The present invention is related to the field of augers used to mix livestock feed in feed mixers and, in particular, to augers for use in vertical feed mixers.
Vertical feed mixers having open-top mixing tubs have been used in agriculture for many years. Vertical mixers process forages and commodities of all types of feed for livestock. Vertical mixers include a tub containing one or more vertical augers. These augers can have knives mounted on their flights such that when the augers rotate, the knives will cut the forage and the augers will process and blend the components within the tub. The result will yield a total mixed ration (“TMR”).
There are commodities or components that cannot be readily processed and blended with currently known mixing augers such as wet distiller's grain (ethanol by-product) and steam-flaked corn. These are two feed components typical in most TMRs fed to beef cattle. Typical rations will consist of small percentages of pre-processed roughage (less than 5%) and high percentages of steam-flaked corn and wet distiller's grain (ethanol by-product). If these two components are improperly mixed, reduced particle size, breakage of the feed components into fines and balling of the wet distiller's grain can result in the TMR.
The inability of current auger designs to effectively process and blend these components has limited the mixer usefulness to some producers and/or end-users. Currently known auger designs comprise three flight sections and have a narrower profile. These auger designs cannot move enough feed mix (ration make-up) from the bottom of the mixing tub to the top of the auger flights without causing breaking or reducing the particle size of steam-flaked corn. The result is too many fines in the mixture thereby making the entire ration useless. When high percentages of the wet distiller's grain (ethanol by-product) are used in feed mixtures with current auger designs, balling of the feed mixture can result thereby preventing the feed ration from being consistently mixed throughout. Again, this makes the entire ration practically useless.
A livestock feed auger is provided for use in a feed mixer tub. In one embodiment, the auger is a vertical auger designed to blend rations that are specific to livestock operations. In another embodiment, the auger is used to blend rations specific to beef cattle operations.
In yet another embodiment, the auger can quickly, efficiently, and gently move ration components from the bottom of the mixing tub to the top of the auger flights. The auger can perform this operation in less than two complete 360-degree revolutions of the auger.
In still another embodiment, the auger can minimize fines and ensure the accurate and consistent distribution of the wet distiller's grain throughout the entire ration (TMR).
In another embodiment, the auger can allow the feed mixer to quickly and accurately blend all components of the TMR, specifically, high percentages of steam-flaked corn and wet distiller's grain (ethanol by-product).
In yet another embodiment, the auger can gently blend fragile feed ration components, such as steam-flaked corn, without producing an unacceptable amount of fines.
In yet another embodiment, the auger can allow the feed mixer to completely blend the wet distiller's grain (ethanol by-product) accurately throughout the entire ration with minimal variance.
In another embodiment, the auger comprises a vertical pipe and less than two complete 360-degree auger flights disposed about the pipe. In another embodiment, the auger flights comprise an upper or top flight and a lower or bottom flight that are joined end-to-end on the pipe. In another embodiment, the tail-end of the top flight comprises an up-turned portion or corner. In another embodiment, the leading edge of the bottom flight comprises a deflecting element disposed on the topside of the bottom flight, referred to as a “kicker plate”, for deflecting feed components towards the centre of the auger. In other embodiments, the pipe is approximately 18 inches in diameter with the top and bottom flights being approximately 18 inches wide. In these embodiments, the pitch spacing between the auger flights is approximately 21 inches, +/−2 inches, whereby the pitch spacing is greater in dimension than the width of the flights.
With an auger configured in accordance with one embodiment, ration components such as steam-flaked corn and wet distiller's grain are moved from the bottom of a feed mixing tub to the top of the mixing tub by the auger in fewer revolutions than a conventional vertical mixing auger.
A livestock feed auger for a feed mixing tub is provided. A representative embodiment of auger 10 is shown in
Positioned within pipe 22 is ring 40. Ring 40 is attached to the interior of pipe 22, typically by welding, and is used to bolt auger 10 onto a mixer drive unit of a feed mixer (not shown). Positioned above ring 40 within pipe 22 is auger lifting brace 38. Lifting brace 38 is provided to facilitate lifting auger 10 when installing into or removing from a vertical feed mixer. Disposed on lifting brace 38 is lock nut 39. An auger pipe cap (not pictured) is fitted onto pipe 22 once auger 10 is installed onto a feed mixer. The auger pipe cap is fixed to pipe 22 with a bolt (not pictured) by threading the bolt into lock nut 39.
In another embodiment, top flight 12 further comprises upturned portion 16. Upturned portion 16 is not attached perpendicular to auger pipe 22 like the rest of flights 12 and 14 but is attached to pipe 22 at an upward facing angle. In a further embodiment, this angle is approximately 22 degrees above the horizontal. Including upturned portion 16 on top flight 12 tends to produce a “volcanic effect” as feed rations roll off of top flight 12. In this manner, rations are forced off of top flight 12 in an outward direction toward the mixer walls where they fall to the bottom of the mixing tub to allow the entire mixing process to repeat. This promotes blend accuracy while reducing fines, balling, and mixing or blending time. In another embodiment, auger 10 further comprises top flight brace 18 that reinforces top flight 12 in order to maintain the position of upturned portion 16.
