One or more implementations relate generally to audio speakers, and more upward firing speakers and associated height filter circuits for rendering adaptive audio content using reflected signals.
The advent of digital cinema has created new standards for cinema sound, such as the incorporation of multiple channels of audio to allow for greater creativity for content creators and a more enveloping and realistic auditory experience for audiences. Model-based audio descriptions have been developed to extend beyond traditional speaker feeds and channel-based audio as a means for distributing spatial audio content and rendering in different playback configurations. The playback of sound in true three-dimensional ( 3D) or virtual 3D environments has become an area of increased research and development. The spatial presentation of sound utilizes audio objects, which are audio signals with associated parametric source descriptions of apparent source position (e.g., 3D coordinates), apparent source width, and other parameters. Object-based audio may be used for many multimedia applications, such as digital movies, video games, simulators, and is of particular importance in a home environment where the number of speakers and their placement is generally limited or constrained by the confines of a relatively small listening environment.
Various technologies have been developed to more accurately capture and reproduce the creator's artistic intent for a sound track in both full cinema environments and smaller scale home environments. A next generation spatial audio (also referred to as “adaptive audio”) format, and embodied in the Dolby® Atmos® system, has been developed that comprises a mix of audio objects and traditional channel-based speaker feeds along with positional metadata for the audio objects. In a spatial audio decoder, the channels are sent directly to their associated speakers or down-mixed to an existing speaker set, and audio objects are rendered by the decoder in a flexible manner The parametric source description associated with each object, such as a positional trajectory in 3D space, is taken as an input along with the number and position of speakers connected to the decoder. The renderer utilizes certain algorithms to distribute the audio associated with each object across the attached set of speakers. The authored spatial intent of each object is thus optimally presented over the specific speaker configuration that is present in the listening environment.
Current spatial audio systems provide unprecedented levels of audience immersion and the highest precision of audio location and motion. However, since they have generally been developed for cinema use, they involve deployment in large rooms and the use of relatively expensive equipment, including arrays of multiple speakers distributed around a theater. An increasing amount of advanced audio content, however, is being made available for playback in the home environment through streaming technology and advanced media technology, such as Blu-ray disks, and so on. For optimal playback of spatial audio (e.g., Dolby Atmos) content, the home listening environment should include speakers that can replicate audio meant to originate above the listener in three-dimensional space. To achieve this, consumers can mount additional speakers on the ceiling in recommended positions above the traditional two-dimensional surround system, and some home theater enthusiasts are likely to embrace this approach. For many consumers, however, such height speakers may not be affordable or may pose installation difficulties. In this case, the height information is lost if overhead sound objects are played only through floor or wall-mounted speakers.
What is needed, therefore, is a speaker design that enables floor-standing and bookshelf speakers to replicate audio as if the sound source originated from the ceiling. What is further needed, is a home-audio speaker system that provides fully encompassing three-dimensional audio without expensive installations or alteration of existing consumer home theater footprints.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions. Dolby and Atmos are registered trademarks of Dolby Laboratories Licensing Corporation.
Embodiments are directed to a speaker for transmitting sound waves to be reflected off an upper surface of a listening environment, comprising a cabinet, a direct-firing driver within the cabinet and oriented to transmit sound along a horizontal axis substantially perpendicular to a front surface of the cabinet, an upward-firing driver and oriented at an inclination angle of between 18 degrees to 22 degrees relative to the horizontal axis, and a terminal panel affixed to the outside of the cabinet having separate input connections to the direct-firing driver and the upward firing driver. The upward-firing driver is inset in a recess within a top surface of the cabinet and configured to reflect sound off a reflection point on a ceiling of the listening environment, and a corresponding angle for direct response from the upward-firing driver is nominally 70 degrees from the horizontal axis. The speaker further comprises sound absorbing foam placed in a recessed area of the top surface of the cabinet and is placed at least partially around the upward-firing driver to reduce effects of standing waves and diffraction and help smooth a frequency response of the upward-firing driver. The cabinet may have inner shelf placed across the inside to provide acoustic separation between the upward-firing driver and the direct-firing driver.
