An audio system that is configurable to output audio beams representing channels for one or more pieces of sound program content into separate zones based on the positioning of users, audio sources, and/or speaker arrays is disclosed. Other embodiments are also described.
Speaker arrays may reproduce pieces of sound program content to a user through the use of one or more audio beams. For example, a set of speaker arrays may reproduce front left, front center, and front right channels for a piece of sound program content (e.g., a musical composition or an audio track for a movie). Although speaker arrays provide a wide degree of customization through the production of audio beams, conventional speaker array systems must be manually configured each time a new speaker array is added to the system, a speaker array is moved within a listening environment/area, an audio source is added/changed, or any other change is made to the listening environment. This requirement for manual configuration may be burdensome and inconvenient as the listening environment continually changes (e.g., speaker arrays are added to a listening environment or are moved to new locations within the listening environment). Further, these conventional systems are limited to playback of a single piece of sound program content through the single set of speaker arrays.
An audio system is disclosed that includes one or more speaker arrays that emit sound corresponding to one or more pieces of sound program content into associated zones within a listening area. In one embodiment, the zones correspond to areas within the listening area in which associated pieces of sound program content are designated to be played within. For example, a first zone may be defined as an area where multiple users are situated in front of a first audio source (e.g., a television). In this case, the sound program content produced and/or received by the first audio source is associated with and played back into the first zone. Continuing on this example, a second zone may be defined as an area where a single user is situated proximate to a second audio source (e.g., a radio). In this case, the sound program content produced and/or received by the second audio source is associated with the second zone.
Using parameters of the audio system (e.g., locations of the speaker arrays and the audio sources), the zones, the users, the pieces of sound program content, and/or the listening area, one or more beam pattern attributes may be generated. The beam pattern attributes define a set of beams that are used to generate audio beams for channels of sound program content to be played in each zone. For example, the beam pattern attributes may indicate gain values, delay values, beam type pattern values, and beam angle values that may be used to generate beams for each zone.
In one embodiment, the beam pattern attributes may be updated as changes are detected within the listening area. For example, changes may be detected within the audio system (e.g., movement of a speaker array) or within the listening area (e.g., movement of users). Accordingly, sound produced by the audio system may continually account for the variable conditions of the listening environment. By adapting to these changing conditions, the audio system is capable of reproducing sound that accurately represents each piece of sound program content in various zones.
The above summary does not include an exhaustive list of all aspects of the present invention. It is contemplated that the invention includes all systems and methods that can be practiced from all suitable combinations of the various aspects summarized above, as well as those disclosed in the Detailed Description below and particularly pointed out in the claims filed with the application. Such combinations have particular advantages not specifically recited in the above summary.
The embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment of the invention in this disclosure are not necessarily to the same embodiment, and they mean at least one. Also, in the interest of conciseness and reducing the total number of figures, a given figure may be used to illustrate the features of more than one embodiment of the invention, and not all elements in the figure may be required for a given embodiment.
Several embodiments of the invention with reference to the appended drawings are now explained. Whenever the shapes, relative positions and other aspects of the parts described in the embodiments are not explicitly defined, the scope of the invention is not limited only to the parts shown, which are meant merely for the purpose of illustration. Also, while numerous details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In other instances, well-known circuits, structures, and techniques have not been shown in detail so as not to obscure the understanding of this description.
As shown in
Although shown in
As shown in
In one embodiment, the audio source 103A may include one or more audio inputs 205 for receiving audio signals from external and/or remote devices. For example, the audio source 103A may receive audio signals from a streaming media service and/or a remote server. The audio signals may represent one or more channels of a piece of sound program content (e.g., a musical composition or an audio track for a movie). For example, a single signal corresponding to a single channel of a piece of multichannel sound program content may be received by an input 205 of the audio source 103A. In another example, a single signal may correspond to multiple channels of a piece of sound program content, which are multiplexed onto the single signal.
In one embodiment, the audio source 103A may include a digital audio input 205A that receives digital audio signals from an external device and/or a remote device. For example, the audio input 205A may be a TOSLINK connector or a digital wireless interface (e.g., a wireless local area network (WLAN) adapter or a Bluetooth receiver). In one embodiment, the audio source 103A may include an analog audio input 205B that receives analog audio signals from an external device. For example, the audio input 205B may be a binding post, a Fahnestock clip, or a phono plug that is designed to receive a wire or conduit and a corresponding analog signal.
