This application claims benefit of Ser. No. 2008904747, filed Sep. 11, 2008, in Australia and which application is incorporated herein by reference. To the extent appropriate, a claim of priority is made to the above disclosed application.
This disclosure relates to an auger boring machine for use in underground boring. The devices disclosed herein have a particular application in boring horizontal, longitudinally extending bores, and it will be convenient to hereinafter describe the devices with reference to this application. It is to be appreciated however that the devices disclosed in this disclosure may have other applications, including but not limited to boring vertical shafts.
The following discussion of machines is included in this specification solely for the purpose of providing a context for the present disclosure. It is not suggested that any of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present disclosure.
An auger boring machine is a type of boring machine that uses a rotatable cutting head to cut the earth, and a driven auger to transport the spoil away from the cutting head. A casing is used to retain the integrity of the bore and to allow the spoil to be transported along the bore. The casing may also be left in place after the bore is complete to provide a conduit for services to pass there through. An auger boring machine is often used where services need to be laid underground and it is not convenient to dig a trench, such as when passing under a roadway or rail line.
The casing and auger have a tolerance that allows the auger to rotate within the casing, provided the auger and casing are substantially aligned with the selected direction. The casing can be diverted from its selected direction by variations in friction of the outside wall of the casing and the surrounding earth. Alternatively the casing can be diverted by tree roots or floaters.
Failure to maintain the auger and casing substantially aligned with the selected direction can result in the auger rubbing on the inside wall of the casing. This creates friction between the auger and the casing and causes the drive motor to work harder. Excessive misalignment can result in damage or failure of the boring machine.
The inventor is aware of an auger boring machine that has a short casing piece at the front of the main casing, which can pivot relative to the main casing to provide the machine with steering capabilities. A ram is provided external to the main casing which is operable to pivot the short casing piece. This arrangement only allows for steering in one plane. Furthermore, the ram being external to the casing adversely imparts on movement of the casing through the bore and, is susceptible to damage as the casing is moved along the bore.
Obstructions such as a tree root or more critically a floater often block the selected path of the bore. Where this occurs the obstruction needs to be ground up so that it can pass through the cutting head, or between the cutting head and the casing, into the flight of the auger. This is time consuming and can result in dulling of the cutting head.
It would therefore be desirable to provide an auger boring machine that addressed at least one of these problems. It is preferred that the machine be capable of providing a useful alternative to overcoming obstructions in the path of the selected direction. It is also preferred that the machine be configured to substantially maintain alignment with the selected direction.
According to this disclosure, there is provided an auger boring machine for boring through earth. The boring machine includes a cutting head locatable in use so as to engage a working face of the earth. The cutting head is rotatable about a drive axis so as to cut the earth at the working face. The boring machine also includes an auger that is rotatable about the drive axis for transporting spoil resulting from the operation of the cutting head away from the cutting head, and a casing housing the auger which is urged to move into the bore behind the cutting head. The cutting head is movable in the axial direction relative to the casing.
It is preferred that the auger boring machine include a steering shoe located near the cutting head for directing the movement of the casing into the bore in a steered direction transverse to the axial direction. It is further preferred that the steering shoe is rotated about the drive axis relative to the casing for adjusting the steered direction. It is further preferred that the steering shoe is rotated in conjunction with rotation of the cutting head to adjust the steered direction. It is further preferred that the cutting head is retracted in the axial direction to engage directly or indirectly the steering shoe and is rotated to rotate the steering shoe. It is further preferred that the cutting head is rotatable in a clockwise or an anticlockwise direction to rotate the steering shoe accordingly. It is further preferred that the cutting head is configured to positively engage the steering shoe so that rotation of the cutting head causes direct rotation of the steering shoe. It is further preferred that the cutting head and steering shoe include one or more teeth which interact to positively engage. It is further preferred that the steering shoe includes a steering sleeve having an eccentric configuration relative to the drive axis of the cutting head.
