This document relates generally to multisensory display devices and hearing assistance systems.
Multisensory display devices (MSDs) provide visual and auditory information to a wearer. Some MSDs, such as GOOGLE GLASS, have bone conduction speakers/transducers to provide audio to the wearer of the MSD. There are many drawbacks to this, including poor sound quality due to the bandpass nature of sound conducted through the skull, and poor spatial perception due to distortion of binaural cues necessary for spatial hearing.
Thus, there is a need in the art for methods and apparatus to provide improved auditory information for the wearer of MSDs.
Disclosed herein, among other things, are systems and methods for augmented MSDs. One aspect of the present subject matter includes an MSD including a head-mounted display, display circuitry configured to provide signals to the head-mounted display, audio circuitry configured to augment audio delivered to the wearer, and a receiver configured to be worn in or on the ear of the wearer and to play audio to the wearer. In various embodiments, a cable assembly is configured to connect the receiver to the audio circuitry.
This Summary is an overview of some of the teachings of the present application and not intended to be an exclusive or exhaustive treatment of the present subject matter. Further details about the present subject matter are found in the detailed description and appended claims. The scope of the present invention is defined by the appended claims and their legal equivalents.
The following detailed description of the present subject matter refers to subject matter in the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. References to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description is demonstrative and not to be taken in a limiting sense. The scope of the present subject matter is defined by the appended claims, along with the full scope of legal equivalents to which such claims are entitled. The present disclosure relates to augmented reality multisensory display devices (MSDs), such as GOOGLE GLASS, which provide visual and auditory information to the wearer of the device beyond what they normally would see or hear without the device. In various examples, this sensory information includes an augmentation of the environment around the wearer (visually or aurally displaying identification of objects around the wearer after object identification, such as a user's name when the face is identified). In various examples, the sensory information may be unrelated to the environment, such as providing an incoming text message visually or aurally. In various applications, combinations of sensory information augmenting the wearer's environment and sensory information unrelated to the environment are provided to the wearer.
In various embodiments, a microphone 204 is configured in the MSD such that sound from the environment is picked up, augmented in some way, and played to the MSD wearer. In this case, there may be feedback issues that require a feedback canceller 307—particularly if the MSD wearer has hearing loss and the audio augmentation includes amplification to correct for the hearing loss—which is not normally included in such systems.
Some MSDs, such as GOOGLE GLASS, have bone conduction speakers/transducers to provide audio to the wearer of the MSD. There are many drawbacks to this, including poor sound quality due to the bandpass nature of sound conducted through the skull, and poor spatial perception due to distortion of binaural cues necessary for spatial hearing. In various embodiments, the MSD design is improved by combining the bone-conducted sound with delivery of air-conducted sound, such as the provided by a receiver in the wearer's canal that gets the audio signal from the MSD in a wired or wireless fashion. The air-conducted sound would enhance the sound quality and/or spatial character of the presented sound while maintaining the benefits of bone-conduction sound presentation, such as privacy of what is being heard. Since the air-conducted sound does not have to provide the full auditory experience, the levels and bandwidth of the air-conducted sound can be less than what they would have to be if there were no additional bone-conduction sound being provided.
It is understood that variations in communications circuits, protocols, antenna configurations, and combinations of components may be employed without departing from the scope of the present subject matter. Hearing assistance devices typically include an enclosure or housing, a microphone, hearing assistance device electronics including processing electronics, and a speaker or receiver. It is understood that in various embodiments the receiver is optional. Antenna configurations may vary and may be included within an enclosure for the electronics or be external to an enclosure for the electronics. Thus, the examples set forth herein are intended to be demonstrative and not a limiting or exhaustive depiction of variations.
It is further understood that a variety of hearing assistance devices may be used without departing from the scope and the devices described herein are intended to demonstrate the subject matter, but not in a limited, exhaustive, or exclusive sense. It is also understood that the present subject matter can be used with devices designed for use in the right ear or the left ear or both ears of the wearer.
It is understood that hearing aids typically include a processor. The processor may be a digital signal processor (DSP), microprocessor, microcontroller, other digital logic, or combinations thereof. The processing of signals referenced in this application can be performed using the processor. Processing may be done in the digital domain, the analog domain, or combinations thereof. Processing may be done using subband processing techniques. Processing may be done with frequency domain or time domain approaches. Some processing may involve both frequency and time domain aspects. For brevity, in some examples may omit certain modules that perform frequency synthesis, frequency analysis, analog-to-digital conversion, digital-to-analog conversion, amplification, and certain types of filtering and processing. In various embodiments the processor is adapted to perform instructions stored in memory which may or may not be explicitly shown. Various types of memory may be used, including volatile and nonvolatile forms of memory. In various embodiments, instructions are performed by the processor to perform a number of signal processing tasks. In such embodiments, analog components may be in communication with the processor to perform signal tasks, such as microphone reception, or receiver sound embodiments (i.e., in applications where such transducers are used). In various embodiments, different realizations of the block diagrams, circuits, and processes set forth herein may occur without departing from the scope of the present subject matter.
The present subject matter is demonstrated for hearing assistance devices, including hearing aids, including but not limited to, behind-the-ear (BTE), receiver-in-canal (RIC), and completely-in-the-canal (CIC) type hearing aids. It is understood that behind-the-ear type hearing aids may include devices that reside substantially behind the ear or over the ear. Such devices may include hearing aids with receivers associated with the electronics portion of the behind-the-ear device, or hearing aids of the type having receivers in the ear canal of the user, including but not limited to receiver-in-canal (RIC) or receiver-in-the-ear (RITE) designs. The present subject matter can also be used with in-the-ear (ITE) and in-the-canal (ITC) devices. The present subject matter can also be used in hearing assistance devices generally, such as cochlear implant type hearing devices and such as deep insertion devices having a transducer, such as a receiver or microphone, whether custom fitted, standard, open fitted or occlusive fitted. It is understood that other hearing assistance devices not expressly stated herein may be used in conjunction with the present subject matter.
This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
The present application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application 61/826,483, filed May 22, 2013, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61826483 | May 2013 | US |