1612 at a lower apex 1614 of lower undulation 608. Lower apex 1614 may have a lower apical distance, i.e., a height below radial plane 602, that is greater than a distance between radial plane 602 and any other point along the surface of lower undulation 608 on repeating surround segment 1502.
In an embodiment, upper peripheral chord 1604 and lower peripheral chord 1610 extend over the surface of repeating surround segment 1502 on opposite sides of intermediate line 1602. Thus, upper apex 1608 and lower apex 1614 may be radially offset from one another on opposite sides of intermediate line 1602. More specifically, upper apex 1608 and lower apex 1614 may not be at a same radial distance from central axis 404, and thus, may not be aligned along a same peripheral chord running in a peripheral direction along repeating surround segment 1502 or surround 110. In addition to being radially offset, upper apex 1608 and lower apex 1614 of a same repeating surround segment 1502 may be offset in a peripheral direction as shown (no radial chord runs through both upper apex 1608 and lower apex 1614). Alternatively, the apices may be peripherally aligned, i.e., a radial chord may run through both upper apex 1608 and lower apex 1614.
The surface curvature of upper undulation 606 and the surface curvature of lower undulation 608 may intersect along intermediate line 1602. In an embodiment, the curvatures meet at a same distance from inner edge 202 and outer edge 204 around the entire length of surround 110. The intersection of the upper surface curvature of upper undulation 606 and the lower surface curvature of lower undulation 608 may provide a contiguous surface curvature extending across the surface boundary of repeating surround segment 1502. Furthermore, in an embodiment, the contiguous surface curvature may be continuous and smooth, e.g., any radial or peripheral chord along the contiguous surface curvature may be either straight or curvilinear, i.e., there may be no local angulations, corners, or folds along the surface where upper undulation 606 and lower undulation 608 meet at intermediate line 1602. A surface curvature with continuous and smooth peripheral and radial chords, i.e., without a zig-zag or angulated transition between undulation regions may reduce stress in surround 110 materials, as compared to a surround that includes folds or corners between undulation transitions. Thus, surround 110 having a contiguous and smooth surface contour may experience improved fatigue life.
Referring to
In an embodiment, intermediate line 1602 runs along the surface of repeating surround segment 1502 at a location where upper undulation 606 and lower undulation 608 meet at radial gap 604. That is, intermediate line 1602 may be a contour line that separates upper undulation 606 from lower undulation 608 at radial plane 602. A cross-section taken through surround 110 through upper apex 1608 may coincide with a portion of surround 110 where the radial width of upper undulation 606 is greater than the radial width of lower undulation 608, and thus, intermediate line 1602 may be located between medial plane 1702 and inner edge 202. Furthermore, when viewed from above, intermediate line 1602 may follow a curvilinear, e.g., a sinusoidal, path along radial plane 602. Thus, a radial slice through upper apex 1608 may intersect intermediate line 1602 at a point of inflection, meaning that the radial direction of a follower moving along intermediate line 1602 in a peripheral direction may change from moving toward inner edge 202 to moving toward outer edge 204. That is, a tangent of intermediate line 1602 along radial plane 602 may extend in the peripheral direction with no slope in the radial direction. In any case, repeating surround segment 1502 includes both an upper undulation 606 above radial gap 604 and a lower undulation 608 below radial gap 604, and the upper and lower undulations may be radially arranged on opposite sides of intermediate line 1602.
Referring to
Referring to
In an embodiment, intermediate line 1602 defines a surface contour of repeating surround segment 1502 at a location where upper undulation 606 and lower undulation 608 meet at radial plane 602. A radial cross-section taken through surround 110 through lower apex 1614 may coincide with a portion of surround 110 where the radial width of lower undulation 608 is greater than the radial width of upper undulation 606, and thus, intermediate line 1602 may be located between medial plane 1702 and outer edge 204. Furthermore, when viewed from above, intermediate line 1602 at the radial cross-section through lower apex 1614 may be at a point of inflection, meaning that the radial direction of a follower moving along intermediate line 1602 may change from moving toward outer edge 204 to moving toward inner edge 202. In any case, repeating surround segment 1502 includes both an upper undulation 606 above radial gap 604 and a lower undulation 608 below radial gap 604, and the upper and lower undulations may be radially arranged on opposite sides of intermediate line 1602.
In an embodiment, the distance in the radial direction along the contour of repeating surround segment 1502 may vary based on a peripheral location along surround 110. That is, rather than each radial cross-section having the same spline length along the contour surface (length along a radial chord), the spline lengths may vary from slice to slice. As a result, in an embodiment, upper undulation 606 and lower undulation 608 may always meet at medial line 1704, even though the apical distances of the undulations may vary in the peripheral direction. Thus, every radial slice of surround 110 may resemble
In an embodiment, every radial chord of repeating surround segment 1502, including radial chords of radial cross-sections that correspond to the pair of radial line segments 702 bounding the peripheral ends of repeating surround segment 1502, may include curvilinear line segments. For example, radial chords, e.g., radial line segment 702 that provides a transition between adjacent repeating surround segments 1502, may be sinusoidal line segments to provide for both upper undulation 606 above radial gap 604 and lower undulation 608 below radial gap 604. This contrasts with some of the above-described embodiments that include straight radial line segment 702 across radial gap 604 in that the curvilinear radial line segments 702 are not aligned or coplanar with radial plane 602.