In one embodiment, the steering sleeve can include an inner surface that is concentric with the drive axis and an outer surface that is eccentric with respect to the drive axis. The outer surface can include a first portion that is positioned further radially outwardly from the drive axis than a second portion of the outer surface. In use of the auger boring machine, the first portion of the steering sleeve is spaced from the drive axis in an opposite direction to the intended steer direction. By turning the steering sleeve about the drive axis, the position of the first portion of the outer surface can be circumferentially adjusted to steer the auger boring machine. In another embodiment, the steering sleeve can be rotatably mounted within the casing and can include an outer surface that is concentric with inner and outer surfaces of the casing and is eccentric with respect to the drive axis. The steering sleeve also includes an inner surface that is concentric with the auger and the drive axis. The inner surface can be configured to contact the auger at a location adjacent the cutting head. By rotating the steering sleeve within the casing, the circumferential orientation of the outer surface can be adjusted relative to the auger. Circumferential adjustment of the steering sleeve causes radial movement of the auger relative to the casing which provides steering of the auger boring machine through radial movement of the cutting head relative to the casing.
It is preferred that the auger boring machine include thrust means for moving the cutting head and the auger axially relative to the casing. In one embodiment, the thrust means moves the cutting head and the auger axially relative to the casing by no more than one flight length of the auger. In other embodiments, the thrust means is capable of moving the cutting head and the auger along the drive axis relative to the casing an axial distance equal to at least one flight length of the auger. In still other embodiments, the thrust means is capable of moving the cutting head and the auger along the drive axis relative to the casing an axial distance equal to at least three-quarters of one flight length of the auger.
It is preferred that the auger boring machine include a rotational drive means for rotating the cutting head and auger, the rotational drive means being movable in the axial direction by operation of the thrust means so as to move the cutting head relative to the casing. It is further preferred that the rotational drive means is located on a movable frame and associated with thrust means for moving the rotational drive means in the axial direction. It is further preferred that the thrust means is operative to urge the casing into the bore. It is further preferred that the thrust means engages directly or indirectly a thrust bridge which is movable with the casing into the bore, the casing being fixed to the thrust bridge so as to resist rotation relative to the bore. It is further preferred that the thrust bridge is located on a movable frame that is movable independently of movement of the cutting head.
It is further preferred that the thrust means include any one of a ram, scissor drive, rack and pinion or screw drive.
It will be convenient to hereinafter describe in greater detail preferred embodiments of the auger boring machine according to the disclosure, with reference to the accompanying drawings. The particularity of the drawings and the related detailed description is not to be understood as superseding the generality of the preceding broad definition of the invention.
Referring to
The cutting head 2 is located at a distal end of the auger 3 remote from the drive means 5. The drive means 5 is located adjacent a proximal end of the auger 3. The cutting head 2 is rotated about a drive axis X-X by the drive means 5 and engages a working face 9 of the earth 7 so as to reduce the earth 7 to particulate material often referred to as spoil. The type and configuration of the cutting head 2 may vary according to the conditions within which the machine 1 is operating, in a manner that will be understood by those skilled in the industry. More specifically, the invention is not limited to any one particular style, shape, configuration of cutting head 2. The rotational drive means 5 can be powered by any number of different configurations. Example configurations include a hydraulic drive or a direct or indirect power take-off from an engine.
The auger 3 extends between the cutting head 2 and the rotational drive means 5 and is rotatable about the drive axis X-X in conjunction with the cutting head 2 so as to transport spoil in a distal to proximal direction from the cutting head 2 to an extraction tub 10 located between the auger 3 and the rotational drive means 5. Augers 3 with a different flight characteristic of amplitude and wavelength may be selected depending upon the conditions in which the machine 1 is operating.
Torque for rotating the auger 3 is transferred from the rotational drive means 5 to the auger 3 by a drive stem extension 120. A proximal end of the drive stem extension 120 couples to the rotational drive means 5 and a distal end of the drive stem extension 120 is coupled to the proximal end of the auger 3. The drive stem extension 120 is aligned along the axis X-X and extends through the extraction tub 10. The extraction tub 10 provides a location for spoil to exit from the bore. An auger section 121 is secured along a distal portion of the drive stem extension 120. The auger section 121 conveys spoil received from the auger 3 proximally through the extraction tub 10 when the drive stem extension 120 is rotated in a first direction about the axis X-X. An extraction paddle structure 122 is secured along a proximal portion of the drive stem extension 120. The extraction paddle structure 122 is rotated about the axis X-X by the drive stem extension 120 and functions to force spoil material received from the auger section 121 laterally out of the extraction tub 10 through a side discharge opening 125 (see
The auger 3 is located within the casing 4 with sufficient tolerance to allow the auger 3 to rotate relative to the casing 4 by way of operation of the rotational drive means 5 via the drive stem extension 120. The casing 4 provides support for the bore 8 and provides a conduit through which the spoil can be extracted by the auger 3. The casing 4 is often sacrificial, in that it is left within the bore 8 after the bore has been cut.