In an embodiment, the terminal panel includes a first set of input terminal binding connectors to connect an audio system to the direct-firing driver, and a second set of input terminal binding connectors to connect the audio system to the upward firing driver. The polarity of the first set of input terminal binding connectors is equal to that of the second set of input terminal binding connectors. The upward firing driver generally has a rated impedance of 6 ohms or greater, and a minimum impedance of at least 4.8 ohms. At a distance of one meter along the horizontal axis and at a rated power handling level of the upward-firing driver, there is no more than three dB compression between 100 Hz and 15 kHz.
In an embodiment, the speaker has, or is coupled to a virtual height filter circuit applying a frequency response curve to a signal transmitted to the upward-firing driver to create a target transfer curve. The virtual height filter compensates for height cues present in sound waves transmitted directly through the listening environment in favor of height cues present in the sound reflected off the upper surface of the listening environment.
In an embodiment, the low-frequency response characteristics of the upward-firing driver follows that of a second order high-pass filter with a target cut-off frequency of 180 Hz and a quality factor of 0.707. The direct response transfer function is measured at a distance of one meter along the horizontal axis at an angle of 70 degrees relative to the horizontal axis using a sinusoidal log sweep method, and wherein a ratio of a 70 degree angle response to the direct response is at least 5 dB at 5 kHz and at least 10 dB at 10 kHz.
The speaker may further have a crossover circuit integrated with the virtual height filter, the crossover having a low-pass section configured to transmit low frequency signals below a threshold frequency to a direct-firing driver, and a high-pass section configured to transmit high frequency signals above the threshold frequency to the upward-firing driver. The cabinet may be made of medium density fiberboard (MDF) of a thickness of 0.75 inches.
The upward-firing driver and direct-firing driver may be enclosed within the housing as an integrated virtual height speaker system, and a mean of the linear pressure level in one-third octave bands from 1 to 5 kHz produced at a distance of one meter along the horizontal axis on a reference axis defined by sound projection from the upward-firing driver using a sinusoidal log sweep at 2.83 Vrms is not more than 3 dB lower than the direct-driver along the horizontal axis. Alternatively, the speaker may comprise an upward-firing driver cabinet enclosing the upward firing driver placed on an upper surface of a direct-firing driver cabinet enclosing the direct-firing driver.
Such speakers and circuits are configured to be used in conjunction with an adaptive audio system for rendering sound using reflected sound elements comprising an array of audio drivers for distribution around a listening environment, where some of the drivers are direct drivers and others are upward-firing drivers that project sound waves toward the ceiling of the listening environment for reflection to a specific listening area; a renderer for processing audio streams and one or more metadata sets that are associated with each audio stream and that specify a playback location in the listening environment of a respective audio stream, wherein the audio streams comprise one or more reflected audio streams and one or more direct audio streams; and a playback system for rendering the audio streams to the array of audio drivers in accordance with the one or more metadata sets, and wherein the one or more reflected audio streams are transmitted to the reflected audio drivers.
Embodiments are further directed to speakers or speaker systems that incorporate a desired frequency transfer function directly into the transducer design of the speakers configured to reflect sound off of the upper surfaces, wherein the desired frequency transfer function filters direct sound components from height sound components in an adaptive audio signal produced by a renderer.
Embodiments are yet further directed to a method for generating an audio scene from a speaker by receiving first and second audio signals; routing the first audio signal to a direct-firing driver of the speaker; and routing the second audio signal to an upward-firing driver of the speaker; wherein the first and second audio signals are physically discrete signals representing direct and diffused audio content, respectively. In this method, the diffused audio content comprises object-based audio having height cues representing sound emanating from an apparent source located above a listener in a room encompassing the speaker. The upward-firing driver may be oriented at an inclination angle of between 18 degrees to 22 degrees relative to a horizontal axis defined by the direct-firing driver. The method may further comprise orienting the upward-firing driver at a defined tilt angle relative to a horizontal angle defined by the front-firing driver in order to transmit sound upward to a reflection point on a ceiling of the room so that it reflects down to a listening area at a distance from the speaker in the room.
