The technology disclosed relates to highly functional/highly accurate sensory and imaging device for use in wearable sensor systems capable of detecting gestures in a three dimensional (3D) sensory space using imaging or other sensors and presenting a 3D augmented reality to a user.
One class of devices, such as Google Glass, provides the capability to present information superimposed on a see through screen worn by a user. Another type of device, such as Oculus Rift, provides a virtual reality display to the user devoid of information from the real world surrounding the user. Both of these types of devices fail, however, to adequately provide for integration of virtual (e.g., computational) information into a real time image stream that reflects the environment surrounding the wearer. A need therefore exists for highly functional sensory and imaging device capable of acquiring imaging information of the scene and providing at least a near real time pass-through of imaging information to a user. The sensory and imaging device ideally could be coupled to a wearable or portable device to create a wearable sensory system capable of presenting to the wearer the imaging information augmented with virtualized or created presentations of information. No devices heretofore known provide these capabilities.
Implementations of the technology disclosed address these and other problems by providing motion sensory and imaging device capable of acquiring imaging information of the scene and providing at least a near real time pass-through of imaging information to a user. The sensory and imaging device can be used stand-alone or coupled to a wearable or portable device to create a wearable sensory system capable of presenting to the wearer the imaging information augmented with virtualized or created presentations of information.
One implementation of a motion sensory and imaging device includes a plurality of imaging sensors arranged to provide stereoscopic imaging information for a scene being viewed; one or more illumination sources arranged about the imaging sensors; and a controller coupled to the imaging sensors and illumination sources to control operation thereof. The controller enables the device to acquire imaging information of the scene, and provide at least a near real time pass-through of imaging information to a user. The device can be coupled to a wearable device to create a wearable sensory systems capable of presenting to the wearer the imaging information augmented with virtualized or created presentations of information.
In one implementation, a motion sensory and imaging device further captures imaging information for control objects—including control objects such as human hands—within the viewpoint of the imaging sensors. The imaging information for control objects of interest can be used to determine gesture information indicating a command to a machine under control. In implementations, the device enables detecting positions, poses and motions of objects surrounding the wearer of the device with sub-millimeter accuracy and providing this information for integration into the presentation provided to the wearer.
In one implementation, a motion sensory and imaging device includes capabilities to separate information received from pixels sensitive to IR light from information received from pixels sensitive to visible light, e.g., RGB (red, green, and blue) and processing image information from IR (infrared) sensors to be used for gesture recognition and image information from RGB sensors to be provided as a live video feed via a presentation interface. For example, a video stream including a sequence of images of a scene in the real world is captured using cameras having a set of RGB pixels and a set of IR pixels. Information from the IR sensitive pixels is separated out for processing to recognize gestures. Information from the RGB sensitive pixels is provided to a presentation interface of a wearable device (HUD, HMD, etc.) as a live video feed to a presentation output. The presentation output is displayed to a user of the wearable device. One or more virtual objects can be integrated with the video stream images to form the presentation output. Accordingly, the device is enabled to provide any of gesture recognition, a real world presentation of real world objects via pass through video feed, and/or an augmented reality including virtual objects integrated with a real world view.
In one implementation, a motion sensory and imaging device can be used for tracking motion of the device itself using a combination a RGB and IR pixels of the cameras. In particular, it relates to capturing gross or coarse features and corresponding feature values of a real world space using RGB pixels and capturing fine or precise features and corresponding feature values of the real world space using IR pixels. Once captured, motion information of the wearable sensor system with respect to at least one feature of the scene is determined based on comparison between feature values detected at different time instances. For instance, a feature of a real world space is an object at a given position in the real world space, and then the feature value can be the three-dimensional (3D) co-ordinates of the position of the object in the real world space. If, between pairs of image frame or other image volume, the value of the position co-ordinates changes, then this can be used to determine motion information of the wearable sensory system with respect to the object whose position changed between image frames.
In another example, a feature of a real world space is a wall in the real world space and the corresponding feature value is orientation of the wall as perceived by a viewer engaged with a wearable sensor system. In this example, if a change in the orientation of the wall is registered between successive image frames captured by a camera electronically coupled to the wearable sensor system, then this can indicate a change in the position of the wearable sensor system that views the wall.
According to one implementation, information from RGB pixels of a camera can be used to identify an object in the real world space along with prominent or gross features of the object from an image or sequence of images such as object contour, shape, volumetric model, skeletal model, silhouettes, overall arrangement and/or structure of objects in a real world space. This can be achieved by measuring an average pixel intensity of a region or varying textures of regions. Thus, RGB pixels allow for acquisition of a coarse estimate of the real world space and/or objects in the real world space.
Further, data from the IR pixels can be used to capture fine or precise features of the real world space, which enhance the data extracted from RGB pixels. Examples of fine features include surface textures, edges, curvatures, and other faint features of the real world space and objects in the real world space. In one example, while RGB pixels capture a solid model of a hand, IR pixels are used capture the vein and/or artery patterns or fingerprints of the hand.
Some other implementations can include capturing image data by using the RGB and IR pixels in different combinations and permutations. For example, one implementation can include simultaneously activating the RGB and IR pixels to perform a whole scale acquisition of image data, without distinguishing between coarse or detail features. Another implementation can include using the RGB and IR pixels intermittently. Yet another implementation can include activating the RGB and IR pixels according to a quadratic or Gaussian function. Some other implementations can include performing a first scan using the IR pixels followed by an RGB scan, and vice-versa.
In one implementation, the ambient lighting conditions are determined and can be used to adjust display of output. For example, information from the set of RGB pixels is displayed in normal lighting conditions and information from the set of IR pixels in dark lighting conditions. Alternatively, or additionally, information from the set of IR pixels can be used to enhance the information from the set of RGB pixels for low-light conditions, or vice versa. Some implementations will receive from a user a selection indicating a preferred display chosen from one of color imagery from the RGB pixels and IR imagery from the IR pixels, or combinations thereof. Alternatively, or additionally, the device itself may dynamically switch between video information captured using RGB sensitive pixels and video information captured using IR sensitive pixels for display depending upon ambient conditions, user preferences, situational awareness, other factors, or combinations thereof.
In one implementation, information from the IR sensitive pixels is separated out for processing to recognize gestures; while the information from the RGB sensitive pixels is provided to an output as a live video feed; thereby enabling conserving bandwidth to the gesture recognition processing. In gesture processing, features in the images corresponding to objects in the real world can be detected. The features of the objects are correlated across multiple images to determine change, which can be correlated to gesture motions. The gesture motions can be used to determine command information to a machine under control, application resident thereon or combinations thereof.
In one implementation, motion sensors and/or other types of sensors are coupled to a motion-capture system to monitor motion of at least the sensor of the motion-capture system resulting from, for example, users' touch. Information from the motion sensors can be used to determine first and second positional information of the sensor with respect to a fixed point at first and second times. Difference information between the first and second positional information is determined. Movement information for the sensor with respect to the fixed point is computed based upon the difference information. The movement information for the sensor is applied to apparent environment information sensed by the sensor to remove motion of the sensor therefrom to yield actual environment information; which can be communicated. Control information can be communicated to a system configured to provide a virtual reality or augmented reality experience via a portable device and/or to systems controlling machinery or the like based upon motion capture information for an object moving in space derived from the sensor and adjusted to remove motion of the sensor itself. In some applications, a virtual device experience can be augmented by the addition of haptic, audio and/or visual projectors.
In an implementation, apparent environmental information is captured from positional information of an object portion at the first time and the second time using a sensor of the motion-capture system. Object portion movement information relative to the fixed point at the first time and the second time is computed based upon the difference information and the movement information for the sensor.
In further implementations, a path of the object is calculated by repeatedly determining movement information for the sensor, using the motion sensors, and the object portion, using the sensor, at successive times and analyzing a sequence of movement information to determine a path of the object portion with respect to the fixed point. Paths can be compared to templates to identify trajectories. Trajectories of body parts can be identified as gestures. Gestures can indicate command information to be communicated to a system. Some gestures communicate commands to change operational modes of a system (e.g., zoom in, zoom out, pan, show more detail, next display page, and so forth).