The casing 4 is urged into the bore 8 by a thrust means 12 which applies a force to a thrust frame 21 including a thrust bridge 13 engaging the casing 4. It is generally preferable for the thrust bridge 13 to be connected to the casing 4 (e.g., via latches, connection pins, connection clips, interlocking teeth or other structures) so as to reduce the likelihood of the casing 4 rotating with the auger 3. However, other forms of connection are also possible. For short runs where only a single casing section is needed, the casing may be welded to the thrust bridge 13.
Where the bore 8 exceeds the length of the casing 4, it will be necessary to introduce a further section of casing 4 and section of auger 3 to the bore 8 (e.g., a string of 3 casing and auger sections are shown interconnected at
The individual auger sections are preferably connected by interconnections that allow torque for rotating the auger sections and the cutting head 2 relative to the casings to be transferred from auger section to auger section. Also, the interconnection between the auger sections preferably allows thrust and pull-back load to be transferred axially through the auger sections so as to allow the auger sections and the cutting head to be axially extended and retracted relative to the casing sections. In one embodiment, the auger sections are interconnected by male ends (e.g., hexagonal ends) that fit within female sockets (e.g., hexagonal sockets) to allow torque to be transferred from auger section to auger section. Pins can be used at the mating ends to allow pull-back load to be transferred from auger section to auger section. In certain embodiments, the casing sections can also be connected by interconnections that allow thrust and pull-back load to be directed through the string of casing sections.
The cutting head 2 of the boring machine 1 is movable relative to the casing 4. This may be achieved in any suitable manner however in the embodiment illustrated the rotational drive means 5 is movable relative to the casing 4 and the thrust frame 21 so as to move the auger 3 and the cutting head 2 therewith. The rotational drive means 5 illustrated in
Whilst the illustrations show a rack and pinion drive 12 for thrusting the thrust bridge 13, and a hydraulic ram 16 for thrusting the rotational drive means 5, other forms of thrust means are clearly possible. Other forms of thrust means may include, but are not limited to, screw drives, and scissor rams.
Movement of the drive means 5 from the retracted position to the extended position moves drill stem extension 120 and the auger 3 distally relative to the casing 4 thereby causing the cutting head 2 to move distally away from a distal end of the casing 4. Distal movement of the drill stem extension 120 causes the auger section 121 to slide into the proximal end of the proximal-most casing 4 and the paddle structure 122 to move distally within the extraction tub 10. The discharge opening 125 of the extraction tub 10 is elongated so as to coincide with the range of proximal to distal movement of the paddle structure 122. Movement of the cutting head 2 relative to the casing 4 allows the machine 1 to better accommodate roots or floaters (e.g., obstructions “floating” in the soil such as rocks or debris) within the flight 11 of the auger 3. In one embodiment, the cutting head 2 can be moved distally out by no more than one flight length x of the auger 3 beyond the distal end of the casing 4. In other embodiments, the thrust means 16 is capable of moving the cutting head 2 and the auger 3 along the drive axis X-X relative to the casing 4 an axial distance equal to at least one flight length x of the auger 3. In still other embodiments, the thrust means 16 is capable of moving the cutting head 2 and the auger 3 along the drive axis X-X relative to the casing 4 an axial distance equal to at least three-quarters of one flight length x of the auger 3. As used herein, the term “flight length” means the axial length required for the flight 11 of the auger 3 to turn 360 degrees about the auger shaft.