The method may further comprise receiving the first audio signal from an audio processing system rendering the audio scene for routing to the direct-firing driver through a first set of connectors of a terminal attached to the speaker, and receiving the second audio signal from the audio processing system for routing to the upward-firing driver through a second set of connectors of the terminal. In an embodiment, the polarity of the first set of connectors is equal to the polarity of the second set of connectors. The method may further comprise applying a virtual height filter frequency response curve to the second audio signal to compensate for height cues present in sound waves transmitted directly through the room in favor of height cues present in the sound reflected off the ceiling of the room. It may also comprise applying a crossover function to the first and second audio signals, the crossover function having a low-pass process configured to transmit low frequency band signals to a direct-firing driver and a high-pass process configured to transmit high frequency band signals to the upward-firing driver, wherein a defined frequency threshold distinguishes the low and high frequency bands.
Embodiments are yet further directed to methods of making and using or deploying the speakers, circuits, and transducer designs that optimize the rendering and playback of reflected sound content using a frequency transfer function that filters direct sound components from height sound components in an audio playback system.
Each publication, patent, and/or patent application mentioned in this specification is herein incorporated by reference in its entirety to the same extent as if each individual publication and/or patent application was specifically and individually indicated to be incorporated by reference.
In the following drawings like reference numbers are used to refer to like elements. Although the following figures depict various examples, the one or more implementations are not limited to the examples depicted in the figures.
Embodiments are described for audio speakers and transducer systems that include upward firing drivers to render adaptive audio content intended to provide an immersive audio experience. The speakers may include or be used in conjunction with an adaptive audio system having virtual height filter circuits for rendering object based audio content using reflected sound to reproduce overhead sound objects and provide virtual height cues. Aspects of the one or more embodiments described herein may be implemented in an audio or audio-visual (AV) system that processes source audio information in a mixing, rendering and playback system that includes one or more computers or processing devices executing software instructions. Any of the described embodiments may be used alone or together with one another in any combination. Although various embodiments may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments do not necessarily address any of these deficiencies. In other words, different embodiments may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
For purposes of the present description, the following terms have the associated meanings: the term “channel” means an audio signal plus metadata in which the position is coded as a channel identifier, e.g., left-front or right-top surround; “channel-based audio” is audio formatted for playback through a pre-defined set of speaker zones with associated nominal locations, e.g., 5.1, 7.1, and so on; the term “object” or “object-based audio” means one or more audio channels with a parametric source description, such as apparent source position (e.g., 3D coordinates), apparent source width, etc.; and “adaptive audio” means channel-based and/or object-based audio signals plus metadata that renders the audio signals based on the playback environment using an audio stream plus metadata in which the position is coded as a 3D position in space; and “listening environment” means any open, partially enclosed, or fully enclosed area, such as a room that can be used for playback of audio content alone or with video or other content, and can be embodied in a home, cinema, theater, auditorium, studio, game console, and the like. Such an area may have one or more surfaces disposed therein, such as walls or baffles that can directly or diffusely reflect sound waves.
Embodiments are directed to a reflected sound rendering system that is configured to work with a sound format and processing system that may be referred to as a “spatial audio system” or “adaptive audio system” that is based on an audio format and rendering technology to allow enhanced audience immersion, greater artistic control, and system flexibility and scalability. An overall adaptive audio system generally comprises an audio encoding, distribution, and decoding system configured to generate one or more bitstreams containing both conventional channel-based audio elements and audio object coding elements. Such a combined approach provides greater coding efficiency and rendering flexibility compared to either channel-based or object-based approaches taken separately. An example of an adaptive audio system that may be used in conjunction with present embodiments is embodied in the commercially-available Dolby Atmos system.
