1. Field of the Invention
The present invention relates generally to devices and a system for providing diagnosis and therapy for audiological diseases and methods of using the same.
2. Description of the Related Art
Tinnitus is the sensation of noise that is caused by a bodily condition, such as disturbance of the auditory nerve or other neurological pathology. Absent of external auditory stimulus, tinnitus patients often hear one or more tones. The causes of tinnitus are believed to be numerous and still not quite fully understood. Typical tinnitus therapy includes drug therapy and/or sound or masking therapy, such as residual inhibition therapy.
Physicians use various testing procedures to determine the parameters of the tinnitus and the tones to be applied to the patient for specific types of therapy. A physician can perform an audible diagnostic test with qualitative patient feedback. Other testing procedures also include the use of expensive functional magnetic resonance imaging (FMRI), positron emission tomography (PET), electro-encephalograms (EEGs), Auditory event-related potential (ERP) and magnetic stimulation.
During sound therapy the patient is exposed to specific tones determined as a function of the tinnitus tones heard by the patient and any tones of which the patient has partial or total hearing loss. The tones used during sound therapy are intended to reduce the tinnitus symptoms. However, most effects from a single session of sound therapy are short lived, requiring patients to undergo repeated therapy sessions. In a few cases, fifteen minutes of residual inhibition therapy relieved tinnitus symptoms for a single day. Tinnitus symptoms vary significantly, not just from patient to patient, but also over time, with or without therapy, and over the course of therapy. Similarly, the therapeutic sounds (tones and volumes) that produce the best results vary from patient to patient, and the most effective therapeutic sounds often vary over the course of extended treatment.
The lack of effective sound therapies and flexible audiological platforms inhibits physicians from prescribing the most effective treatments for tinnitus. Furthermore, physicians must regularly test patients' progress to determine how to adjust the sound therapy. A large quantity of the physician's and patient's time and resources are used amending the prescribed therapies. This need for re-diagnosis also often leads to outdated, and thus imprecise, prescribed therapies, and also results in increased patient absenteeism for return visits to be re-evaluated and have sound therapies updated.
The ability to track patient treatment for sound therapy can be difficult, especially when the sound therapy occurs outside of a physician's office. The patient can be non-compliant by not following the sound treatment protocols. This lack of accurate tracking of the applied therapy impairs physicians' abilities to treat patients properly. The lack of accurate tracking also impedes health professionals attempting to create an accurate tinnitus model to use for predicting the most effective therapies and/or custom modification of an individual's therapy.
Therefore, there exists a need for a combined system to provide tinnitus therapy with frequent re-evaluation of the tinnitus profile. There also exists a need for an evaluation system reducing or obviating physician visits. There is also a need for a therapeutic and evaluation device that is easy to transport and use by the patient. Furthermore, there is a need for an accurate empirical model of tinnitus, such as a model that accurately predicts an effective sound therapy based on diagnostic inputs.
A system for treatment of an audiological deficiency is disclosed. The system has a remote device and a local device. The local device is communicating over a network to the remote device. The local device is configured to evaluate and treat the audiological deficiency.
The local device can treat the audiological deficiency according to a treatment protocol. The remote device can send a treatment protocol to the local device. The remote device can be a server.
The system can also have a database that is readable by the remote device. The database can have data regarding the audiological deficiency. The remote device can compute the treatment protocol with a computation. That computation can include use of the data.
The system can also have a physician's device communicating over a network to the remote device. The physician's device can control the treatment protocol.
Another system for treating an audiological deficiency is disclosed. The system has a remote device and a local device. The remote device is configured to access a database comprising data. The local device is configured to network with the remote device and create therapeutic audio. The therapeutic audio is determined from a function comprising the data.
A first device for application of a therapeutic protocol for audiological deficiencies is also disclosed. The device has a data transfer device and an acoustic transducer. The data transfer device is configured to communicate with a remote device. The data transfer device receives the therapeutic protocol from the remote device.
A method of treating a user having an audiological deficiency having symptoms is also disclosed. The method includes applying therapy for the symptoms using a portable device. The method also includes diagnosing the symptoms using the portable device.
The portable device can weigh less than about 1 pound. Diagnosing can include receiving user feedback during therapy. User feedback can include a biometric and/or a qualitative user response.