Advantageously, some implementations can enable improved user experience, greater safety and improved functionality for users of wearable devices. Some implementations further provide capability to motion capture systems to recognize gestures, allowing the user to execute intuitive gestures involving virtualized contact with a virtual object. For example, a device can be provided a capability to distinguish motion of objects from motions of the device itself in order to facilitate proper gesture recognition. Some implementations can provide improved interfacing with a variety of portable or wearable machines (e.g., smart telephones, portable computing systems, including laptop, tablet computing devices, personal data assistants, special purpose visualization computing machinery, including heads up displays (HUD) for use in aircraft or automobiles for example, wearable virtual and/or augmented reality systems, including Google Glass, and others, graphics processors, embedded microcontrollers, gaming consoles, or the like; wired or wirelessly coupled networks of one or more of the foregoing, and/or combinations thereof), obviating or reducing the need for contact-based input devices such as a mouse, joystick, touch pad, or touch screen. Some implementations can provide for improved interface with computing and/or other machinery than would be possible with heretofore known techniques. In some implementations, a richer human—machine interface experience can be provided.
Other aspects and advantages of the present technology can be seen on review of the drawings, the detailed description and the claims, which follow.
The technology disclosed relates to a motion sensory and imaging devices capable of capturing real or near real time images of a scene, detecting a gesture in 3D sensory space and interpreting the gesture as a command to a system or machine under control, and providing the captured image information and the command when appropriate.
Implementations include providing a “pass-through” in which live video is provided to the user of the virtual reality device, either alone or in conjunction with display of one or more virtual objects, enabling the user to perceive the real world directly. For example, the user is enabled to see an actual desk environment as well as virtual applications or objects intermingled therewith. Gesture recognition and sensing enables implementations to provide the user with the ability to grasp or interact with objects real (e.g., the user's coke can) alongside the virtual (e.g., a virtual document floating above the surface of the user's actual desk. In some implementations, information from differing spectral sources is selectively used to drive one or another aspect of the experience. For example, information from IR sensitive sensors can be used to detect the user's hand motions and recognize gestures. While information from the visible light region can be used to drive the pass through video presentation, creating a real world presentation of real and virtual objects. In a further example, combinations of image information from multiple sources can be used; the system—or the user—selecting between IR imagery and visible light imagery based upon situational, conditional, environmental or other factors or combinations thereof. For example, the device can switch from visible light imaging to IR imaging when the ambient light conditions warrant. The user can have the ability to control the imaging source as well. In yet further examples, information from one type of sensor can be used to augment, correct, or corroborate information from another type of sensor. Information from IR sensors can be used to correct the display of imaging conducted from visible light sensitive sensors, and vice versa. In low-light or other situations not conducive to optical imaging, where free-form gestures cannot be recognized optically with a sufficient degree of reliability, audio signals or vibrational waves can be detected and used to supply the direction and location of the object as further described herein.
The technology disclosed can be applied to enhance user experience in immersive virtual reality environments using wearable sensor systems. Examples of systems, apparatus, and methods according to the disclosed implementations are described in a “wearable sensor systems” context. The examples of “wearable sensor systems” are being provided solely to add context and aid in the understanding of the disclosed implementations. In other instances, examples of gesture-based interactions in other contexts like automobiles, robots, or other machines can be applied to virtual games, virtual applications, virtual programs, virtual operating systems, etc. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope, context, or setting. It will thus be apparent to one skilled in the art that implementations can be practiced in or outside the “wearable sensor systems” context.
Refer first to
The illumination board 172 has a number of individually controllable illumination sources 115, 117, which can be LEDs for example, embedded thereon. Two cameras 102, 104 provide stereoscopic image-based sensing of a scene being viewed and reside on the main board 182 of device 100 in the illustrated implementation. One or more fasteners 195 that fasten the imaging sensors and the illumination sources to one of a mounting surface 197 in a wearable presentation device, a cavity in a wearable presentation device, a mounting surface 197 in a portable presentation device, and a cavity in a portable presentation device. The main board 182 may also include a processor for basic image processing, control of the cameras 102, 104 and the LEDs of board 172. Various modifications of the design shown in
Stereoscopic imaging information provided by cameras 102, 104 is provided selectively or continuously to a user wearing or carrying the wearable or portable electronic device. The device 100 can provide live “real time” or near real time feed of image information from the cameras, real time or near real time imaging information augmented by computer generated graphics, information, icons or other virtualized presentations, virtualized representations of the scene being viewed, time varying combinations selected therefrom. Gestures made by a user can be sensed by the cameras 102, 104 of the sensory device 100, as well, and the resulting imaging information can be provided to a motion capture system to identify and determine commands to any system (including the wearable or portable device itself) under control from the gestures. Advantageously, integrating gesture recognition with imaging capabilities into a single motion sensory device 100 provides a highly functional, flexible, yet compact device suited to installation in wearable or portable electronic devices, and so forth.
Some of the illumination sources 115, 117 can have associated focusing optics (not shown by
Now with reference to
In various implementations, the system and method for capturing 3D motion of an object as described herein can be integrated with other applications, such as a head-mounted device or a mobile device. Referring again to
System 200 includes some cameras 102, 104 coupled to sensory processing system 206. Cameras 102, 104 can be any type of camera, including cameras sensitive across the visible spectrum or with enhanced sensitivity to a confined wavelength band (e.g., the infrared (IR) or ultraviolet bands); more generally, the term “camera” herein refers to any device (or combination of devices) capable of capturing an image of an object and representing that image in the form of digital data. For example, line sensors or line cameras rather than conventional devices that capture a two-dimensional (2D) image can be employed. The term “light” is used generally to connote any electromagnetic radiation, which may or may not be within the visible spectrum, and may be broadband (e.g., white light) or narrowband (e.g., a single wavelength or narrow band of wavelengths).
Cameras 102, 104 are preferably capable of capturing video images (i.e., successive image frames at a substantially constant rate of about 15 frames per second or so); although no particular frame rate is required. The capabilities of cameras 102, 104 are not critical to the technology disclosed, and the cameras can vary as to frame rate, image resolution (e.g., pixels per image), color or intensity resolution (e.g., number of bits of intensity data per pixel), focal length of lenses, depth of field, etc. In general, for a particular application, any cameras capable of focusing on objects within a spatial volume of interest can be used. For instance, to capture motion of the hand of an otherwise stationary person, the volume of interest might be defined as a cube approximately one meter on a side.
As shown, cameras 102, 104 can be oriented toward portions of a region of interest 212 by motion of the device 201, in order to view a virtually rendered or virtually augmented view of the region of interest 212 that can include a variety of virtual objects 216 as well as contain an object of interest 214 (in this example, one or more hands) that moves within the region of interest 212. One or more sensors 208, 210 capture motions of the device 201. In some implementations, one or more light sources 115, 117 are arranged to illuminate the region of interest 212. In some implementations, one or more of the cameras 102, 104 are disposed opposite the motion to be detected, e.g., where the hand 214 is expected to move. This is an optimal location because the amount of information recorded about the hand is proportional to the number of pixels it occupies in the camera images, and the hand will occupy more pixels when the camera's angle with respect to the hand's “pointing direction” is as close to perpendicular as possible. Sensory processing system 206, which can be, e.g., a computer system, can control the operation of cameras 102, 104 to capture images of the region of interest 212 and sensors 208, 210 to capture motions of the device 201. Information from sensors 208, 210 can be applied to models of images taken by cameras 102, 104 to cancel out the effects of motions of the device 201, providing greater accuracy to the virtual experience rendered by device 201. Based on the captured images and motions of the device 201, sensory processing system 206 determines the position and/or motion of object 214 and render representations thereof to the user via assembly 203.
For example, as an action in determining the motion of object 214, sensory processing system 206 can determine which pixels of various images captured by cameras 102, 104 contain portions of object 214. In some implementations, any pixel in an image can be classified as an “object” pixel or a “background” pixel depending on whether that pixel contains a portion of object 214 or not. Object pixels can thus be readily distinguished from background pixels based on brightness. Further, edges of the object can also be readily detected based on differences in brightness between adjacent pixels, allowing the position of the object within each image to be determined. In some implementations, the silhouettes of an object are extracted from one or more images of the object that reveal information about the object as seen from different vantage points. While silhouettes can be obtained using a number of different techniques, in some implementations, the silhouettes are obtained by using cameras to capture images of the object and analyzing the images to detect object edges. Correlating object positions between images from cameras 102, 104 and cancelling out captured motions of the device 201 from sensors 208, 210 allows sensory processing system 206 to determine the location in 3D space of object 214, and analyzing sequences of images allows sensory processing system 206 to reconstruct 3D motion of object 214 using conventional motion algorithms or other techniques. See, e.g., U.S. patent application Ser. No. 13/414,485 (filed on Mar. 7, 2012) and U.S. Provisional Patent Application Nos. 61/724,091 (filed on Nov. 8, 2012) and 61/587,554 (filed on Jan. 7, 2012), the entire disclosures of which are hereby incorporated by reference.