In general, audio objects can be considered as groups of sound elements that may be perceived to emanate from a particular physical location or locations in the listening environment. Such objects can be static (stationary) or dynamic (moving). Audio objects are controlled by metadata that defines the position of the sound at a given point in time, along with other functions. When objects are played back, they are rendered according to the positional metadata using the speakers that are present, rather than necessarily being output to a predefined physical channel In an embodiment, the audio objects that have spatial aspects including height cues may be referred to as “diffused audio.” Such diffused audio may include generalized height audio such as ambient overhead sound (e.g., wind, rustling leaves, etc.) or it may have specific or trajectory-based overhead sounds (e.g., birds, lightning, etc.).
Dolby Atmos is an example of a system that incorporates a height (up/down) dimension that may be implemented as a 9.1 surround system, or similar surround sound configuration (e.g., 11.1, 13.1, 19.4, etc.). A 9.1 surround system may comprise composed five speakers in the floor plane and four speakers in the height plane. In general, these speakers may be used to produce sound that is designed to emanate from any position more or less accurately within the listening environment. In a typical commercial or professional implementation speakers in the height plane are usually provided as ceiling mounted speakers or speakers mounted high on a wall above the audience, such as often seen in a cinema. These speakers provide height cues for signals that are intended to be heard above the listener by directly transmitting sound waves down to the audience from overhead locations.
In many cases, such as typical home environments, ceiling mounted overhead speakers are not available or practical to install. In this case, the height dimension must be provided by floor or low wall mounted speakers. In an embodiment, the height dimension is provided by a speaker system having upward-firing drivers that simulate height speakers by reflecting sound off of the ceiling. In an adaptive audio system, certain virtualization techniques are implemented by the renderer to reproduce overhead audio content through these upward-firing drivers, and the drivers use the specific information regarding which audio objects should be rendered above the standard horizontal plane to direct the audio signals accordingly.
For purposes of description, the term “driver” means a single electroacoustic transducer (or tight array of transducers) that produces sound in response to an electrical audio input signal. A driver may be implemented in any appropriate type, geometry and size, and may include horns, cones, ribbon transducers, and the like. The term “speaker” means one or more drivers in a unitary enclosure, and the terms “cabinet” or “housing” mean the unitary enclosure that encloses one or more drivers. Thus, an upward-firing speaker or speaker system comprises a speaker cabinet that includes at least upward-firing driver and one or more other direct-firing drivers (e.g., tweeter plus main or woofer), and other associated circuitry (e.g., crossovers, filters, etc.). The direct-firing driver (or front-firing driver) refers to the driver that transmits sound along the main axis of the speaker, typically horizontally out the front face of the speaker.
The embodiment of
As shown in
In an embodiment, the top-firing speaker mounting plane is be tilted forward at an angle between 18° and 22° (20° nominal) relative to the horizontal plane. This is shown in
For the embodiment shown in
With regard to rated impedance, in an embodiment, for passive devices, the rated or nominal impedance of the upward-firing driver is 6Ω or greater, and the minimum impedance is to be not be less than 4.8Ω (80%) of the rated impedance.
With regard to sensitivity, in an embodiment, for the integrated upward-firing driver (e.g.,
In one embodiment, the speaker system features a continuous output SPL (sound pressure level), such that at a distance of one meter and at the rated power handling level of the upward-firing driver, there should be no more than 3 dB compression between 100 Hz and 15 kHz. When an upward-firing driver is used in an integrated speaker that includes direct-firing drivers, the power handling capability of the upward-firing drivers shall be comparable with those of the direct-firing drivers and shall be rated in a similar fashion.