Repeating surround segment 1502 may be repeated along a portion or all of surround 110, e.g., along surround length 1504 as shown in
Based on the above description, a person of ordinary skill in the art will appreciate that surround 110 may include a series of sequential upper undulations 608 on one side of a dividing line, e.g., intermediate line 1602, and a series of sequential lower undulations 606 on another side of the dividing line. The isolation of surround 110 surface contours to one side or the other of radial gap 604 on respective sides of a dividing line, however, is not intended to be limiting. For example, in an embodiment, surround 110 surface on an inner side of a dividing line may have lower undulations 606 and upper undulations 608 in sequence (pairs of lower undulations 606 separated by an upper undulation 608 and pairs of upper undulations 608 separated by a lower undulation). Similarly, surround 110 surface on an outer side of a dividing line may also have lower undulations 606 and upper undulations 608 in sequence. The undulations on opposite sides of the dividing line may be staggered. That is, a lower undulation 606 on an inner side of the dividing line may be radially beside an upper undulation 608 on the other side of the dividing line, and an upper undulation on the inner side of the dividing line may be radially beside a lower undulation 606 on the other side of the dividing line. Thus, a portion of surround 110 inward of the dividing line may include a surface that is both above and below radial gap 604, and a portion of the surround 110 outward of the dividing line may also include a surface that is both above and below radial gap 604.
It will be appreciated then that in an embodiment where surround segments 508 are repeating surround segments 1502 with identical surface morphologies, the pairs of radial line segments 702 that define the ends of repeating surround segment 1502 may correspond to any radial slices that are separated from each other in the peripheral direction along surround 110 and share a common surface contour. For example, radial lines segments 702 defining the surface boundary of a repeating surround segment 1502 may include radial slices through portions of surround 110 have matching profiles of cross-sections D-D, E-E, or F-F of
The description of
Referring back to
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
This application claims the benefit of U.S. Provisional Patent Application No. 62/049,990, filed Sep. 12, 2014, and this application hereby incorporates herein by reference that provisional patent application.
Number | Name | Date | Kind |
---|---|---|---|
3130811 | Petrie | Apr 1964 | A |
4324312 | Durbin et al. | Apr 1982 | A |
4433214 | Jasinski | Feb 1984 | A |
5455396 | Willard | Oct 1995 | A |
6095280 | Proni | Aug 2000 | A |
6176345 | Perkins et al. | Jan 2001 | B1 |
6516077 | Yamaguchi et al. | Feb 2003 | B1 |
7233681 | Tummire et al. | Jun 2007 | B2 |
7275620 | Diedrich | Oct 2007 | B1 |
7729504 | Tsuda | Jun 2010 | B2 |
8139812 | Basnet | Mar 2012 | B2 |
8170268 | Weyreuther | May 2012 | B2 |
8170286 | Kashimura et al. | May 2012 | B2 |
8311263 | Huang | Nov 2012 | B2 |
8442259 | Williamson | May 2013 | B2 |
8903117 | Dai | Dec 2014 | B1 |
20020170773 | Stead | Nov 2002 | A1 |
20030068064 | Czerwinski | Apr 2003 | A1 |
20030121718 | Stead et al. | Jul 2003 | A1 |
20040086143 | Espiritu | May 2004 | A1 |
20060251286 | Stiles | Nov 2006 | A1 |
20090208048 | Haas | Aug 2009 | A1 |
20110164782 | Bogdanov | Jul 2011 | A1 |
20120039494 | Ellis | Feb 2012 | A1 |
20170111729 | Robineau | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
0 556 786 | Aug 1993 | EP |
0 556 786 | Aug 1993 | EP |
0 556 786 | Aug 1993 | EP |
0 556 786 | Jul 2002 | EP |
0 912 072 | Jul 2005 | EP |
1 788 839 | May 2007 | EP |
2499228 | Aug 2013 | GB |
S58-127499 | Jul 1983 | JP |
Entry |
---|
PCT International Search Report and Written Opinion for PCT International Appln No. PCT/US2015/047254 dated Nov. 3, 2015. (12 pages). |
International Preliminary on Patentability Chapter 1 for PCT International Appln No. PCT/US2015/047254 dated Mar. 3, 2017. (7 pages). |
Number | Date | Country | |
---|---|---|---|
20160080870 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62049990 | Sep 2014 | US |