Presentation interface 220 employs projection techniques in conjunction with the sensory based tracking in order to present virtual (or virtualized real) objects (visual, audio, haptic, and so forth) created by applications loadable to, or in cooperative implementation with, the optical assembly 203 of device 201 to provide a user of the device with a personal virtual experience. Projection can include an image or other visual representation of an object.
One implementation uses motion sensors and/or other types of sensors coupled to a motion-capture system to monitor motions within a real environment. A virtual object integrated into an augmented rendering of a real environment can be projected to a user of a portable device 201. Motion information of a user body portion can be determined based at least in part upon sensory information received from imaging 102, 104 or acoustic or other sensory devices. Control information is communicated to a system based in part on a combination of the motion of the portable device 201 and the detected motion of the user determined from the sensory information received from imaging 102, 104 or acoustic or other sensory devices. The virtual device experience can be augmented in some implementations by the addition of haptic, audio and/or other sensory information projectors. For example, with reference to
Again with reference to
The illustrated system 200 can include any of various other sensors not shown in
It will be appreciated that the items shown in
Refer now to
The computing environment may also include other removable/non-removable, volatile/nonvolatile computer storage media. For example, a hard disk drive may read or write to non-removable, nonvolatile magnetic media. A magnetic disk drive may read from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive may read from or write to a removable, nonvolatile optical disk such as a CD-ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The storage media are typically connected to the system bus through a removable or non-removable memory interface.
Processor 302 may be a general-purpose microprocessor, but depending on implementation can alternatively be a microcontroller, peripheral integrated circuit element, a CSIC (customer-specific integrated circuit), an ASIC (application-specific integrated circuit), a logic circuit, a digital signal processor, a programmable logic device such as an FPGA (field-programmable gate array), a PLD (programmable logic device), a PLA (programmable logic array), an RFID processor, smart chip, or any other device or arrangement of devices that is capable of implementing the actions of the processes of the technology disclosed.
Motion detector and camera interface 306 can include hardware and/or software that enables communication between computer system 300 and cameras 102, 104, as well as sensors 208, 210 (see
Instructions defining mocap program 314 are stored in memory 304, and these instructions, when executed, perform motion-capture analysis on images supplied from cameras and audio signals from sensors connected to motion detector and camera interface 306. In one implementation, mocap program 314 includes various modules, such as an object analysis module 322 and a path analysis module 324. Object analysis module 322 can analyze images (e.g., images captured via interface 306) to detect edges of an object therein and/or other information about the object's location. In some implementations, object analysis module 322 can also analyze audio signals (e.g., audio signals captured via interface 306) to localize the object by, for example, time distance of arrival, multilateration or the like. (“Multilateration is a navigation technique based on the measurement of the difference in distance to two or more stations at known locations that broadcast signals at known times. See Wikipedia, at http://en.wikipedia.org/w/index.php?title=Multilateration&oldid=523281858, on Nov. 16, 2012, 06:07 UTC). Path analysis module 324 can track and predict object movements in 3D based on information obtained via the cameras. Some implementations will include a Virtual Reality/Augmented Reality environment manager 326 provides integration of virtual objects reflecting real objects (e.g., hand 214) as well as synthesized objects 216 for presentation to user of device 201 via presentation interface 220 to provide a personal virtual experience 213. One or more applications 328 can be loaded into memory 304 (or otherwise made available to processor 302) to augment or customize functioning of device 201 thereby enabling the system 200 to function as a platform. Successive camera images are analyzed at the pixel level to extract object movements and velocities. Audio signals place the object on a known surface, and the strength and variation of the signals can be used to detect object's presence. If both audio and image information is simultaneously available, both types of information can be analyzed and reconciled to produce a more detailed and/or accurate path analysis. A video feed integrator 329 provides integration of live video feed from the cameras 102, 104 and one or more virtual objects (e.g., 501 of
Presentation interface 220, speakers 309, microphones 310, and wireless network interface 311 can be used to facilitate user interaction via device 201 with computer system 300. These components can be of generally conventional design or modified as desired to provide any type of user interaction. In some implementations, results of motion capture using motion detector and camera interface 306 and mocap program 314 can be interpreted as user input. For example, a user can perform hand gestures or motions across a surface that are analyzed using mocap program 314, and the results of this analysis can be interpreted as an instruction to some other program executing on processor 302 (e.g., a web browser, word processor, or other application). Thus, by way of illustration, a user might use upward or downward swiping gestures to “scroll” a webpage currently displayed to the user of device 201 via presentation interface 220, to use rotating gestures to increase or decrease the volume of audio output from speakers 309, and so on. Path analysis module 324 may represent the detected path as a vector and extrapolate to predict the path, e.g., to improve rendering of action on device 201 by presentation interface 220 by anticipating movement.
It will be appreciated that computer system 300 is illustrative and that variations and modifications are possible. Computer systems can be implemented in a variety of form factors, including server systems, desktop systems, laptop systems, tablets, smart phones or personal digital assistants, and so on. A particular implementation may include other functionality not described herein, e.g., wired and/or wireless network interfaces, media playing and/or recording capability, etc. In some implementations, one or more cameras and two or more microphones may be built into the computer rather than being supplied as separate components. Further, an image or audio analyzer can be implemented using only a subset of computer system components (e.g., as a processor executing program code, an ASIC, or a fixed-function digital signal processor, with suitable I/O interfaces to receive image data and output analysis results).
While computer system 300 is described herein with reference to particular blocks, it is to be understood that the blocks are defined for convenience of description and are not intended to imply a particular physical arrangement of component parts. Further, the blocks need not correspond to physically distinct components. To the extent that physically distinct components are used, connections between components (e.g., for data communication) can be wired and/or wireless as desired. Thus, for example, execution of object analysis module 322 by processor 302 can cause processor 302 to operate motion detector and camera interface 306 to capture images and/or audio signals of an object traveling across and in contact with a surface to detect its entrance by analyzing the image and/or audio data.
The number of frame buffers included in a system generally reflects the number of images simultaneously analyzed by the analysis system or module 430, which is described in greater detail below. Briefly, analysis module 430 analyzes the pixel data in each of a sequence of image frames 420 to locate objects therein and track their movement over time (as indicated at 440). This analysis can take various forms, and the algorithm performing the analysis dictates how pixels in the image frames 420 are handled. For example, the algorithm implemented by analysis module 430 can process the pixels of each frame buffer on a line-by-line basis—i.e., each row of the pixel grid is successively analyzed. Other algorithms can analyze pixels in columns, tiled areas, or other organizational formats.
In various implementations, the motion captured in a series of camera images is used to compute a corresponding series of output images for display on the display 220. For example, camera images of a moving hand can be translated into a wire-frame or other graphic depiction of the hand by the processor 302. Alternatively, hand gestures can be interpreted as input used to control a separate visual output; by way of illustration, a user can be able to use upward or downward swiping gestures to “scroll” a webpage or other document currently displayed, or open and close her hand to zoom in and out of the page. In any case, the output images are generally stored in the form of pixel data in a frame buffer, e.g., one of the frame buffers 415. A video display controller reads out the frame buffer to generate a data stream and associated control signals to output the images to the assembly 203. Video display control provided by presentation interface 220 can be provided along with the processor 302 and memory 304 on-board the motherboard of the computer system 300, and can be integrated with the processor 302 or implemented as a co-processor that manipulates a separate video memory. As noted, the computer system 300 can be equipped with a separate graphics or video card that aids with generating the feed of output images for the assembly 203. One implementation includes a video card generally having a graphics processing unit (GPU) and video memory, and is useful, in particular, for complex and computationally expensive image processing and rendering. The graphics card can include the frame buffer and the functionality of the video display controller (and the on-board video display controller can be disabled). In general, the image-processing and motion-capture functionality of the system can be distributed between the GPU and the main processor 302 in various ways.