The system 2system 2 can have a physician's device 4, a remote device 6, a local device 8 and a database 10. The physician's device 4 can be configured to communicate, shown by arrows 12, with the remote device 6. The remote device 6 can be configured to communicate with the local device 8, shown by arrows 14. The remote device 6 can be configured to communicate, shown by arrows 16, with the database 10. The physician's device 4 can be configured to communicate directly, shown by arrows 18, with the local device 8. The database 10 can be configured to communicate directly, shown by arrows 20, with the local device 8 and/or the physician's device 4.
The physician's device 4, the remote device 6 and the local device 8 can be, for example, laptop or desktop personal computers (PCs), personal data assistants (PDAs), network servers, portable (e.g., cellular, cordless) telephones, portable audio players and recorders (e.g., mp3 players, voice recorders), car or home audio equipment, or combinations thereof. The physician's device 4, the remote device 6 and the local device 8 can be processors connected on the same circuit board, components of the same processor, or combinations thereof and/or combinations with the examples supra. The physician's device 4, the remote device 6 and the local device 8, or any combination thereof, can be a single device of any example listed supra, for example a single PC or a single, integrated processor.
The database 10 can be structured file formats, relational (e.g., Structured Query Language types, such as SQL, SQL1 and SQL2), object-oriented (e.g., Object Data Management Group standard types, such as ODMG-1.0 and ODMG-2.0), object-relational (e.g., SQL3), or multiple databases of one or multiple types. The database 10 can be a single set of data. The database 10 can be or comprise one or more functions. The database 10 can be stored on the remote device 6. The database 10 can be stored other than on the remote device 6.
The communications 12, 14, 16, 18 and 20 can be via hardwiring (e.g., between two processors or integrated circuit devices on a circuit board), transferable media (e.g., CD, floppy disk, removable flash memory device, SIM card, a smart card, USB based mass storage device), networked connection (e.g., over the internet, Ethernet (IEEE 802.3), universal serial bus (USB), Firewire (IEEE 1394), 802.11 (wireless LAN), Bluetooth, cellular communication modem), direct point-to-point connection (e.g., serial port (RS-232, RS-485), parallel port (IEEE 1284), Fiber Channel, IRDA infrared data port, modem, radio such as 900 MHz RF or FM signal) or combinations thereof. The communications 12, 14, 16, 18 and 20 can be constant or sporadic.
The physician's device 4 can have local memory. The memory can be non-volatile, for example a hard drive or non-volatile semiconductor memory (e.g., flash, ferromagnetic). A copy of all or part of the database 10 can be on the local memory of the physician's device 4. The physician's device 4 can be configured to communicate with the database 10 through the remote device 6.
The remote device 6 can be configured to transfer data to and from the physician's device 4, the local device 8 and/or the database 10. The data transfer can be through a port (e.g., USB, Firewire, serial, parallel, Ethernet), a media player and/or recorder (e.g., CD drive, floppy disk drive, smart card reader/writer, SIM card, flash memory card reader/writer (e.g., Compact Flash, SD, Memory Stick, Smart Media, MMC), USB based mass storage device), a radio (e.g., Bluetooth, 802.11, cellular or cordless telephone, or radio operating at frequencies and modulations such as 900 Mhz or commercial FM signals) or combinations thereof.
Data stored in the database 10 can include all or any combination of the data found in patient profiles, profile assessment data, relevant assessment data, execution therapy reports, recommended therapy reports, physician's therapy reports, executed session reports and analyzed session reports, several described infra. The reports can be compressed and decompressed and/or encrypted and decrypted at any point during the methods described herein. The reports can be script, XML, binary, executable object, text files and composites of combinations thereof.
The local device 8 can receive power from an external power source, for example a substantially unlimited power supply such as a public electric utility. The local device 8 can have a local power source. The local power source can be one or more batteries, for example rechargeable batteries, photovoltaic transducers, or fuel cells (e.g., hydrocarbon cells such as methanol cells, hydrogen cells). The local device 8 can be configured to optimize power consumption for audio output.
Power consumption can be reduced by placing sub-systems that are not in use into a low power state (e.g., sleep). Power consumption can be reduced by placing sub-systems that are not in use into a no power state (e.g., off). Power consumption can be reduced by dynamically changing the frequency of the clock governing one or more sub-systems.