Although described as receiving pieces of sound program content from an external or remote source, in some embodiments pieces of sound program content may be stored locally on the audio source 103A. For example, one or more pieces of sound program content may be stored within the memory unit 203.
In one embodiment, the audio source 103A may include an interface 207 for communicating with the speaker arrays 105 or other devices (e.g., remote audio/video streaming services). The interface 207 may utilize wired mediums (e.g., conduit or wire) to communicate with the speaker arrays 105. In another embodiment, the interface 207 may communicate with the speaker arrays 105 through a wireless connection as shown in
As shown in
Although described and shown as being separate from the audio source 103A, in some embodiments, one or more components of the audio source 103A may be integrated within the speaker arrays 105. For example, one or more of the speaker arrays 105 may include the hardware processor 201, the memory unit 203, and the one or more audio inputs 205.
Each transducer 109 may be individually and separately driven to produce sound in response to separate and discrete audio signals received from an audio source 103A. By allowing the transducers 109 in the speaker arrays 105 to be individually and separately driven according to different parameters and settings (including filters which control delays, amplitude variations, and phase variations across the audio frequency range), the speaker arrays 105 may produce numerous directivity/beam patterns that accurately represent each channel of a piece of sound program content output by the audio source 103. For example, in one embodiment, the speaker arrays 105 may individually or collectively produce one or more of the directivity patterns shown in
Although shown in
In one embodiment, the layout of the speaker arrays 105, the audio sources 103, and the users 107 may be determined using various sensors and/or input devices as will be described in greater detail below. Based on the determined layout of the speaker arrays 105, the audio sources 103, and/or the users 107, audio beam attributes may be generated for each channel of pieces of sound program content to be played in the listening area 101. These beam attributes may be used to output audio beams into corresponding audio zones 113 as will be described in greater detail below.
Turning now to
As noted above, in one embodiment, one or more components of an audio source 103 may be integrated within one or more speaker arrays 105. For example, one of the speaker arrays 105 may be designated as a master speaker array 105. In this embodiment, the operations of the method 600 may be solely or primarily performed by this master speaker array 105 and data generated by the master speaker array 105 may be distributed to other speaker arrays 105 as will be described in greater detail below in relation to the method 600.
Although the operations of the method 600 are described and shown in a particular order, in other embodiments, the operations may be performed in a different order. In some embodiments, two or more operations may be performed concurrently or during overlapping time periods.
In one embodiment, the method 600 may begin at operation 601 with receipt of one or more audio signals representing pieces of sound program content. In one embodiment, the one or more pieces of sound program content may be received by one or more of the speaker arrays 105 (e.g., a master speaker array 105) and/or an audio source 103 at operation 601. For example, signals corresponding to the pieces of sound program content may be received by one or more of the audio inputs 205 and/or the content re-distribution and routing unit 701 at operation 601. The pieces of sound program content may be received at operation 601 from various sources, including streaming internet services, set-top boxes, local or remote computers, personal audio and video devices, etc. Although described as the audio signals being received from a remote or external source, in some embodiments the signals may originate or may be generated by an audio source 103 and/or a speaker array 105.
As noted above, each of the audio signals may represent a piece of sound program content (e.g., a musical composition or an audio track for a movie) that is to be played to the users 107 in respective zones 113 of the listening area 101 through the speaker arrays 105. In one embodiment, each of the pieces of sounds program content may include one or more audio channels. For example, a piece of sound program content may include five channels of audio, including a front left channel, a front center channel, a front right channel, a left surround channel, and a right surround channel. In other embodiments, 5.1, 7.1, or 9.1 multichannel audio streams may be used. Each of these channels of audio may be represented by corresponding signals or through a single signal received at operation 601.