Suitable algorithms for motion-capture program 314 are described below as well as, in more detail, in U.S. Ser. Nos. 61/587,554, 13/414,485, 61/724,091, 13/724,357, and 13/742,953, filed on Jan. 17, 2012, Mar. 7, 2012, Nov. 8, 2012, Dec. 21, 2012 and Jan. 16, 2013, respectively, which are hereby incorporated herein by reference in their entirety. The various modules can be programmed in any suitable programming language, including, without limitation high-level languages such as C, C++, C#, OpenGL, Ada, Basic, Cobra, FORTRAN, Java, Lisp, Perl, Python, Ruby, or Object Pascal, or low-level assembly languages.
Again with reference to
Acquisition parameters can be applied to the cameras 402, 404 and/or to the frame buffers 415. The camera 402, 404 for example, can be responsive to acquisition parameters in operating the cameras 402, 404 to acquire images at a commanded rate, or can instead limit the number of acquired frames passed (per unit time) to the frame buffers 415. Image-analysis parameters can be applied to the image-analysis module 430 as numerical quantities that affect the operation of the contour-defining algorithm.
The desirable values for acquisition parameters and image-analysis parameters appropriate to a given level of available resources can depend, for example, on the characteristics of the image-analysis module 430, the nature of the application utilizing the mocap output, and design preferences. Whereas some image-processing algorithms can be able to trade off a resolution of contour approximation against input frame resolution over a wide range, other algorithms may not exhibit much tolerance at all—requiring, for example, a minimal image resolution below which the algorithm fails altogether.
Some implementations can be applied to virtual reality or augmented reality applications. For example, and with reference to
In some implementations, a virtual device is projected to a user. Projection can include an image or other visual representation of an object. For example, visual projection mechanism 504 of
This application is a continuation of U.S. patent application Ser. No. 17/133,616, entitled “AUGMENTED REALITY WITH MOTION SENSING”, filed Dec. 23, 2020, which is a continuation of U.S. patent application Ser. No. 16/505,265, entitled “AUGMENTED REALITY WITH MOTION SENSING”, filed Jul. 8, 2019, which is a continuation of U.S. patent application Ser. No. 14/821,499, entitled “AUGMENTED REALITY WITH MOTION SENSING”, filed Aug. 7, 2015, which claims the benefit of U.S. Provisional Patent Application No. 62/035,008, entitled “AUGMENTED REALITY WITH MOTION SENSING,” filed 8 Aug. 2014, which are both hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2665041 | Maffucci | Jan 1954 | A |
4175862 | DiMatteo et al. | Nov 1979 | A |
4876455 | Sanderson et al. | Oct 1989 | A |
4879659 | Bowlin et al. | Nov 1989 | A |
4893223 | Arnold | Jan 1990 | A |
5038258 | Koch et al. | Aug 1991 | A |
5134661 | Reinsch | Jul 1992 | A |
5282067 | Liu | Jan 1994 | A |
5434617 | Bianchi | Jul 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5574511 | Yang et al. | Nov 1996 | A |
5581276 | Cipolla et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5659475 | Brown | Aug 1997 | A |
5691737 | Ito et al. | Nov 1997 | A |
5742263 | Wang et al. | Apr 1998 | A |
5900849 | Gallery | May 1999 | A |
5900863 | Numazaki | May 1999 | A |
5940538 | Spiegel et al. | Aug 1999 | A |
6002808 | Freeman | Dec 1999 | A |
6031161 | Baltenberger | Feb 2000 | A |
6031661 | Tanaami | Feb 2000 | A |
6061064 | Reichlen | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6075895 | Qiao et al. | Jun 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6154558 | Hsieh | Nov 2000 | A |
6181343 | Lyons | Jan 2001 | B1 |
6184326 | Razavi et al. | Feb 2001 | B1 |
6184926 | Khosravi et al. | Feb 2001 | B1 |
6195104 | Lyons | Feb 2001 | B1 |
6204852 | Kumar et al. | Mar 2001 | B1 |
6252598 | Segen | Jun 2001 | B1 |
6263091 | Jain et al. | Jul 2001 | B1 |
6346933 | Lin | Feb 2002 | B1 |
6417970 | Travers et al. | Jul 2002 | B1 |
6421453 | Kanevsky et al. | Jul 2002 | B1 |
6463402 | Bennett et al. | Oct 2002 | B1 |
6492986 | Metaxas et al. | Dec 2002 | B1 |
6493041 | Hanko et al. | Dec 2002 | B1 |
6498628 | Iwamura | Dec 2002 | B2 |
6578203 | Anderson, Jr. et al. | Jun 2003 | B1 |
6603867 | Sugino et al. | Aug 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6674877 | Jojic et al. | Jan 2004 | B1 |
6702494 | Dumler et al. | Mar 2004 | B2 |
6734911 | Lyons | May 2004 | B1 |
6738424 | Allmen et al. | May 2004 | B1 |
6771294 | Pulli et al. | Aug 2004 | B1 |
6798628 | Macbeth | Sep 2004 | B1 |
6804654 | Kobylevsky et al. | Oct 2004 | B2 |
6804656 | Rosenfeld et al. | Oct 2004 | B1 |
6814656 | Rodriguez | Nov 2004 | B2 |
6819796 | Hong et al. | Nov 2004 | B2 |
6901170 | Terada et al. | May 2005 | B1 |
6919880 | Morrison et al. | Jul 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
6993157 | Oue et al. | Jan 2006 | B1 |
7152024 | Marschner et al. | Dec 2006 | B2 |
7213707 | Hubbs et al. | May 2007 | B2 |
7215828 | Luo | May 2007 | B2 |
7236611 | Roberts et al. | Jun 2007 | B2 |
7244233 | Krantz et al. | Jul 2007 | B2 |
7257237 | Luck et al. | Aug 2007 | B1 |
7259873 | Sikora et al. | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7483049 | Aman et al. | Jan 2009 | B2 |
7519223 | Dehlin et al. | Apr 2009 | B2 |
7532206 | Morrison et al. | May 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7542586 | Johnson | Jun 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7606417 | Steinberg et al. | Oct 2009 | B2 |
7646372 | Marks et al. | Jan 2010 | B2 |
7656372 | Sato et al. | Feb 2010 | B2 |
7665041 | Wilson et al. | Feb 2010 | B2 |
7692625 | Morrison et al. | Apr 2010 | B2 |
7743348 | Robbins et al. | Jun 2010 | B2 |
7831932 | Josephsoon et al. | Nov 2010 | B2 |
7840031 | Albertson et al. | Nov 2010 | B2 |
7861188 | Josephsoon et al. | Dec 2010 | B2 |
7940885 | Stanton et al. | May 2011 | B2 |
7948493 | Klefenz et al. | May 2011 | B2 |
7961174 | Markovic et al. | Jun 2011 | B1 |
7961934 | Thrun et al. | Jun 2011 | B2 |
7971156 | Albertson et al. | Jun 2011 | B2 |
7980885 | Gattwinkel et al. | Jul 2011 | B2 |