The casing 4 will adopt a steered direction depending upon the way it interacts with the earth adjacent the distal end of the casing 4. It is preferred that the steered direction be adjustable so that the casing 4 be capable of being steered to maintain alignment with a selected direction. This may be achieved in any suitable manner however in the embodiment illustrated the boring machine 1 includes a steering shoe 17 located at the distal end of the casing 4 adjacent the cutting head 2. The steering shoe 17 in the embodiment illustrated in
In order to adjust the position of the centre of the outer circle of the sleeve 18, the cutting head 2 is capable of being retracted so as to engage the steering shoe 17. It is preferred that the cutting head 2 and steering shoe 17 include one or more teeth 20 so as to allow the cutting head 2 and steering shoe 17 to positively engage.
Because the centre of the outer circle of the steering sleeve 18 is offset from the axis X-X, the outer surface 40 of the steering sleeve 18 has a first portion 40a spaced a maximum radial distance from the axis X-X and opposite second portion 40b spaced a minimum radial distance from the axis X-X. During drilling operations in which the cutting head 2 is rotated about the axis X-X relative to the steering shell 18, the distal end of the drill string will be urged to move in a direction opposite from the position of the first portion 40a (e.g., if the first portion 40a is up, the distal end of the drill string will be urged downwardly during drilling). Thus, by selectively adjusting the circumferential/rotational position of the first portion 40a about the axis X-X, the steered direction can be changed. For certain embodiments, drilling can take place while the cutting head 2 is engaged with the steering shoe 17 during drilling. This results in the steering shoe 17 being continuously rotated with the cutting head 2 during drilling such that a straight bore is drilled.
When the boring machine 1 is in use it may be used in conjunction with cutting head 2 location means known in the industry for identifying the position of the cutting head 2 within the earth 7. This information can then be relayed to the operators of the auger boring machine 1 to steer the casing 4 back towards the selected direction. Where the cutting head 2 engages a floater or root it can be moved to an extended operating position (
It will be appreciated that a variety of techniques can be used to manipulate the obstruction through the cutting head as the cutting head is axially advanced relative to the casing. For example, the operator may slowly rotate the cutting head about the drive axis as the cutting head is axially advanced relative to the casing to manipulate the obstruction through the cutting head. For this manipulation technique, the rate of rotation used would be significantly slower than the cutting head is typically rotated about the drive axis during normal drilling operations. Alternatively, the operator may rotationally oscillate the cutting head back and forth about the drive axis as the cutting head is axially advanced relative to the casing to manipulate the obstruction through the cutting head. Alternatively, for certain applications, the operator may not rotate the cutting head at all about the drive axis as the cutting head is axially advanced relative to the casing to manipulate the obstruction through the cutting head. By manipulating the obstruction through the cutting head as described above, the obstruction passed through the cutting head can have a significantly larger size than the size of the reduced material (i.e., the material that has been reduced in size through the cutting action of the cutting head) that is typically passed through or around the cutting head during normal drilling operations with the cutting head rotated at normal drilling speeds. In this way, the floating obstruction can be passed through the cutting head in substantially unreduced form. “Substantially unreduced form” means that the floating obstruction has not been reduced (e.g., broken down, cut, abraded, fractured, sheared, grinded, etc.) by the cutting head to a size suitable for passing through the cutting head under normal drilling conditions with the cutting head rotated at normal drilling speeds.
To facilitate manipulating the obstruction 60 through the cutting head, it is desirable for the cutting head to have an open configuration that allows relatively large pieces of material to pass axially through the cutting head. In one embodiment, the cutting head defines a through opening (e.g., the open region between the bars of cutters 2, 2a or 2b) having a transverse cross-sectional area (the cross-sectional area when viewed along the axis X-X) equal to at least 15 percent, or at least 20 percent, or at least 30 percent, or at least 40 percent of a transverse cross sectional area of the bore drilled by the cutting head.
The drill head 200 also includes an auger section 3′ aligned along the axis of rotation of the cutter 2. The auger section 3′ has a distal end connected to the cutter 2 and a proximal end that connects to a distal end of the distal-most auger 3 of the string of augers. The auger section 3′ includes a flight 11′ having a reduced outer diameter as compared to the outer diameter of the flight 11 of the auger 3. The outer diameter of the flight 11′ is selected to allow the auger section 3′ to be readily extended and retracted through the reduced inner diameter of the distal portion 204 of the outer body of the drill head 200. Similarly, the length of the flight 11′ is selected such that at least one flight length of the auger section 3′ can be extended distally outwardly beyond the distal-most end of the outer body of the drill head 200.