Power consumption can be reduced by the inclusion of a specialized sound generation/playback integrated circuit. The specialized sound generation/playback integrated circuit can generate the therapeutic sounds through direct generation of the therapeutic sounds and/or can playback stored therapeutic sound. Power consumption of the specialized sound generation/playback integrated circuit can be substantially lower than other processing elements within the local device. During operation of the specialized sound generation/playback integrated circuit the other processing elements of the device can be placed into a low power or no power state. The power consumption reduction methods supra can be used individually or in any combination.
The local device 8 can have local memory, for example flash memory. The amount of local memory can be from about 64 kB to about 128 MB, more narrowly from about 1 MB to about 32 MB, yet more narrowly from about 4 MB to about 16 MB. The local device 8 can have a processor. The processor can have, for example, a clock speed equal to or greater than about 16 MHz, more narrowly equal to or greater than about 66 MHz. The local memory can be a portion of a larger memory device. The local device 8 can have random access memory (RAM) for the treatment available to the processor. The amount of RAM for the treatment can be equal to or greater than about 4 Mb, more narrowly equal to or greater than about 32 Mb. The RAM for the treatment can be a portion of a larger a quantity of RAM available to the processor. The local device 8 can have a real-time clock. The clock, for example a real-time clock, can be used to time stamp (i.e., couple with temporal data) any data within the local device. Data that can be time stamped can include data from any reports or transmission of any report or data, such as for reports pertaining to therapy sessions and conditions. Time stamp data can include relative or absolute time data, such as year, calendar date, time of day, time zone, length of operation data and combinations thereof.
The local device 8 can have a visual screen 22. The visual screen 22 can be a visual output and/or input, for example a transparent touch-pad in front of a display. The visual output can be a liquid crystal display (LCD) including an organic LCD, cathode ray tube, plasma screen or combinations thereof. The local device 8 can have user controls 24. The user controls 24 can be knobs, switches, buttons, slides, touchpads, keyboards, trackballs, mice, joysticks or combinations thereof. The user controls 24 can be configured to control volume, provide feedback (e.g., qualitative ranking, such as a numerical score, text or speech messages to physician), control the treatment, change treatment modes, set local device 8 parameters (e.g., day, month, year, sensor input parameters, default settings), turn local device 8 on or off, initiate communication and or synchronization with remote device 6, initiate communication and or synchronization with the physician's device 4 or combinations thereof.
The local device 8 can have one or more external transducers 26. The external transducers 26 can be audio transducers, for example speakers and/or microphones. The external transducers 26 can sense ambient conditions (e.g., noise/sound, temperature, humidity, light, galvanic skin response, heart rate, respiration, EEG, auditory event-related potentials (ERP)) and/or be used to record verbal notes. The external transducers 26 can emit sound. The local device 8 can store in the local device's memory signals detected by the sensors and transducers of the local device 8. The sensor and transducer data can be stored with time stamp data.
The local device 8 can have a data transfer device 28. The data transfer device 28 can be a port (e.g., USB, Firewire, serial, parallel, Ethernet), a transferable storage media reader/writer (e.g., CD drive, floppy disk drive, hard disk drive, smart card, SIM card, flash memory card (e.g., Compact Flash, SD, Memory Stick, Smart Media, MMC), USB based mass storage device), a radio (e.g., Bluetooth, 802.11, cellular or cordless telephone, or radio operating at frequencies and modulations such as 900 Mhz or commercial FM signal) or combinations thereof. The data transfer device 28 can facilitate communication with the remote device 6.
The local device 8 can have one or more local device connectors 30. The local device connectors 30 can be plugs and/or outlets known to one having ordinary skill in the art. The local device connectors 30 can be cords extending from the local device 8. The cords can terminate attached to plugs and/or outlets known to one having ordinary skill in the art. The local device connectors 30 can be media players/recorders (e.g., CD drive, floppy disk drive, hard drive, smart card reader, SIM card, flash memory card, USB based mass storage device). The local device connectors 30 can be radio (e.g., Bluetooth, 802.11, radio, cordless or cellular telephone).
The local device 8 can have one, two or more earpieces. The local device connectors 30 can facilitate communication with the earpiece 32.