In an embodiment, the adaptive audio system utilizes upward-firing drivers to provide the height element for overhead audio objects. This is achieved partly through the perception of reflected sound from above as shown in
An inverse of this filter is next determined and used to remove the directional cues for audio travelling along a path directly from the physical speaker location to the listener. Next, for the reflected speaker location, a second directional filter is determined based on a model of sound travelling directly from the reflected speaker location to the ears of a listener at the same listening position using the same model of directional hearing. This filter is applied directly, essentially imparting the directional cues the ear would receive if the sound were emanating from the reflected speaker location above the listener. In practice, these filters may be combined in a way that allows for a single filter that both at least partially removes the directional cues from the physical speaker location, and at least partially inserts the directional cues from the reflected speaker location. Such a single filter provides a frequency response curve that is referred to herein as a “height filter transfer function,” “virtual height filter response curve,” “desired frequency transfer function,” “height cue response curve,” or similar words to describe a filter or filter response curve that filters direct sound components from height sound components in an audio playback system.
With regard to the filter model, if P1 represents the frequency response in dB of the first filter modeling sound transmission from the physical speaker location and P2 represents the frequency response in dB of the second filter modeling sound transmission from the reflected speaker position, then the total response of the virtual height filter PT in dB can be expressed as: PT=α(P2−P1), where α is a scaling factor that controls the strength of the filter. With α=1, the filter is applied maximally, and with α=0, the filter does nothing (0 dB response). In practice, α is set somewhere between 0 and 1 (e.g. α=0.5) based on the relative balance of reflected to direct sound. As the level of the direct sound increases in comparison to the reflected sound, so should α in order to more fully impart the directional cues of the reflected speaker position to this undesired direct sound path. However, α should not be made so large as to damage the perceived timbre of audio travelling along the reflected path, which already contains the proper directional cues. In practice a value of α=0.5 has been found to work well with the directivity patterns of standard speaker drivers in an upward firing configuration. In general, the exact values of the filters P1 and P2 will be a function of the azimuth of the physical speaker location with respect to the listener and the elevation of the reflected speaker location. This elevation is in turn a function of the distance of the physical speaker location from the listener and the difference between the height of the ceiling and the height of the speaker (assuming the listener's head is at the same height of the speaker).
The typical use of such a virtual height filter for virtual height rendering is for audio to be pre-processed by a filter exhibiting one of the magnitude responses depicted in
In an embodiment, certain positional information is provided to the height filter, along with a bypass signal to enable or disable the virtual height filter within the speaker system.
In certain scenarios, additional information about the listening environment may necessitate further adjustment of the inclination angle through either manual or automatic means. This may include cases where the ceiling is very absorptive or unusually high. In such cases, the amount of sound travelling along the reflected path may be diminished, and it may therefore be desirable to tilt the driver further forward to increase the amount of direct path signal from the driver to increase reproduction efficiency. As this direct path component increases, it is then desirable to increase the filter scaling parameter α, as explained earlier. As such this filter scaling parameter a may be set automatically as a function of the variable inclination angle as well as the other variables relevant to the reflected to direct sound ratio. For the embodiment of
As shown in
In most common cases, however, the height and direct components may be frequency dependent, and the separation circuit comprises crossover circuit that separates the full-bandwidth signal into low and high (or bandpass) components for transmission to the appropriate drivers. This is often the most useful case since height cues are typically more prevalent in high frequency signals rather than low frequency signals, and for this application, a crossover circuit may be used in conjunction with or integrated in the virtual height filter component to route high frequency signals to the upward-firing driver(s) and lower frequency signals to the direct-firing driver(s).
A crossover circuit typically separates the audio into two or three frequency bands with filtered audio from the different bands being sent to the appropriate drivers within the speaker. For example in a two-band crossover, the lower frequencies are sent to a larger driver capable of faithfully reproducing low frequencies (e.g., woofer/midranges) and the higher frequencies are typically sent to smaller transducers (e.g., tweeters) that are more capable of faithfully reproducing higher frequencies.
The crossover circuit 802 may be implemented as an analog circuit using known analog components (e.g., capacitors, inductors, resistors, etc.) and known circuit designs. Alternatively, it may be implemented as a digital circuit using digital signal processor (DSP) components, logic gates, programmable arrays, or other digital circuits.