Upon receipt of one or more signals representing one or more pieces of sound program content at operation 601, the method 600 may determine one or more parameters that describe 1) characteristics of the listening area 101; 2) the layout/location of the speaker arrays 105; 3) the location of the users 107; 4) characteristics of the pieces of sound program content; 5) the layout of the audio sources 103; and/or 6) characteristics of each audio zone 113. For example, at operation 603 the method 600 may determine characteristics of the listening area 101. These characteristics may include the size and geometry of the listening area 101 (e.g., the position of walls, floors, and ceilings in the listening area 101) and/or reverberation characteristics of the listening area 101, and/or the positions of objects within the listening area 101 (e.g., the position of couches, tables, etc.). In one embodiment, these characteristics may be determined through the use of the user inputs 709 (e.g., a mouse, a keyboard, a touch screen, or any other input device) and/or sensor data 711 (e.g., still image or video camera data and an audio beacon data). For example, images from a camera may be utilized to determine the size of and obstacles in the listing area 101, data from an audio beacon that utilizes audible or inaudible test sounds may indicate reverberation characteristics of the listening area 101, and/or the user 107 may utilize an input device 709 to manually indicate the size and layout of the listening area 101. The input devices 709 and sensors that produce the sensor data 711 may be integrated with an audio source 103 and/or a speaker array 105 or part of an external device (e.g., a mobile device in communication with an audio source 103 and/or a speaker array 105).
In one embodiment, the method 600 may determine the layout and positioning of the speaker arrays 105 in the listening area 101 and/or in each zone 113 at operation 605. In one embodiment, similar to operation 603, operation 605 may be performed through the use of the user inputs 709 and/or sensor data 711. For example, test sounds may be sequentially or simultaneously emitted by each of the speaker arrays 105 and sensed by a corresponding set of microphones. Based on these sensed sounds, operation 605 may determine the layout and positioning of each of the speaker arrays 105 in the listening area 101 and/or in the zones 113. In another example, the user 107 may assist in determining the layout and positioning of speaker arrays 105 in the listening area 101 and/or in the zones 113 through the use of the user inputs 709. In this example, the user 107 may manually indicate the locations of the speaker arrays 105 using a photo or video stream of the listening area 101. This layout and positioning of the speaker arrays 105 may include the distance between speaker arrays 105, the distance between speaker arrays 105 and one or more users 107, the distance between the speaker arrays 105 and one or more audio sources 103, and/or the distance between the speaker arrays 105 and one or more objects in the listening area 101 or the zones 113 (e.g., walls, couches, etc.).
In one embodiment, the method 600 may determine the position of each user 107 in the listening area 101 and/or in each zone 113 at operation 607. In one embodiment, similar to operations 603 and 605, operation 607 may be performed through the use of the user inputs 709 and/or sensor data 711. For example, captured images/videos of the listening area 101 and/or the zones 113 may be analyzed to determine the positioning of each user 107 in the listening area 101 and/or in each zone 113. The analysis may include the use of facial recognition to detect and determine the positioning of the users 107. In other embodiments, microphones may be used to detect the locations of users 107 in the listening area 101 and/or in the zones 113. The positioning of users 107 may be relative to one or more speaker arrays 105, one or more audio sources 103, and/or one or more objects in the listening area 101 or the zones 113. In some embodiments, other types of sensors may be used to detect the location of users 107, including global positioning sensors, motion detection sensors, microphones, etc.
In one embodiment, the method 600 may determine characteristics regarding the one or more received pieces of sound program content at operation 609. In one embodiment, the characteristics may include the number of channels in each piece of sound program content, the frequency range of each piece of sound program content, and/or the content type of each piece of sound program content (e.g., music, dialogue, or sound effects). As will be described in greater detail below, this information may be used to determine the number or type of speaker arrays 105 necessary to reproduce the pieces of sound program content.
In one embodiment, the method 600 may determine the positions of each audio source 103 in the listening area 101 and/or in each zone 113 at operation 611. In one embodiment, similar to operations 603, 605, and 607, operation 611 may be performed through the use of the user inputs 709 and/or sensor data 711. For example, captured images/videos of the listening area 101 and/or the zones 113 may be analyzed to determine the positioning of each of the audio sources 103 in the listening area 101 and/or in each zone 113. The analysis may include the use of pattern recognition to detect and determine the positioning of the audio sources 103. The positioning of the audio sources 103 may be relative to one or more speaker arrays 105, one or more users 107, and/or one or more objects in the listening area 101 or the zones 113.