The earpiece 32 can have a therapy transducer 38. The therapy transducer 38 can be an acoustic transducer, for example a headphone speaker. A therapy lead 40 can extend from the therapy transducer 38.
An acoustic channel 42 can extend from the therapy transducer 38 to the proximal end of the probe 34 The earpiece 32 can have an ambient channel 44 from the distal end of the earpiece 32 to the proximal end of the earpiece 32. The ambient channel 44 can merge, as shown at 46, with the acoustic channel 42. The ambient channel 44 can improve transmission of ambient sound, humidity and temperature through the earpiece 32. The ambient channel 44 can be a channel from the distal end to the outside and/or proximal end of the earpiece 32.
The earpiece 32 can have one or more ambient conditions sensors 48. The ambient conditions sensors 48 can sense ambient sound frequency and/or amplitude, temperature, light frequency and/or amplitude, humidity or combinations thereof. An ambient lead 50 can extend from the ambient conditions sensor 48.
The earpiece 32 can have one or more biometric sensor strips 52 and/or biometric sensor pads 54. The biometric sensors 52 and 54 can be configured to sense body temperature, pulse (i.e., heart rate), perspiration (e.g., by galvanic skin response or electrodermal response), diastolic, systolic or average blood pressure, electrocardiogram (EKG), brain signals (e.g., EEG, such as EEG used to determine sensory threshold audio levels, auditory event-related potentials (ERP)), hematocrit, respiration, movement and/or other measures of activity level, blood oxygen saturation and combinations thereof. The biometric sensors 52 and 54 can be electrodes, pressure transducers, bimetallic or thermister temperature sensors, optical biometric sensors, or any combination thereof. An example of optical biometric sensors is taught in U.S. Pat. No. 6,556,852 to Schulze et al., which is hereby incorporated by reference in its entirety. A strip lead 56 can extend from the biometric sensor strip 52. A pad lead 58 can extend from the biometric sensor pad 54.
The leads 40, 50, 56 and 58 can each be one or more wires. The leads 40, 50, 56 and 58 can carry power and signals to and from their respective transducer 38 and sensors 48, 52 and 54.
The leads 40, 50, 56 and 58 can attach to an earpiece connector 60. The earpiece connector 60 can be one or more cords extending from the earpiece 32. The cords can terminate attached to plugs and/or outlets (not shown) known to one having ordinary skill in the art. The earpiece connector 60 can be a plug and/or an outlet known to one having ordinary skill in the art. The earpiece connector 60 can be a media player/recorder (e.g., CD drive, flash memory card, SIM card, smart card reader). The earpiece connector 60 can be a processor and/or a radio (e.g., Bluetooth, 802.11, cellular telephone, radio). The earpiece connector 60 can connect to the local device connector 30 during use.
The patient's tinnitus profile can be determined after the physician has determined that the patient has tinnitus. The tinnitus profile can include the symptom tones and the respective amplitudes for each tone. The tinnitus profile can include tones for which the patient has partial or total hearing loss, the degree of hearing loss at each of the tones, an objectively and/or subjectively determined impairment score or combinations thereof.
As shown by 74 in
As shown by 78 in
For example, the profile assessment data 76 can be compared to the relevant assessment data 80 and the best matches of pretreatment conditions can be determined therefrom. Of the successful matches, the treatment protocols used to generate successful outcomes (e.g., results above a threshold level) can be assessed and averaged. This average can be used to derive an assessment report.
The remote device 6 can then produce the assessment report 82 and send the assessment report 82 to the physician's device 4, as shown by 84 in
The assessment report 82 can include the assessment data, a likelihood of patient success, a threshold success level for the patient, a recommendation regarding whether the patient's likelihood exceeds the patient's threshold success level, a prognosis, an initial recommended therapy report, graphs of all collected data comparing the patient to similar patients, case examples of similarly assessed patients or combinations thereof. Therapy reports can include a protocol or prescription for administering sound therapy sessions. The protocol can include one or more sounds, such as therapeutic audio. The sounds can include one or more tones, gains and/or amplitudes for each tone, one or more noise profiles (e.g., the shape of the power spectrum), music, mechanical representation of the determined audio treatment information, overall gains and/or amplitudes for each noise profile, other sounds (e.g., buzzes, swirling, modulated tones, pulses) and their respective overall gains and/or amplitudes, a therapy schedule, recommended re-evaluation dates and/or times, and combinations thereof.