The crossover circuit of
A bypass switch 826 may be provided to allow the system or user to bypass the virtual height filter circuit during calibration or setup operations so that other audio signal processes can operate without interfering with the virtual height filter. The switch 826 can either be a manual user operated toggle switch that is provided on the speaker or rendering component where the filter circuit resides, or it may be an electronic switch controlled by software, or any other appropriate type of switch. Positional information 822 may also be provided to the virtual height filter 828.
The embodiment of
The crossover implementation shown in
In an embodiment, the upward-firing driver may comprise a pair or array of two or more speakers of different sizes and/or characteristics.
There are several benefits from combining the crossover networks for the upward and direct-firing drivers as shown in
In an embodiment, a passive or active height cue filter is applied to create a target transfer function to optimize height reflected sound. The frequency response of the system, including the height cue filter, as measured with all included components, is measured at one meter on the reference axis using a sinusoidal log sweep and must have a maximum error of ±3 dB from 180 Hz to 5 kHz as compared to the target curve using a maximum smoothing of one-sixth octave. Additionally, there should be a peak at 7 kHz of no less than 1 dB and a minimum at 12 kHz of no more than −2 dB relative to the mean from 1,000 to 5,000 Hz. It may be advantageous to provide a monotonic relationship between these two points. For the upward-firing driver, the low-frequency response characteristics shall follow that of a second-order highpass filter with a target cut-off frequency of 180 Hz and a quality factor of 0.707. It is acceptable to have a rolloff with a corner lower than 180 Hz. The response should be greater than −13 dB at 90 Hz. Self-powered systems should be tested at a mean SPL in one-third octave bands from 1 to 5 kHz of 86 dB produced at one meter on the reference axis using a sinusoidal log sweep.
With regard to speaker directivity, in an embodiment, the upward-firing speaker system requires a relative frequency response of the upward-firing driver as measured on both the reference axis and the direct response axis. The direct-response transfer function is generally measured at one meter at an angle of +70° from the reference axis using a sinusoidal log sweep. The height cue filter is included in both measurements. There should be a ratio of reference axis response to direct response of at least 5 dB at 5 kHz and at least 10 dB at 10 kHz, and a monotonic relationship between these two points is recommended.
Room Correction with Virtual Height Speakers
As discussed above, adding virtual height filtering to a virtual height speaker adds perceptual cues to the audio signal that add or improve the perception of height to upward-firing drivers. Incorporating virtual height filtering techniques into speakers and/or renderers may need to account for other audio signal processes performed by playback equipment. One such process is room correction, which is a process that is common in commercially available AVRs. Room correction techniques utilize a microphone placed in the listening environment to measure the time and frequency response of audio test signals played back through an AVR with connected speakers. The purpose of the test signals and microphone measurement is to measure and compensate for several key factors, such as the acoustical effects of the room and environment on the audio, including room nodes (nulls and peaks), non-ideal frequency response of the playback speakers, time delays between multiple speakers and the listening position, and other similar factors. Automatic frequency equalization and/or volume compensation may be applied to the signal to overcome any effects detected by the room correction system. For example, for the first two factors, equalization is typically used to modify the audio played back through the AVR/speaker system, in order to adjust the frequency response magnitude of the audio so that room nodes (peaks and notches) and speaker response inaccuracies are corrected.
If virtual height speakers are used in the system (through the upward-firing speakers) and virtual filtering is enabled, a room correction system may detect the virtual height filter as a room node or speaker anomaly and attempt to equalize the virtual height magnitude response to be flat. This attempted correction is especially noticeable if the virtual height filter exhibits a pronounced high frequency notch, such as when the inclination angle is relatively high. Embodiments of a virtual height speaker system include techniques and components to prevent a room correction system from undoing the virtual height filtering.