In another embodiment, bottom flight 14 comprises leading edge 26 that extends outwardly beyond the width of top flight 12 towards the wall of a mixing tub (not shown). The width of leading edge 26 is cut dependent on the size of the vertical feed mixer auger 10 will be used in. In one embodiment, leading edge 26 can be in the range of approximately 27 inches to 52 inches wide. When auger 10 rotates, leading edge 26 moves ration components from the mixer tub floor onto bottom flight 14. The outer edge of bottom flight 14 moves ration components from the mixer walls onto bottom flight 14. In yet another embodiment, bottom flight 14 further comprises kicker plate 28. Kicker plate 28 is placed on the outer edge of bottom flight 14 to direct feed ration components into the center of auger 10 to aid in the mixing of the components. The size and position of kicker plate 28 on bottom flight 14 can directly affect the performance of auger 10. Kicker plate 28 also aids in the discharge of the TMR out of the mixing tub when a delivery door on a sidewall of the mixing tub (not shown) is opened. In a representative embodiment, kicker plate 28 can be in the range of approximately 11 inches to 16 inches wide and placed on bottom plate 14 such that the outermost end of kicker plate 28 is positioned approximately 10 inches from leading edge 26 whereas the innermost end of kicker plate 28 is positioned approximately 18 inches from leading edge 26 such that feed components striking kicker plate 28 are deflected towards the centre of auger 10. The relative positioning of kicker plate 28 is shown in
In another embodiment, bottom flight 14 further comprises stainless steel wear plates 30 and 32 located on the outer edges of bottom flight 12 on either side of kicker plate 28. Additionally, as shown in
A side view of auger 10 is shown in
In a representative embodiment, top flight 12 is approximately the same width as bottom flight 14 measured from the trailing edge of cutaway section 24. Cutaway section 24 of bottom flight 14 allows ration components to fall down the sidewalls of the mixer tub, past the auger flights, to the mixer floor. It is observed that the inclusion of cutaway section 24 on bottom flight 14 acts to reduce the horsepower and torque required to rotate auger 10. This promotes blend accuracy and less variance throughout the entire ration. The structural aspects of top flight 12 and bottom flight 14 makes auger 10 approximately cylindrical in design. It is observed that this cylindrical design ensures that the ration components moved onto bottom flight 14 stay on auger 10 until the components reach upturned portion 16 and promotes blend accuracy of the TMR with fewer revolutions of auger 10. In another embodiment, bottom flight 14 further comprises cover plate 36, as shown in
Referring to
Referring to
Although a few embodiments have been shown and described, it will be appreciated by those skilled in the art that various changes and modifications might be made without departing from the scope of the invention. The terms and expressions used in the preceding specification have been used herein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.
Number | Date | Country | Kind |
---|---|---|---|
2566407 | Nov 2006 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
3469824 | Futty et al. | Sep 1969 | A |
3592128 | French | Jul 1971 | A |
3762537 | Lutz | Oct 1973 | A |
4328925 | Shapiro | May 1982 | A |
4398607 | Reichardt | Aug 1983 | A |
5154510 | Faccia | Oct 1992 | A |
5279407 | Shobak | Jan 1994 | A |
5289979 | Lesar | Mar 1994 | A |
5429581 | Michaud et al. | Jul 1995 | A |
5456416 | Hartwig | Oct 1995 | A |
5462354 | Neier | Oct 1995 | A |
5601362 | Schuler | Feb 1997 | A |
5615839 | Hartwig | Apr 1997 | A |
5647665 | Schuler | Jul 1997 | A |
5863122 | Tamminga | Jan 1999 | A |
6328465 | Tamminga | Dec 2001 | B1 |
6409377 | Van Der Plas | Jun 2002 | B1 |
6834989 | Tamminga | Dec 2004 | B2 |
6863433 | Knight | Mar 2005 | B2 |
6905238 | Albright et al. | Jun 2005 | B2 |
7153020 | Van Der Plas | Dec 2006 | B2 |
7281843 | Pellman et al. | Oct 2007 | B1 |
20060126430 | Cicci et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
2307962 | Nov 2001 | CA |
2307962 | Nov 2001 | CA |
10140458 | Sep 2002 | DE |
1082896 | Mar 2001 | EP |
1224859 | Jul 2002 | EP |
1417999 | May 2004 | EP |
1417999 | Jul 2004 | EP |
2310793 | Sep 1997 | GB |
Number | Date | Country | |
---|---|---|---|
20080101154 A1 | May 2008 | US |