Not Applicable.
Not Applicable
1. Field of Invention
This invention relates to conveying materials, specifically to auger conveyors which are used to move, blend, or mix Materials or Liquids.
2. Prior Art
Conventional auger conveyors consisting of a helical screw that rotates upon a single shaft with a stationary trough or casing which can move bulk material along a horizontal inclined or vertical plane are well recognized by those skilled in the art. The volume of material moved by conventional augers is determined by:
An auger conveyor designed for a specific application, example diameter or pitch of flight.
An augers revolution being either increased or decreased An augers rotational direction being clockwise or counterclockwise.
These auger conveyor basics above restrict the conveying flexibility in terms of volume of a material moved for any given auger conveyor; furthermore, the lack of conventional auger conveyor flexibility is compounded when material processing is combined with material movement. At the inlet of the auger conveyor a material may require mixing or blending at one rotation speed but as the material begins to react as it is mixed or blended while moving through the trough or casing a different auger rotation speed may be required to eliminate the possibility of clogging, jamming etc,. Example: These problems exists, but are not limited to, a continuous process such as in preparing bakery goods, paint mixing or moving fuel material through an auger combustor/gasifier.
Attempts have been made to improve auger conveying flexibility by varying flight pitch, tapered augers and varying auger revolutions. All of the above in various combinations have been implemented in an attempt to improve auger conveying flexibility resulting in marginal improvements in material conveyance. Single shaft auger conveyors have been used to move solid fuel through a combustion chamber. The optimal performance of a single shaft auger works most effectively when the fuel is consistent in type, moisture content and particle size. Example: Wood chips.
A continuously flighted, single shafted auger conveyor within a single encasement which moves “fuels”, such as but not limited to: solid municipal waste, which is a heterogeneous mixture of many combustibles with varying moisture content, cannot convey raw wet fuel slowly to dry it out while simultaneously increasing the revolutions for general gasification. Neither can it decrease the revolutions of the auger rotation to efficiently gasify the free carbon. Some of the disadvantages associated with the inability to remove the free gas carbons from within the single encasement are: less then optimum gasification and the requirement of greater air quality control at the end of the gasification process.
As the solid fuel becomes less homogeneous (such as but not limited to solid municipal waste), the continuously flighted, single shafted auger conveyor becomes less and less efficient.
A means for improving an auger conveyor consisting of a support shaft with plural flight sections, coaxially layered upon the said shaft made to rotate said section or sections with independent or dependent revolutions or directions.
5—Shaft
6, 7, 8, & 9—Drive Sections
10—Standoff
11—Can be but not limited to: Helical Ribbon, Paddle, Bucket or Propeller.
12, 13, 14 & 15—Cross sections of said plural flight sections, coaxially layered.
Embodiment One of the Improved Auger Conveyor is illustrated in
Embodiment number one of the Improved Auger Conveyor is illustrated in
Said shaft section number 5 is the axle upon which said flight sections revolve but is not the source of their rotation.
Said section 12, 13, 14 & 15 are rotated independent on command of other said sections by a independent source of rotation and torque. EXAMPLE: Flight section 12, 5 rpms, clockwise rotation; flight section 13, 10 rpms counterclockwise rotation, flight section 14, 22 rpms clockwise rotation and flight section 15, no rotation. As one skilled in the art could see there are virtually unlimited combinations of revolutions per minute and rotational direction within this embodiment.
Embodiment number two of the Improved Auger Conveyor is illustrated in said
Embodiment number two of the Improved Auger Conveyor is illustrated in said
From the descriptions above, a number of advantages of embodiments of the improved auger conveyor become evident: Embodiment One are advantages A, B, C, & D; Embodiment Two are advantages E, F & G.
Accordingly, the reader will see that the improved auger conveyors of the various embodiments can be used as both an instrument for conveying material and/or mixing material. In addition, it allows for on command adjustments to conveying capabilities and/or mixing capability. Many industrial processes that have historically been restricted to batching can be a continuous process whereby raw materials are introduced into auger and a final product exits. The elimination or reduction in batching will improve worker safety in many industries. With the worlds increasing need for alternative energy, it will improve the gasification of solid fuels like biomass.
We can it increase the revolutions of the auger rotation to gasify free carbon thus increasing gasification performance and reducing atmospheric pollution.
This application claims the benefit of provisional patent application Ser. No. 61/010,440, filed Jan. 9, 2008 by the present inventor.
Number | Date | Country | |
---|---|---|---|
61010440 | Jan 2008 | US |