8023698 | Niwa et al. | Sep 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8045825 | Shimoyama et al. | Oct 2011 | B2 |
8064704 | Kim et al. | Nov 2011 | B2 |
8085339 | Marks | Dec 2011 | B2 |
8086971 | Radivojevic et al. | Dec 2011 | B2 |
8111239 | Pryor et al. | Feb 2012 | B2 |
8112719 | Hsu et al. | Feb 2012 | B2 |
8126985 | Kandekar et al. | Feb 2012 | B1 |
8144233 | Fukuyama | Mar 2012 | B2 |
8185176 | Mangat et al. | May 2012 | B2 |
8213707 | Li et al. | Jul 2012 | B2 |
8218858 | Gu | Jul 2012 | B2 |
8229134 | Duraiswami et al. | Jul 2012 | B2 |
8235529 | Raffle et al. | Aug 2012 | B1 |
8244233 | Chang et al. | Aug 2012 | B2 |
8249345 | Wu et al. | Aug 2012 | B2 |
8270669 | Aichi et al. | Sep 2012 | B2 |
8289162 | Mooring et al. | Oct 2012 | B2 |
8290208 | Kurtz et al. | Oct 2012 | B2 |
8304727 | Lee et al. | Nov 2012 | B2 |
8319832 | Nagata et al. | Nov 2012 | B2 |
8363010 | Nagata | Jan 2013 | B2 |
8395600 | Kawashima et al. | Mar 2013 | B2 |
8405680 | Cardoso Lopes et al. | Mar 2013 | B1 |
8432377 | Newton | Apr 2013 | B2 |
8471848 | Tschesnok | Jun 2013 | B2 |
8514221 | King et al. | Aug 2013 | B2 |
8542320 | Berestov et al. | Sep 2013 | B2 |
8553037 | Smith et al. | Oct 2013 | B2 |
8582809 | Halimeh et al. | Nov 2013 | B2 |
8593417 | Kawashima et al. | Nov 2013 | B2 |
8605202 | Muijs et al. | Dec 2013 | B2 |
8631355 | Murillo et al. | Jan 2014 | B2 |
8638989 | Holz | Jan 2014 | B2 |
8659594 | Kim et al. | Feb 2014 | B2 |
8659658 | Vassigh et al. | Feb 2014 | B2 |
8693731 | Holz et al. | Apr 2014 | B2 |
8738523 | Sanchez et al. | May 2014 | B1 |
8744122 | Salgian et al. | Jun 2014 | B2 |
8751979 | Socha | Jun 2014 | B1 |
8768022 | Miga et al. | Jul 2014 | B2 |
8773512 | Rafii | Jul 2014 | B1 |
8781234 | Zhang et al. | Jul 2014 | B2 |
8817087 | Weng et al. | Aug 2014 | B2 |
8824749 | Leyvand et al. | Sep 2014 | B2 |
8842084 | Andersson et al. | Sep 2014 | B2 |
8843857 | Berkes et al. | Sep 2014 | B2 |
8872914 | Gobush | Oct 2014 | B2 |
8878749 | Wu et al. | Nov 2014 | B1 |
8891868 | Ivanchenko | Nov 2014 | B1 |
8907982 | Zontrop et al. | Dec 2014 | B2 |
8922590 | Luckett, Jr. et al. | Dec 2014 | B1 |
8929609 | Padovani et al. | Jan 2015 | B2 |
8930852 | Chen et al. | Jan 2015 | B2 |
8942881 | Hobbs et al. | Jan 2015 | B2 |
8954340 | Sanchez et al. | Feb 2015 | B2 |
8957857 | Lee et al. | Feb 2015 | B2 |
9014414 | Katano et al. | Apr 2015 | B2 |
9056396 | Linnell | Jun 2015 | B1 |
9058057 | Matsuda | Jun 2015 | B2 |
9070019 | Holz | Jun 2015 | B2 |
9119670 | Yang et al. | Sep 2015 | B2 |
9122354 | Sharma | Sep 2015 | B2 |
9124778 | Crabtree | Sep 2015 | B1 |
9459697 | Bedikian et al. | Oct 2016 | B2 |
9600935 | Cohen | Mar 2017 | B2 |
9741169 | Holz | Aug 2017 | B1 |
9868449 | Holz et al. | Jan 2018 | B1 |
10318100 | Abercrombie et al. | Jun 2019 | B2 |
10349036 | Holz et al. | Jul 2019 | B2 |
10600248 | Holz | Mar 2020 | B2 |
10880537 | Holz et al. | Dec 2020 | B2 |
11080937 | Holz | Aug 2021 | B2 |
11483538 | Holz | Oct 2022 | B2 |
11561519 | Gordon et al. | Jan 2023 | B2 |
20010044858 | Rekimoto | Nov 2001 | A1 |
20010052985 | Ono | Dec 2001 | A1 |
20020008139 | Albertelli | Jan 2002 | A1 |
20020008211 | Kask | Jan 2002 | A1 |
20020041327 | Hildreth et al. | Apr 2002 | A1 |
20020080094 | Biocca et al. | Jun 2002 | A1 |
20020105484 | Navab et al. | Aug 2002 | A1 |
20030053658 | Pavlidis | Mar 2003 | A1 |
20030053659 | Pavlidis et al. | Mar 2003 | A1 |
20030081141 | Mazzapica | May 2003 | A1 |
20030085866 | Bimber et al. | May 2003 | A1 |
20030123703 | Pavlidis et al. | Jul 2003 | A1 |
20030152289 | Luo | Aug 2003 | A1 |
20030202697 | Simard et al. | Oct 2003 | A1 |
20040103111 | Miller et al. | May 2004 | A1 |
20040125228 | Dougherty | Jul 2004 | A1 |
20040125984 | Ito et al. | Jul 2004 | A1 |
20040145809 | Brenner | Jul 2004 | A1 |
20040155877 | Hong et al. | Aug 2004 | A1 |
20040212725 | Raskar | Oct 2004 | A1 |
20050007673 | Chaoulov et al. | Jan 2005 | A1 |
20050068518 | Baney et al. | Mar 2005 | A1 |
20050094019 | Grosvenor et al. | May 2005 | A1 |
20050131607 | Breed | Jun 2005 | A1 |
20050156888 | Xie et al. | Jul 2005 | A1 |
20050168578 | Gobush | Aug 2005 | A1 |
20050210105 | Hirata et al. | Sep 2005 | A1 |
20050236558 | Nabeshima et al. | Oct 2005 | A1 |
20050238201 | Shamaie | Oct 2005 | A1 |
20060006235 | Kurzweil et al. | Jan 2006 | A1 |
20060017807 | Lee et al. | Jan 2006 | A1 |
20060028656 | Venkatesh et al. | Feb 2006 | A1 |
20060029296 | King et al. | Feb 2006 | A1 |
20060034545 | Mattes et al. | Feb 2006 | A1 |
20060050979 | Kawahara | Mar 2006 | A1 |
20060072105 | Wagner | Apr 2006 | A1 |
20060098899 | King et al. | May 2006 | A1 |
20060204040 | Freeman et al. | Sep 2006 | A1 |
20060210112 | Cohen et al. | Sep 2006 | A1 |
20060262421 | Matsumoto et al. | Nov 2006 | A1 |
20060290950 | Platt et al. | Dec 2006 | A1 |
20070014466 | Baldwin | Jan 2007 | A1 |
20070042346 | Weller | Feb 2007 | A1 |
20070057764 | Sato et al. | Mar 2007 | A1 |
20070086621 | Aggarwal et al. | Apr 2007 | A1 |
20070130547 | Boillot | Jun 2007 | A1 |
20070203904 | Ren et al. | Aug 2007 | A1 |
20070206719 | Suryanarayanan et al. | Sep 2007 | A1 |
20070230929 | Niwa et al. | Oct 2007 | A1 |
20070238956 | Haras et al. | Oct 2007 | A1 |
20080002860 | Super et al. | Jan 2008 | A1 |
20080013826 | Hillis et al. | Jan 2008 | A1 |
20080019576 | Senftner et al. | Jan 2008 | A1 |
20080030429 | Hailpern et al. | Feb 2008 | A1 |
20080031492 | Lanz | Feb 2008 | A1 |
20080056752 | Denton et al. | Mar 2008 | A1 |
20080064954 | Adams et al. | Mar 2008 | A1 |
20080106637 | Nakao et al. | May 2008 | A1 |
20080106746 | Shpunt et al. | May 2008 | A1 |
20080110994 | Knowles et al. | May 2008 | A1 |
20080118091 | Serfaty et al. | May 2008 | A1 |
20080126937 | Pachet | May 2008 | A1 |
20080170776 | Albertson et al. | Jul 2008 | A1 |
20080187175 | Kim et al. | Aug 2008 | A1 |
20080244468 | Nishihara et al. | Oct 2008 | A1 |
20080246759 | Summers | Oct 2008 | A1 |
20080273764 | Scholl | Nov 2008 | A1 |
20080278589 | Thorn | Nov 2008 | A1 |
20080291160 | Rabin | Nov 2008 | A1 |
20080304740 | Sun et al. | Dec 2008 | A1 |
20080317292 | Baker et al. | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090002489 | Yang et al. | Jan 2009 | A1 |