The therapy schedule can include when (e.g., dates and/or times) each tone and/or noise is to be played, how long each tone and/or noise is to be played, instructions for the patient and/or the system 2system 2 regarding what to do if a therapy is missed.
The therapy report can be a script, XML, binary, executable object, text file and composites of combinations thereof. The therapy report can be encrypted. The therapy report can be compressed.
The threshold success level for the patient can be assigned a value by the patient's insurance company. The threshold success level can be assigned a value based on normative database averages. The threshold success level can be assigned a value by the physician. The physician can then determine whether the patient's likelihood for success exceeds the threshold success level for the patient. The physician can overrule the remote device's recommendation of whether the patient's likelihood for success exceeds the patient's threshold success level. If the physician determines to continue with the method of audiological treatment 62, the local and remote devices 8 and 6 can be initialized 66.
The physician's therapy report can include the physician's selection as to present and future methods of generating the execution therapy report. The execution therapy report can be entirely copied from the physician's therapy report (i.e., a manual selection), entirely copied from the recommended therapy report (i.e., an automated selection), or generated by the remote device 6 as a function of the recommended therapy report and the physician's therapy report (i.e., a hybrid selection).
If the physician's therapy report has an automated or default selection, the execution therapy report can be copied from the recommended therapy report.
If the physician's therapy report has a hybrid selection, the physician's therapy report and the recommended therapy report can be processed by a function (f1) that results in the execution therapy report. That function can be generated, by the physician modifying any of the data in the recommended therapy report. For example, the physician can modify the recommended therapy report to include additional scheduled treatment sessions.
The local device 8 can be initialized by deleting prior patient information from the memory of the local device 8 and restoring the settings to a default state. The local device 8 can then be synchronized to the remote device 6 as described infra.
The remote device 6 can then compare the profile assessment data 76 to the relevant assessment data 80 to produce a recommended therapy report. For example, the remote device 6 can identify that the volume level for the perceived tinnitus tone has decreased as a result of treatment, and consequently modify the volume in the recommended therapy report.
The remote device 6 can send and store the initial recommended therapy report 88 in the database 10, as shown by 90 in
The training program can be skipped by the user automatically or by the local device 8, for example after the first use. The ability to skip the training program can be inhibited by the physician as part of the execution therapy report.
When the therapy schedule of the execution therapy report calls for therapy, the local device 8 can signal the patient to undergo therapy. The signal can be audible, visual, vibratory or a combination thereof. The patient can then apply the local device 8. Application of the local device 8 can include placing the speaker close enough to be heard at the desired volume and/or wearing the earpiece. The sound therapy session can then begin. The patient can receive the sound therapy by listening to the sound therapy session. The listening can include listening over the on-board speaker (i.e., the external transducer 26) and/or listening through the earpieces 32 or other auxiliary speakers.
While delivering the sound therapy session, the local device 8 can be controlled by the software. The local device 8 can run the sound therapy session (e.g., schedule, tones, gain) as prescribed by the execution therapy report. The local device's software can adjust the volume based on the ambient noise level. The volume can be adjusted so that emitted sound can be appropriately perceived by the patient given the ambient noise level.
The local device's software can apply feedback from biometric sensors 52 and 54 to the local device 8. For example, the patient's heart rate signal can be used as part of a biofeedback system to relax the patient while listening to the emitted sound.
The biometric sensors 52 and 54 can be internal or external to the local device 8. The local device 8 can use the biometric values to determine the efficacy of the treatment and adjust the treatment during or between sessions based on the efficacy. The biometrics can be sensed and recorded by the local device 8. The biometrics can be constantly or occasionally sensed and displayed to the user during use of the local device 8. The user can be informed of the efficacy of the treatment. The user can attempt to consciously control the biometrics (e.g., slow the heart rate by consciously calming).
The local device's software can play audio and/or visual messages from the physician's device 4 stored in the execution therapy report.