In an embodiment, the room correction compensation component includes a component 1305 that allows the AVR or other rendering component to detect that a virtual height speaker is connected to it. One such detection technique is the use of a room calibration user interface and a speaker definition that specifies a type of speaker as a virtual or non-virtual height speaker. Present audio systems often include an interface that ask the user to specify the size of the speaker in each speaker location, such as small, medium, large. In an embodiment, a virtual height speaker type is added to this definition set. Thus, the system can anticipate the presence of virtual height speakers through an additional data element, such as small, medium, large, virtual height, etc. In an alternative embodiment, a virtual height speaker may include signaling hardware that states that it is a virtual height speaker as opposed to a non-virtual height speaker. In this case, a rendering device (such as an AVR) could probe the speakers and look for information regarding whether any particular speaker incorporates virtual height technology. This data could be provided via a defined communication protocol, which could be wireless, direct digital connection or via a dedicated analog path using existing speaker wire or separate connection. In a further alternative embodiment, detection can be performed through the use of test signals and measurement procedures that are configured or modified to identify the unique frequency characteristics of a virtual height filter in a speaker and determine that a virtual height speaker is connected via analysis of the measured test signal.
Once a rendering device with room correction capabilities has detected the presence of a virtual height speaker (or speakers) connected to the system, a calibration process 1305 is performed to correctly calibrate the system without adversely affecting the virtual height filtering function 1308. In one embodiment, calibration can be performed using a communication protocol that allows the rendering device to have the virtual height speaker 1306 bypass the virtual height filtering process 1308. This could be done if the speaker is active and can bypass the filtering. The bypass function may be implemented as a user selectable switch, or it may be implemented as a software instruction (e.g., if the filter 1308 is implemented in a DSP), or as an analog signal (e.g., if the filter is implemented as an analog circuit).
In an alternative embodiment, system calibration can be performed using pre-emphasis filtering. In this embodiment, the room correction algorithm 1304 performs pre-emphasis filtering on the test signal it generates and outputs to the speakers for use in the calibration process.
In yet a further alternative embodiment, calibration can be performed by adding the virtual height filter response to the target response of the calibration system. In either of these two cases (pre-emphasis filter or modification of target response), the virtual height filter used to modify the calibration procedure may be chosen to match exactly the filter utilized in the speaker. If, however, the virtual height filter utilized with or inside the speaker is a universal filter, which is not modified as a function of the speaker location and room dimensions, then the calibration system may instead select a virtual height filter response corresponding to the actual location and dimensions if such information is available to the system. In this way, the calibration system applies a correction equivalent to the difference between the more precise, location dependent virtual height filter response and the universal response utilized in the speaker. In this hybrid system, the fixed filter in the speaker provides a good virtual height effect, and the calibration system in the AVR further refines this effect with more knowledge of the listening environment.
As described above, the virtual height filter may be implemented in a speaker either on its own or with or as part of a crossover circuit that separates input audio frequencies into high and low bands, or more depending on the crossover design. Either of these circuits may be implemented as a digital DSP circuit or other circuit that implements an FIR (finite impulse response) or IIR (infinite impulse response) filter to approximate the virtual height filter curve, such as shown in
For an embodiment in which the height filter or crossover is provided as part of a speaker system (cabinet plus drivers), this component may be implemented in an analog circuit.
The speakers used in an adaptive audio system that implements virtual height filtering for a home theater or similar listening environment may use a configuration that is based on existing surround-sound configurations (e.g., 5.1, 7.1, 9.1, etc.). In this case, a number of drivers are provided and defined as per the known surround sound convention, with additional drivers and definitions provided for the upward-firing sound components. The upward-firing and direct-firing drivers may be packaged in various different configurations with different stand-alone driver units and combinations of drivers in unitary cabinets.
The dimensions and construction materials for the speaker cabinet may be tailored depending on system requirements, and many different configurations and sizes are possible. For example, in an embodiment, the cabinet may be made of medium-density fiberboard (MDF), or other material, such as wood, fiberglass, Perspex, and so on; and it may be made of any appropriate thickness, such as 0.75″ (19.05 mm) for MDF cabinets. The speaker may be configured to be of a size conforming to bookcase speakers, floor standing speakers, desktop speakers, or any other appropriate size.