20090093307 | Miyaki | Apr 2009 | A1 |
20090102840 | Li | Apr 2009 | A1 |
20090103780 | Nishihara et al. | Apr 2009 | A1 |
20090116742 | Nishihara | May 2009 | A1 |
20090122146 | Zalewski et al. | May 2009 | A1 |
20090153655 | Ike et al. | Jun 2009 | A1 |
20090167682 | Yamashita | Jul 2009 | A1 |
20090203993 | Mangat et al. | Aug 2009 | A1 |
20090203994 | Mangat et al. | Aug 2009 | A1 |
20090217211 | Hildreth et al. | Aug 2009 | A1 |
20090239587 | Negron et al. | Sep 2009 | A1 |
20090257623 | Tang et al. | Oct 2009 | A1 |
20090274339 | Cohen et al. | Nov 2009 | A9 |
20090309710 | Kakinami | Dec 2009 | A1 |
20090323121 | Valkenburg et al. | Dec 2009 | A1 |
20100013662 | Stude | Jan 2010 | A1 |
20100013832 | Xiao et al. | Jan 2010 | A1 |
20100020078 | Shpunt | Jan 2010 | A1 |
20100023015 | Park | Jan 2010 | A1 |
20100026963 | Faulstich | Feb 2010 | A1 |
20100027845 | Kim et al. | Feb 2010 | A1 |
20100046842 | Conwell | Feb 2010 | A1 |
20100053164 | Imai et al. | Mar 2010 | A1 |
20100053209 | Rauch et al. | Mar 2010 | A1 |
20100053612 | Ou-Yang et al. | Mar 2010 | A1 |
20100058252 | Ko | Mar 2010 | A1 |
20100066737 | Liu | Mar 2010 | A1 |
20100066975 | Rehnstrom | Mar 2010 | A1 |
20100091110 | Hildreth | Apr 2010 | A1 |
20100118123 | Freedman et al. | May 2010 | A1 |
20100121189 | Ma et al. | May 2010 | A1 |
20100125815 | Wang et al. | May 2010 | A1 |
20100127995 | Rigazio et al. | May 2010 | A1 |
20100141762 | Siann et al. | Jun 2010 | A1 |
20100153457 | Grant | Jun 2010 | A1 |
20100158372 | Kim et al. | Jun 2010 | A1 |
20100177929 | Kurtz et al. | Jul 2010 | A1 |
20100194863 | Lopes et al. | Aug 2010 | A1 |
20100199229 | Kipman et al. | Aug 2010 | A1 |
20100199230 | Latta et al. | Aug 2010 | A1 |
20100199232 | Mistry et al. | Aug 2010 | A1 |
20100201880 | Iwamura | Aug 2010 | A1 |
20100208942 | Porter et al. | Aug 2010 | A1 |
20100219934 | Matsumoto | Sep 2010 | A1 |
20100222102 | Rodriguez | Sep 2010 | A1 |
20100264833 | Van Endert et al. | Oct 2010 | A1 |
20100277411 | Yee et al. | Nov 2010 | A1 |
20100296698 | Lien et al. | Nov 2010 | A1 |
20100302015 | Kipman et al. | Dec 2010 | A1 |
20100302357 | Hsu et al. | Dec 2010 | A1 |
20100303298 | Marks et al. | Dec 2010 | A1 |
20100306712 | Snook et al. | Dec 2010 | A1 |
20100309097 | Raviv et al. | Dec 2010 | A1 |
20100321377 | Gay et al. | Dec 2010 | A1 |
20110007072 | Khan et al. | Jan 2011 | A1 |
20110025818 | Gallmeier et al. | Feb 2011 | A1 |
20110026765 | Ivanich et al. | Feb 2011 | A1 |
20110043806 | Guetta et al. | Feb 2011 | A1 |
20110057875 | Shigeta et al. | Mar 2011 | A1 |
20110066984 | Li | Mar 2011 | A1 |
20110080470 | Kuno et al. | Apr 2011 | A1 |
20110080490 | Clarkson et al. | Apr 2011 | A1 |
20110090252 | Yoon et al. | Apr 2011 | A1 |
20110093820 | Zhang et al. | Apr 2011 | A1 |
20110107216 | Bi | May 2011 | A1 |
20110115486 | Frohlich et al. | May 2011 | A1 |
20110116684 | Coffman et al. | May 2011 | A1 |
20110119640 | Berkes et al. | May 2011 | A1 |
20110134112 | Koh et al. | Jun 2011 | A1 |
20110148875 | Kim et al. | Jun 2011 | A1 |
20110163948 | Givon | Jul 2011 | A1 |
20110169726 | Holmdahl et al. | Jul 2011 | A1 |
20110173574 | Clavin et al. | Jul 2011 | A1 |
20110176146 | Alvarez Diez et al. | Jul 2011 | A1 |
20110181509 | Rautiainen et al. | Jul 2011 | A1 |
20110193778 | Lee et al. | Aug 2011 | A1 |
20110205151 | Newton et al. | Aug 2011 | A1 |
20110213664 | Osterhout et al. | Sep 2011 | A1 |
20110221672 | Osterhout et al. | Sep 2011 | A1 |
20110228978 | Chen et al. | Sep 2011 | A1 |
20110234631 | Kim et al. | Sep 2011 | A1 |
20110234840 | Klefenz et al. | Sep 2011 | A1 |
20110243451 | Oyaizu | Oct 2011 | A1 |
20110251896 | Impollonia et al. | Oct 2011 | A1 |
20110261178 | Lo et al. | Oct 2011 | A1 |
20110267259 | Tidemand et al. | Nov 2011 | A1 |
20110279397 | Rimon et al. | Nov 2011 | A1 |
20110286676 | El Dokor | Nov 2011 | A1 |
20110289455 | Reville et al. | Nov 2011 | A1 |
20110289456 | Reville et al. | Nov 2011 | A1 |
20110291925 | Israel et al. | Dec 2011 | A1 |
20110291988 | Bamji et al. | Dec 2011 | A1 |
20110296353 | Ahmed et al. | Dec 2011 | A1 |
20110299737 | Wang et al. | Dec 2011 | A1 |
20110304600 | Yoshida | Dec 2011 | A1 |
20110304650 | Campillo et al. | Dec 2011 | A1 |
20110310007 | Margolis et al. | Dec 2011 | A1 |
20110310220 | McEldowney | Dec 2011 | A1 |
20110314427 | Sundararajan | Dec 2011 | A1 |
20120030637 | Dey et al. | Feb 2012 | A1 |
20120038637 | Marks | Feb 2012 | A1 |
20120050143 | Border et al. | Mar 2012 | A1 |
20120050157 | Latta et al. | Mar 2012 | A1 |
20120062444 | Cok et al. | Mar 2012 | A1 |
20120065499 | Chono | Mar 2012 | A1 |
20120068913 | Bar-Zeev | Mar 2012 | A1 |
20120068914 | Jacobsen et al. | Mar 2012 | A1 |
20120086624 | Thompson et al. | Apr 2012 | A1 |
20120086728 | McArdle et al. | Apr 2012 | A1 |
20120092328 | Flaks | Apr 2012 | A1 |
20120113223 | Hilliges et al. | May 2012 | A1 |
20120113316 | Ueta et al. | May 2012 | A1 |
20120159380 | Kocienda et al. | Jun 2012 | A1 |
20120162214 | Chavez et al. | Jun 2012 | A1 |
20120163675 | Joo et al. | Jun 2012 | A1 |
20120194517 | Izadi et al. | Aug 2012 | A1 |
20120204133 | Guendelman et al. | Aug 2012 | A1 |
20120218263 | Meier et al. | Aug 2012 | A1 |
20120223959 | Lengeling | Sep 2012 | A1 |
20120236288 | Stanley | Sep 2012 | A1 |
20120250936 | Holmgren | Oct 2012 | A1 |
20120257797 | Leyvand et al. | Oct 2012 | A1 |
20120270654 | Padovani et al. | Oct 2012 | A1 |
20120274781 | Shet et al. | Nov 2012 | A1 |
20120281873 | Brown et al. | Nov 2012 | A1 |
20120281884 | Whillock et al. | Nov 2012 | A1 |
20120293667 | Baba et al. | Nov 2012 | A1 |
20120314030 | Datta et al. | Dec 2012 | A1 |
20120320080 | Giese et al. | Dec 2012 | A1 |
20130014052 | Frey et al. | Jan 2013 | A1 |
20130019204 | Kotler et al. | Jan 2013 | A1 |
20130038694 | Nichani et al. | Feb 2013 | A1 |
20130044128 | Liu et al. | Feb 2013 | A1 |
20130044951 | Cherng et al. | Feb 2013 | A1 |
20130050425 | Im et al. | Feb 2013 | A1 |
20130080898 | Lavian et al. | Mar 2013 | A1 |
20130086531 | Sugita et al. | Apr 2013 | A1 |
20130097566 | Berglund | Apr 2013 | A1 |
20130120319 | Givon | May 2013 | A1 |
20130148852 | Partis et al. | Jun 2013 | A1 |