The patient can control the therapy. The patient can adjust the therapeutic amplitudes/gain and tones, for example with a mixer. The patient can also select a background sound to be delivered with the therapy session. Background sounds include music, nature sounds, vocals and combinations thereof. The user can select predefined modes for the local device 8. For example, the user can select a mode for when the user is sleeping (e.g., this mode can automatically reduce the sound amplitude after a given time has expired), a driving mode (e.g., this mode can play ambient noise with the sound therapy session, or set a maximum volume), a noisy mode, a quiet mode, an off mode or combinations thereof. The patient can remove the local device 8 from audible range, effectively stopping therapy. The local device 8 can record the therapy stoppage in the session report.
Patient feedback can be sent to the local device 8 during or after a therapy session. For example, the patient can provide a qualitative rating of the therapy (e.g., thumbs-up/thumbs-down, or on a ten-point scale), record verbal or text notes regarding the therapy into the memory of the local device 8 or combinations thereof. Any biometrics (e.g., as measured by the local device 8 or by another device) can be entered into memory of the local device 8, manually entered through the local device 8 if necessary. The feedback, biometric and/or non-biometric, can be time and date stamped.
As
During use of the local device 8, the local device 8 can perform a sensory threshold test. The sensory threshold test can be initiated by the user or the local device 8. The sensory threshold test can be performed on a frequency (e.g., before every therapy session, every morning, once per week) assigned by the execution therapy report.
During the sensory threshold test, the local device 8 can emit the user's tinnitus tones to the user. The local device 8 can then adjust the amplitude of the produced tones (e.g., trying higher and lower amplitudes, using the method of limits). The user can send feedback to the local device 8 regarding the user's ability to match the amplitudes of the user's natural tinnitus tones to the amplitudes of the local device-generated tones. The local device 8 can then store the resulting amplitudes in the executed session report. The user and/or the local device 8 can adjust the local device-generated tones individually (e.g., with a manually-controlled mixer on the local device and/or to account for ambient sounds).
After a therapy session ends, the local device 8 can produce an executed session report. The executed session report can include all executed session data that has occurred since the last synchronization 94 between the local device 8 and the remote device 6. The session data can include the usage (e.g., number of times used, length of time used, time of day used, date used, volume at which it was used), patient feedback (e.g., qualitative rating of the therapy, verbal or text notes, biometric feedback or combinations thereof), prior therapy reports, including the immediately prior therapy report. Subjective feedback from the user can be solicited by the local device 8 by use of interactive entertainment (e.g., a game).
The remote device 6 can retrieve from the database 10 the execution therapy report 98 to be executed next by the local device 8, as shown by 100 in
Statistical methods and algorithms can be used to compare expected patient progress with actual patient progress. Changes in the patient protocol can be generated, at least in-part, based on this analysis. Changes can include, for example, lengthening or shortening the amount of treatment time, changes in tone volume, recommendation for reevaluation.
The analyzed session report 106 can include the session data, an analysis including a new recommended therapy report. The new recommended therapy report can be modified based, at least in-part, on the analysis of session data,. For example, if the patient's progress is not as predicted or expected, the amplitude of the treatment tone can be increased, the duration of the treatment can be increased, a new treatment may be added or combinations thereof.
As shown by 103 in
The remote device 6 can send the to-be-executed-next execution therapy report 98 to the local device 8, as shown by 104 in
The remote device 6 can send and store the analyzed session report 106 in the database 10, as shown by 108 in
An Application Service Provider (ASP) can be used in conjunction with the system and/or method. The ASP can enable any of the devices 4, 6 and/or 8, the patient and/or the doctor, access over the Internet (e.g., by any of the devices 4, 6 and/or 8) or by telephone to applications and related services regarding the system 2 and use thereof. For example, the ASP can perform or assist in performing the sensory threshold test. In another example, the ASP can include a forum where patients can pose questions or other comments to trained professionals and/or other patients. In yet another example, the ASP can monitor and analyze the database 10, and the ASP can make suggestions therefrom to physicians and/or health monitoring organizations.
Methods and parts of methods are disclosed herein as being performed on one device 4, 6 and/or 8 for exemplary purposes only. As understood by one having ordinary skill in the art with this disclosure, any method or part of a method can be performed on any device 4, 6 and/or 8.
It is apparent to one skilled in the art that various changes and modifications can be made to this disclosure, and equivalents employed, without departing from the spirit and scope of the invention. Elements of systems, devices and methods shown with any embodiment are exemplary for the specific embodiment and can be used on other embodiments within this disclosure.