At operation 613, the method 600 may determine/define zones 113 within the listening area 101. The zones 113 represent segments of the listening area 101 that are associated with corresponding pieces of sound program content. For example, a first piece of sound program content may be associated with the zone 113A as described above and shown in
In one embodiment, the determination/definition of zones 113 in the listening area 101 may be automatically configured based on the determined locations of users 107, the determined locations of audio sources 103, and/or the determined locations of speaker arrays 105. For example, upon determining that the users 107A and 107B are located proximate to the audio source 103A (e.g., a television) while the users 107C and 107D are located proximate to the audio source 103B (e.g., a radio), operation 613 may define a first zone 113A around the users 107A and 107B and a second zone 113B around the users 107C and 107D. In other embodiments, the user 107 may manually define zones using the user inputs 709. For example, a user 107 may utilize a keyboard, mouse, touch screen, or another input device to indicate the parameters of one or more zones 113 in the listening area 101. In one embodiment, the definition of zones 113 may include a size, shape, and/or a position relative to another zone and/or another object (e.g., a user 107, an audio source 103, a speaker array 105, a wall in the listening area 101, etc.) This definition may also include the association of pieces of sound program content with each zone 113.
As shown in
Following retrieval of one or more parameters that describe 1) characteristics of the listening area 101; 2) the layout/location of the speaker arrays 105; 3) the location of the users 107; 4) characteristics of the audio streams; 5) the layout of the audio sources 103; and 6) characteristics of each audio zone 113, the method 600 may move to operation 615. At operation 615, pieces of sound program content received at operation 601 may be remixed to produce one or more audio channels for each piece of sound program content. As noted above, each piece of sound program content received at operation 601 may include multiple audio channels. At operation 615, audio channels may be extracted for these pieces of sound program content based on the capabilities and requirements of the audio system 100 (e.g., the number, type, and positioning of the speaker arrays 105). In one embodiment, the remixing at operation 615 may be performed by the mixing unit 703 of the content re-distribution and routing unit 701.
In one embodiment, the optional mixing of each piece of sound program content at operation 615 may take into account the parameters/characteristics derived through operations 603, 605, 607, 609, 611, and 613. For example, operation 615 may determine that there are an insufficient number of speaker arrays 105 to represent ambience or surround audio channels for a piece of sound program content. Accordingly, operation 615 may mix the one or more pieces of sound program content received at operation 601 without ambience and/or surround channels. Conversely, upon determining that there are a sufficient number of speaker arrays 105 to produce ambience or surround audio channels based on parameters derived through operations 603, 605, 607, 609, 611, and 613, operation 615 may extract ambience and/or surround channels from the one or more pieces of sound program content received at operation 601.
Following optional mixing of the received pieces of sound program content at operation 615, operation 617 may generate a set of audio beam attributes corresponding to each channel of the pieces of the sound program content that will be output into each corresponding zone 113. In one embodiment, the attributes may include gain values, delay values, beam type pattern values (e.g., cardioid, omnidirectional, and figure-eight beam type patterns), and/or beam angle values (e.g., 0°-180°). Each set of beam attributes may be used to generate corresponding beam patterns for channels of the one or more pieces of sound program content. For example, as shown in
Although
In each case, the beam attributes may be relative to each corresponding zone 113, set of users 107 within the zone 113, and a corresponding piece of sound program content. For example, the beam attributes for the first piece of sound program content described above in relation to
Following operation 617, operation 619 may transmit each of the sets of beam attributes to corresponding speaker arrays 105. For example, the speaker array 105A in
In one embodiment, each piece of sound program content may be transmitted to corresponding speaker arrays 105 along with associated sets of beam pattern attributes. In other embodiments, these pieces of sound program content may be transmitted separately from the sets of beam pattern attributes to each speaker array 105.
Upon receipt of the pieces of sound program content and corresponding sets of beam pattern attributes, the speaker arrays 105 may drive each of the transducers 109 to generate corresponding beam patterns in corresponding zones 113 at operation 621. For example, as shown in
At operation 623, the method 600 may determine if anything in the sound system 100, the listening area 101, and/or in the zones 113 has changed from the performance of operation 603, 605, 607, 609, 611, and 613. For example, changes may include the movement of a speaker array 105, the movement of a user 107, the change in a piece of sound program content, the movement of another object in the listening area 101 and/or in a zone 113, the movement of an audio source 103, the redefinition of a zone 113, etc. Changes may be determined at operation 623 through the use of the user inputs 709 and/or sensor data 711. For example, images of the listening area 101 and/or the zones 113 may be continually examined to determine if changes have occurred. Upon determination of a change in the listening area 101 and/or the zones 113, the method 600 may return to operations 603, 605, 607, 609, 611, and/or 613 to determine one or more parameters that describe 1) characteristics of the listening area 101; 2) the layout/location of the speaker arrays 105; 3) the location of the users 107; 4) characteristics of the pieces of sound program content; 5) the layout of the audio sources 103; and/or 6) characteristics of each audio zone 113. Using these pieces of data, new beam pattern attributes may be constructed using similar techniques described above. Conversely, if no changes are detected at operation 623, the method 600 may continue to output beam patterns based on the previously generated beam pattern attributes at operation 621.