20130182077 | Holz | Jul 2013 | A1 |
20130182079 | Holz | Jul 2013 | A1 |
20130182897 | Holz | Jul 2013 | A1 |
20130187952 | Berkovich et al. | Jul 2013 | A1 |
20130191911 | Dellinger et al. | Jul 2013 | A1 |
20130194304 | Latta | Aug 2013 | A1 |
20130208948 | Berkovich et al. | Aug 2013 | A1 |
20130222308 | Ma et al. | Aug 2013 | A1 |
20130222640 | Baek et al. | Aug 2013 | A1 |
20130239059 | Chen et al. | Sep 2013 | A1 |
20130241832 | Rimon et al. | Sep 2013 | A1 |
20130249787 | Morimoto | Sep 2013 | A1 |
20130252691 | Alexopoulos | Sep 2013 | A1 |
20130257736 | Hou et al. | Oct 2013 | A1 |
20130258140 | Lipson et al. | Oct 2013 | A1 |
20130261871 | Hobbs | Oct 2013 | A1 |
20130271397 | Macdougall et al. | Oct 2013 | A1 |
20130293688 | Benson et al. | Nov 2013 | A1 |
20130300831 | Mavromatis et al. | Nov 2013 | A1 |
20130307935 | Rappel et al. | Nov 2013 | A1 |
20130321261 | Nakasu et al. | Dec 2013 | A1 |
20130321265 | Bychkov et al. | Dec 2013 | A1 |
20130328867 | Jung et al. | Dec 2013 | A1 |
20140002365 | Ackley et al. | Jan 2014 | A1 |
20140010441 | Shamaie | Jan 2014 | A1 |
20140015831 | Kim et al. | Jan 2014 | A1 |
20140023247 | Kuwahara et al. | Jan 2014 | A1 |
20140063055 | Osterhout et al. | Mar 2014 | A1 |
20140064566 | Shreve et al. | Mar 2014 | A1 |
20140081521 | Frojdh et al. | Mar 2014 | A1 |
20140085203 | Kobayashi | Mar 2014 | A1 |
20140095119 | Lee et al. | Apr 2014 | A1 |
20140125775 | Holz | May 2014 | A1 |
20140125813 | Holz | May 2014 | A1 |
20140132738 | Ogura et al. | May 2014 | A1 |
20140134733 | Wu et al. | May 2014 | A1 |
20140139425 | Sakai | May 2014 | A1 |
20140139641 | Holz | May 2014 | A1 |
20140157135 | Lee et al. | Jun 2014 | A1 |
20140161311 | Kim | Jun 2014 | A1 |
20140168062 | Katz et al. | Jun 2014 | A1 |
20140176310 | Kotlicki | Jun 2014 | A1 |
20140176420 | Zhou et al. | Jun 2014 | A1 |
20140177913 | Holz | Jun 2014 | A1 |
20140189579 | Rimon et al. | Jul 2014 | A1 |
20140192024 | Holz | Jul 2014 | A1 |
20140201666 | Bedikian et al. | Jul 2014 | A1 |
20140201689 | Bedikian et al. | Jul 2014 | A1 |
20140210793 | Eriksson et al. | Jul 2014 | A1 |
20140222385 | Muenster et al. | Aug 2014 | A1 |
20140223385 | Ton et al. | Aug 2014 | A1 |
20140225826 | Juni | Aug 2014 | A1 |
20140225918 | Mittal et al. | Aug 2014 | A1 |
20140240215 | Tremblay et al. | Aug 2014 | A1 |
20140240225 | Eilat | Aug 2014 | A1 |
20140248950 | Tosas Bautista | Sep 2014 | A1 |
20140249961 | Zagel et al. | Sep 2014 | A1 |
20140253512 | Narikawa et al. | Sep 2014 | A1 |
20140253711 | Balch et al. | Sep 2014 | A1 |
20140253785 | Chan et al. | Sep 2014 | A1 |
20140267098 | Na et al. | Sep 2014 | A1 |
20140282282 | Holz | Sep 2014 | A1 |
20140285403 | Kobayashi | Sep 2014 | A1 |
20140306891 | Latta et al. | Oct 2014 | A1 |
20140307920 | Holz | Oct 2014 | A1 |
20140344762 | Grasset et al. | Nov 2014 | A1 |
20140361976 | Osman et al. | Dec 2014 | A1 |
20140364209 | Perry | Dec 2014 | A1 |
20140364212 | Osman et al. | Dec 2014 | A1 |
20140369558 | Holz | Dec 2014 | A1 |
20140375547 | Katz et al. | Dec 2014 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009149 | Gharib et al. | Jan 2015 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150022447 | Hare et al. | Jan 2015 | A1 |
20150029091 | Nakashima et al. | Jan 2015 | A1 |
20150029218 | Williams et al. | Jan 2015 | A1 |
20150054729 | Minnen et al. | Feb 2015 | A1 |
20150084864 | Geiss et al. | Mar 2015 | A1 |
20150084989 | Laughlin et al. | Mar 2015 | A1 |
20150094142 | Stafford | Apr 2015 | A1 |
20150097772 | Starner | Apr 2015 | A1 |
20150115802 | Kuti et al. | Apr 2015 | A1 |
20150116214 | Grunnet-Jepsen et al. | Apr 2015 | A1 |
20150131859 | Kim et al. | May 2015 | A1 |
20150138070 | Iwatsu | May 2015 | A1 |
20150160348 | Zweigle et al. | Jun 2015 | A1 |
20150172539 | Neglur | Jun 2015 | A1 |
20150193669 | Gu et al. | Jul 2015 | A1 |
20150205358 | Lyren | Jul 2015 | A1 |
20150205400 | Hwang et al. | Jul 2015 | A1 |
20150206321 | Scavezze et al. | Jul 2015 | A1 |
20150227795 | Starner et al. | Aug 2015 | A1 |
20150234569 | Hess | Aug 2015 | A1 |
20150243078 | Watson et al. | Aug 2015 | A1 |
20150253428 | Holz | Sep 2015 | A1 |
20150253574 | Thurber | Sep 2015 | A1 |
20150258432 | Stafford et al. | Sep 2015 | A1 |
20150260990 | Ueno et al. | Sep 2015 | A1 |
20150261291 | Mikhailov et al. | Sep 2015 | A1 |
20150304593 | Sakai | Oct 2015 | A1 |
20150317831 | Ebstyne et al. | Nov 2015 | A1 |
20150323785 | Fukata et al. | Nov 2015 | A1 |
20150323795 | Alto et al. | Nov 2015 | A1 |
20160025978 | Mallinson | Jan 2016 | A1 |
20160034039 | Maeda et al. | Feb 2016 | A1 |
20160044298 | Holz et al. | Feb 2016 | A1 |
20160062573 | Dascola et al. | Mar 2016 | A1 |
20160086046 | Holz et al. | Mar 2016 | A1 |
20160093105 | Rimon et al. | Mar 2016 | A1 |
20160154241 | Alhashim | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1984236 | Jun 2007 | CN |
101124534 | Feb 2008 | CN |
201332447 | Oct 2009 | CN |
101729808 | Jun 2010 | CN |
101930610 | Dec 2010 | CN |
101951474 | Jan 2011 | CN |
102053702 | May 2011 | CN |
201859393 | Jun 2011 | CN |
102184014 | Sep 2011 | CN |
102201121 | Sep 2011 | CN |
102236412 | Nov 2011 | CN |
102696057 | Sep 2012 | CN |
103090862 | May 2013 | CN |
4201934 | Jul 1993 | DE |
10326035 | Jan 2005 | DE |
102007015495 | Oct 2007 | DE |
102007015497 | Jan 2014 | DE |
0999542 | May 2000 | EP |
1477924 | Nov 2004 | EP |
1837665 | Sep 2007 | EP |
2369443 | Sep 2011 | EP |
2419433 | Apr 2006 | GB |
2453163 | Apr 2009 | GB |
2480140 | Nov 2011 | GB |
2519418 | Apr 2015 | GB |
H02236407 | Sep 1990 | JP |
H08261721 | Oct 1996 | JP |
H09259278 | Oct 1997 | JP |
2000023038 | Jan 2000 | JP |
2002133400 | May 2002 | JP |
2003256814 | Sep 2003 | JP |
2004246252 | Sep 2004 | JP |
2006019526 | Jan 2006 | JP |
2006259829 | Sep 2006 | JP |
2007272596 | Oct 2007 | JP |
2008227569 | Sep 2008 | JP |
2009031939 | Feb 2009 | JP |
2009037594 | Feb 2009 | JP |
2010060548 | Mar 2010 | JP |
2011010258 | Jan 2011 | JP |
2011065652 | Mar 2011 | JP |
2011107681 | Jun 2011 | JP |
4906960 | Mar 2012 | JP |
2012527145 | Nov 2012 | JP |
101092909 | Dec 2011 | KR |
2422878 | Jun 2011 | RU |
200844871 | Nov 2008 | TW |
9426057 | Nov 1994 | WO |
2004114220 | Dec 2004 | WO |