As shown in
Any type of appropriate transducer can be used for the upward-firing (top-firing), direct-firing, and tweeter of speaker system 1900. Table 1 below lists some example transducer types for each driver, under an embodiment. It should be noted that this is meant to be an example only and other transducer types and sizes are also possible.
88 dB
In a typical adaptive audio environment, a number of speaker enclosures will be contained within the listening environment. This allows users to easily insert height-enabled speakers into standard surround sound configurations and achieve a highly accurate height image without performing complicated installation of ceiling speakers.
As stated previously, the optimal angle for an upward firing speaker is the inclination angle of the virtual height driver that results in maximal reflected energy on the listener. In an embodiment, this angle is a function of distance from the speaker and ceiling height. While generally the ceiling height will be the same for all virtual height drivers in a particular room, the virtual height drivers may not be equidistant from the listener or listening position 106. The virtual height speakers may be used for different functions, such as direct projection and surround sound functions. In this case, different inclination angles for the upward firing drivers may be used. For example, the surround virtual height speakers may be set at a shallower or steeper angle as compared to the front virtual height drivers depending on the content and room conditions. Furthermore, different a scaling factors may be used for the different speakers, e.g., for the surround virtual height drivers versus the front height drivers. Likewise, a different shape magnitude response curve may be used for the virtual height model that is applied to the different speakers. Thus, in a deployed system with multiple different virtual height speakers, the speakers may be oriented at different angles and/or the virtual height filters for these speakers may exhibit different filter curves.
In general, the upward-firing speakers incorporating virtual height filtering techniques as described herein can be used to reflect sound off of a hard ceiling surface to simulate the presence of overhead/height speakers positioned in the ceiling. A compelling attribute of the adaptive audio content is that the spatially diverse audio is reproduced using an array of overhead speakers. As stated above, however, in many cases, installing overhead speakers is too expensive or impractical in a home environment. By simulating height speakers using normally positioned speakers in the horizontal plane, a compelling 3D experience can be created with easy to position speakers. In this case, the adaptive audio system is using the upward-firing/height simulating drivers in a new way in that audio objects and their spatial reproduction information are being used to create the audio being reproduced by the upward-firing drivers. The virtual height filtering components help reconcile or minimize the height cues that may be transmitted directly to the listener as compared to the reflected sound so that the perception of height is properly provided by the overhead reflected signals.
Aspects of the systems described herein may be implemented in an appropriate computer-based sound processing network environment for processing digital or digitized audio files. Portions of the adaptive audio system may include one or more networks that comprise any desired number of individual machines, including one or more routers (not shown) that serve to buffer and route the data transmitted among the computers. Such a network may be built on various different network protocols, and may be the Internet, a Wide Area Network (WAN), a Local Area Network (LAN), or any combination thereof.
One or more of the components, blocks, processes or other functional components may be implemented through a computer program that controls execution of a processor-based computing device of the system. It should also be noted that the various functions disclosed herein may be described using any number of combinations of hardware, firmware, and/or as data and/or instructions embodied in various machine-readable or computer-readable media, in terms of their behavioral, register transfer, logic component, and/or other characteristics. Computer-readable media in which such formatted data and/or instructions may be embodied include, but are not limited to, physical (non-transitory), non-volatile storage media in various forms, such as optical, magnetic or semiconductor storage media.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited to.” Words using the singular or plural number also include the plural or singular number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words of similar import refer to this application as a whole and not to any particular portions of this application. When the word “or” is used in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list.
While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This application is a continuation and claims the benefit of priority to U.S. patent application Ser. No. 15/315,720 filed on 1 Dec. 2016, which is a U.S. national phase application of International Patent Application No. PCT/US2015/033812 filed on 2 Jun. 2015, which claims the benefit of priority to U.S. Provisional Patent Application No. 62/007,354 filed 3 Jun. 2014, which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62007354 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15315720 | Dec 2016 | US |
Child | 16452480 | US |