Although described as detecting changes in the listening environment at operation 623, in some embodiments operation 623 may determine whether another triggering event has occurred. For example, other triggering events may include the expiration of a time period, the initial configuration of the audio system 100, etc. Upon detection of one or more of these triggering events, operation 623 may direct the method 600 to move to operations 603, 605, 607, 609, 611, and 613 to determine parameters of the listening environment as described above.
As described above, the method 600 may produce beam pattern attributes based on the position/layout of speaker arrays 105, the positioning of users 107, the characteristics of the listening area 101, the characteristics of pieces of sound program content, and/or any other parameter of the listening environment. These beam pattern attributes may be used for driving the speaker arrays 105 to produce beams representing channels of one or more pieces of sound program content in separate zones 113 of the listening area. As changes occur in the listening area 101 and/or the zones 113, the beam pattern attributes may be updated to reflect the changed environment. Accordingly, sound produced by the audio system 100 may continually account for the variable conditions of the listening area 101 and the zones 113. By adapting to these changing conditions, the audio system 100 is capable of reproducing sound that accurately represents each piece of sound program content in various zones 113.
As explained above, an embodiment of the invention may be an article of manufacture in which a machine-readable medium (such as microelectronic memory) has stored thereon instructions which program one or more data processing components (generically referred to here as a “processor”) to perform the operations described above. In other embodiments, some of these operations might be performed by specific hardware components that contain hardwired logic (e.g., dedicated digital filter blocks and state machines). Those operations might alternatively be performed by any combination of programmed data processing components and fixed hardwired circuit components.
While certain embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those of ordinary skill in the art. The description is thus to be regarded as illustrative instead of limiting.
The present application is a continuation application of U.S. patent application Ser. No. 15/684,790, filed Aug. 23, 2017, now allowed, which is a continuation application of U.S. application Ser. No. 15/513,141, filed Mar. 21, 2017, now abandoned, which is a U.S. National Phase Application under 35 U.S.C. § 371 of International Application No. PCT/US2014/057884, filed Sep. 26, 2014.
Number | Name | Date | Kind |
---|---|---|---|
7346332 | McCarty et al. | Mar 2008 | B2 |
7483538 | McCarty et al. | Jan 2009 | B2 |
7853341 | McCarty et al. | Dec 2010 | B2 |
7970153 | Konagai et al. | Jun 2011 | B2 |
8103009 | McCarty et al. | Jan 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8483853 | Lambourne | Jul 2013 | B1 |
8843228 | Lambourne | Sep 2014 | B2 |
9141645 | Lambourne et al. | Sep 2015 | B2 |
9344206 | Lambourne | May 2016 | B2 |
9348824 | Coburn, IV | May 2016 | B2 |
9671997 | Triplett | Jun 2017 | B2 |
9913011 | Giuliani et al. | Mar 2018 | B1 |
20060204022 | Hooley et al. | Sep 2006 | A1 |
20060233382 | Watanabe | Oct 2006 | A1 |
20070011196 | Ball | Jan 2007 | A1 |
20070025562 | Zalewski et al. | Feb 2007 | A1 |
20120170762 | Kim et al. | Jul 2012 | A1 |
20130223658 | Betlehem | Aug 2013 | A1 |
20140006017 | Sen | Jan 2014 | A1 |
20150208166 | Raghuvanshi et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
2017202717 | May 2018 | AU |
1507701 | Jun 2004 | CN |
1857031 | Nov 2006 | CN |