It ought to be appreciated from the foregoing description that an auger boring machine 1 according to this invention provides a useful alternative to overcoming obstructions in the path of the selected direction of the bore 8. The ability of the machine 1 to steer the casing 4 so as to maintain alignment with the selected direction, is a particularly preferred advantage. In an alternative embodiment, a vacuum source can be provided adjacent the rotational drive means 5 for applying vacuum to the interior of the casing. The vacuum can be used to draw spoils through the casings in a distal to proximal direction. The vacuum can replace the auger or can be used in combination with the auger. Drilling fluid can be provided at the distal end of the drill string to facilitate evacuating the spoils from the bore.
Various alterations and/or additions may be introduced to the auger boring machine without departing from the spirit or ambit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2008904747 | Sep 2008 | AU | national |
Number | Name | Date | Kind |
---|---|---|---|
1650103 | Watchorn | Nov 1927 | A |
3107741 | Adams et al. | Oct 1963 | A |
3162254 | Rose | Dec 1964 | A |
3232360 | Dickinson | Feb 1966 | A |
3587755 | Slusher | Jun 1971 | A |
3612194 | Richmond | Oct 1971 | A |
3682261 | Bird | Aug 1972 | A |
3685301 | Heacox | Aug 1972 | A |
3857449 | Kimura | Dec 1974 | A |
3907043 | Appleman | Sep 1975 | A |
3910358 | Martinek | Oct 1975 | A |
3938597 | Richmond et al. | Feb 1976 | A |
3939926 | Barnes et al. | Feb 1976 | A |
4009579 | Patzner | Mar 1977 | A |
4013134 | Richmond et al. | Mar 1977 | A |
4042046 | Capoccia | Aug 1977 | A |
4047578 | Appleman | Sep 1977 | A |
4059163 | Stedman | Nov 1977 | A |
4062196 | Yoshida et al. | Dec 1977 | A |
4076084 | Tighe | Feb 1978 | A |
4226477 | Capoccia | Oct 1980 | A |
4280732 | Haspert | Jul 1981 | A |
4403664 | Sullinger | Sep 1983 | A |
4506931 | Haspert | Mar 1985 | A |
4553612 | Durham | Nov 1985 | A |
4589502 | Salter et al. | May 1986 | A |
4726711 | Tian | Feb 1988 | A |
4790395 | Gack et al. | Dec 1988 | A |
4877091 | Howell, Jr. et al. | Oct 1989 | A |
4976321 | Van Meter | Dec 1990 | A |
4977967 | Alston et al. | Dec 1990 | A |
5067570 | Gilcrease | Nov 1991 | A |
5203418 | Gibson et al. | Apr 1993 | A |
5289887 | Püttmann | Mar 1994 | A |
5316092 | Homäki | May 1994 | A |
5361854 | Tull et al. | Nov 1994 | A |
5470132 | Cartwright | Nov 1995 | A |
5490569 | Brotherton | Feb 1996 | A |
5711385 | Brotherton | Jan 1998 | A |
5813482 | Barbera | Sep 1998 | A |
5964306 | Barbera | Oct 1999 | A |
6050350 | Morris et al. | Apr 2000 | A |
6206109 | Monier et al. | Mar 2001 | B1 |
6279667 | Culver | Aug 2001 | B1 |
6550548 | Taylor | Apr 2003 | B2 |
6607045 | Beyerl | Aug 2003 | B2 |
7134513 | Randall et al. | Nov 2006 | B1 |
7219751 | Velcover | May 2007 | B2 |
7334650 | Giroux et al. | Feb 2008 | B2 |
7389831 | Mullins et al. | Jun 2008 | B2 |
7770669 | Desrochers et al. | Aug 2010 | B1 |
7942217 | Salins et al. | May 2011 | B2 |
20060054360 | Velcover | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100065331 A1 | Mar 2010 | US |