101874414 | Oct 2010 | CN |
102860041 | Jan 2013 | CN |
103491397 | Jan 2014 | CN |
103916730 | Jul 2014 | CN |
107148782 | Sep 2017 | CN |
3248389 | Nov 2017 | EP |
10-262300 | Sep 1998 | JP |
11-027604 | Jan 1999 | JP |
2006-025153 | Jan 2006 | JP |
2007-124129 | May 2007 | JP |
2007-208318 | Aug 2007 | JP |
2008-035251 | Feb 2008 | JP |
2008-160265 | Jul 2008 | JP |
2008263293 | Oct 2008 | JP |
2009-017094 | Jan 2009 | JP |
2012-065007 | Mar 2012 | JP |
2017-532898 | Nov 2017 | JP |
10-2017-0094125 | Aug 2017 | KR |
2012068174 | May 2012 | WO |
2014036085 | Mar 2014 | WO |
2014151817 | Sep 2014 | WO |
2014138489 | Sep 2014 | WO |
2016048381 | Mar 2016 | WO |
Entry |
---|
PCT International Search Report and Written Opinion for PCT International Appln No. PCT/US2014/057884 dated May 20, 2015 (9 pages). |
U.S. Unpublished Patent Application filed Mar. 21, 2017 by Family et al., entitled “Audio System With Configurable Zones,” U.S. Appl. No. 15/513,141. |
Office Action received for Japanese Patent Application No. 2017-516655, dated May 18, 2018, 6 pgs. (3 pgs. of English Translation and 3 pgs of Office Action). |
European Patent Office—Notification and European Search Report by European Searching Authority dated Apr. 9, 2018 for related European Patent Application No. 17186626.6 (3301947), 10 pages. |
Apple Inc., Australian Office Action dated Feb. 2, 2018, AU Application No. 2017202717. |
Apple Inc., Korean Office Action dated Dec. 8, 2017, KR Application No. 10-2017-7011481. |
PCT International Preliminary Report on Patentability for PCT/US2014/057884, dated Apr. 6, 2017. |
Korean Intellectual Property Office Notice of Preliminary Rejection for Korean Patent Appin No. 10-2018-7034845 dated Jan. 17, 2019. |
Chinese Office Action dated Apr. 2, 2019 for related Chinese Patent Applicaiton No. 201480083576.7 11 Pages. |
Japanese Office Action dated Jul. 8, 2019 for related Japanese Patent Appln No. 2018-120558 9 Pages. |
Australian Examination Report dated Aug. 27, 2019 for related Australian Appln. No. 2018214059 3 Pages. |
Second Office Action for counterpart Chinese Patent Application No. 201480083576.7 with English translation, 6 pgs. (Dec. 5, 2019). |
Final Rejection for counterpart Japanese Patent Application No. 2018-120558 with English translation, 9 pgs. (Jan. 6, 2020). |
Last Preliminary Rejection for counterpart Korean Patent Application No. 10-2018-7034845 with English translation, 11 pgs., (Aug. 28, 2019). |
Preliminary Rejection for counterpart Korean Patent Application No. 10-2020-7014166 with English translation, 9 pp. dated Jul. 1, 2020. |
Ishimaru, Ichirou et al. “Sound focusing technology using parametric effect with beat signal”, Proceedings of the 2002 IEEE Int. Workshop on Robot and Human Interactive Communication, Berlin, Germany (Sep. 25-27, 2002), pp. 277-281. |
Ma, Dengyong et al. “Development and implementation of a speaker array system for sound field focusing”, Technical Acoustics, vol. 27, No. 5, Pt. 2 (Oct. 2008), pp. 316-317. |
Chinese Office Action from related Chinese Patent Application No. 202010494045.4 dated Mar. 29, 2021, (26 pages including English translation). |
Korean Office Action from related Korean Patent Application No. 10-2020-7014166 dated Jan. 19, 2021, (11 pages including English translation). |
Chinese Office Action from related Chinese Patent Application No. 202010494045.4 dated Oct. 28, 2021 (21 pages including English translation). |
Notice of Preliminary Rejection from related Korean Patent Application No. 10-2021-7028911, dated Jan. 10, 2022 (6 pages including translation). |
Number | Date | Country | |
---|---|---|---|
20200213735 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15684790 | Aug 2017 | US |
Child | 16799440 | US | |
Parent | 15513141 | US | |
Child | 15684790 | US |