2006020846 | Feb 2006 | WO |
2006090197 | Aug 2006 | WO |
2007137093 | Nov 2007 | WO |
2010032268 | Mar 2010 | WO |
2010076622 | Jul 2010 | WO |
2010088035 | Aug 2010 | WO |
2010138741 | Dec 2010 | WO |
2011024193 | Mar 2011 | WO |
2011036618 | Mar 2011 | WO |
2011044680 | Apr 2011 | WO |
2011045789 | Apr 2011 | WO |
2011119154 | Sep 2011 | WO |
2012027422 | Mar 2012 | WO |
2013109608 | Jul 2013 | WO |
2013109609 | Jul 2013 | WO |
2014208087 | Dec 2014 | WO |
2015026707 | Feb 2015 | WO |
Entry |
---|
“Augmediated reality system based on 3D camera selfgesture sensing” - Raymond Lo, Alexander Chen, Valmiki Rampersad, Jason Huang, Han Wu, Steve Mann; 2013 IEEE International Symposium on Technology and Society (ISTAS); Jun. 27-29, 2013. (Year: 2013). |
“Design and Implementation of Gaze Tracking Headgear for Nvidia 3D Vision”—Sunu Wibirama and Kazuhiko Hamamoto; 2013 International Conference on Information Technology and Electrical Engineering (ICITEE); Date of Conference: Oct. 7-8, 2013 (Year: 2013). |
U.S. Appl. No. 17/133,616—Office Action dated Mar. 2, 2022, 15 pages. |
Lo et al., “Augmediated reality system based on 3D camera selfgesture sensing,” IEEE International Symposium on Technology and Society (ISTAS) 2013, 12 pages. |
U.S. Appl. No. 14/821,499—Office Action dated Apr. 7, 2017, 27 pages. |
U.S. Appl. No. 14/821,499—Response to Office Action dated Apr. 7, 2017 filed Aug. 3, 2017, 8 pages. |
CN 2014204535364—Office Action dated Nov. 5, 2014, 1 page. |
CN 2014204535364—Response to Nov. 5 Office Action filed Feb. 26, 2015, 8 pages. |
CN 2014204535364—Notice of Allowance dated Apr. 17, 2015, 3 pages. |
U.S. Appl. No. 14/821,499—Office Action dated Oct. 4, 2017, 29 pages. |
U.S. Appl. No. 14/821,499—Response to Office Action dated Oct. 4, 2017, filed Nov. 8, 2017, 7 pages. |
U.S. Appl. No. 14/821,499—Office Action dated Feb. 23, 2018, 33 pages. |
U.S. Appl. No. 14/821,499—Response to Office Action dated Feb. 23, 2018 filed Jul. 27, 2018, 18 pages. |
U.S. Appl. No. 14/821,499—Supplemental Response to Office Action dated Feb. 23, 2018 filed Nov. 1, 2018, 17 pages. |
U.S. Appl. No. 14/821,499—Notice of Allowance dated Feb. 12, 2019, 13 pages. |
U.S. Appl. No. 14/821,499—Amendment after Notice of Allowance dated Feb. 12, 2019, 9 pages. |
U.S. Appl. No. 16/505,265—Office Action dated Apr. 30, 2020, 15 pages. |
U.S. Appl. No. 16/505,265—Response to Office Action dated Apr. 30, 2020, filed Jul. 30, 2020, 11 pages. |
U.S. Appl. No. 16/505,265—Notice of Allowance dated Aug. 24, 2020, 14 pages. |
U.S. Appl. No. 17/133,616—Response to Office Action dated Mar. 2, 2022 filed Jun. 2, 2022, 26 pages. |
U.S. Appl. No. 17/133,616—Notice of Allowance dated Jun. 15, 2022, 26 pages. |
DE 11 2013 000 590.5—Second Office Action dated Apr. 29, 2015, 7 pages. |
DE 11 2013 000 590.5—Third Office Action dated Sep. 28, 2015, 4 pages. |
Delamarre et al., “Finding Pose of Hand in Video Images: A Stereo-based Approach”, Apr. 14-16, 1998 [retrieved Jul. 15, 2016], Third IEEE Intern Conf on Auto Face and Gesture Recog, pp. 585-590 Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=671011&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D671011>. |
Di Zenzo, S., et al., “Advances in Image Segmentation,” Image and Vision Computing, Elsevier, Guildford, GBN, vol. 1, No. 1, Copyright Butterworth & Co Ltd., Nov. 1, 1983, pp. 196-210. |
Dombeck, D., et al., “Optical Recording of Action Potentials with Second-Harmonic Generation Microscopy,” The Journal of Neuroscience, Jan. 28, 2004, vol. 24(4): pp. 999-1003. |
Forbes, K., et al., “Using Silhouette Consistency Constraints to Build 3D Models,” University of Cape Town, Copyright De Beers 2003, Retrieved from the internet: <http://www.dip.ee.uct.ac.za/˜kforbes/Publications/Forbes2003Prasa.pdf> on Jun. 17, 2013, 6 pages. |
Fukui et al. “Multiple Object Tracking System with Three Level Continuous Processes” IEEE, 1992, pp. 19-27. |
Gorce et al., “Model-Based 3D Hand Pose Estimation from Monocular Video”, Feb. 24, 2011 [retrieved Jul. 15, 2016], IEEE Transac Pattern Analysis and Machine Intell, vol. 33, Issue: 9, pp. 1793-1805, Retri Internet: <http://ieeexplore.ieee.org/xpl/logi n .jsp ?tp=&arnu mber=571 9617 &u rl=http%3A %2 F%2 Fieeexplore. ieee.org%2Fxpls%2 Fabs all.isp%3Farnumber%3D5719617>. |
Guo et al., Featured Wand for 3D Interaction, Jul. 2-5, 2007 [retrieved Jul. 15, 2016], 2007 IEEE International Conference on Multimedia and Expo, pp. 2230-2233. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.isp?tp=&arnumber=4285129&tag=1&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4285129%26tag%3D1>. |
Heikkila, J., “Accurate Camera Calibration and Feature Based 3-D Reconstruction from Monocular Image Sequences”, Infotech Oulu and Department of Electrical Engineering, University of Oulu, 1997, 126 pages. |
JP 2014-552391—First Office Action dated Dec. 9, 2014, 6 pages. |
JP 2014-552391—Response to First Office Action dated Dec. 9, 2014 filed Jun. 8, 2016, 9 pages. |
JP 2014-552391—Response to Second Office Action dated Jul. 7, 2015 filed Dec. 25, 2015, 4 pages. |
JP 2014-552391—Second Office Action dated Jul. 7, 2015, 7 pages. |
JP 2014-552391—Third Office Action dated Jan. 26, 2016, 5 pages. |
Kanhangad, V., et al., “A Unified Framework for Contactless Hand Verification,” IEEE Transactions on Information Forensics and Security, IEEE, Piscataway, NJ, US , vol. 6, No. 3, Sep. 1, 2011, pp. 1014-1027. |
Kellogg, Bryce, Vamsi Talia, and Shyamnath Gollakota. “Bringing Gesture Recognition to All Devices,” NSDI'14: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, (Apr. 2, 2014), pp. 303-316. (Year: 2014). |
Kim, et al., “Development of an Orthogonal Double-Image Processing Algorithm to Measure Bubble,” Department of Nuclear Engineering and Technology, Seoul National University Korea, vol. 39 No. 4, Published Jul. 6, 2007, pp. 313-326. |
Kulesza, et al., “Arrangement of a Multi Stereo Visual Sensor System for a Human Activities Space,” Source: Stereo Vision, Book edited by: Dr. Asim Bhatti, ISBN 978-953-7619-22-0, Copyright Nov. 2008, I-Tech, Vienna, Austria, www.intechopen.com, pp. 153-173. |
Matsuyama et al. “Real-Time Dynamic 3-D Object Shape Reconstruction and High-Fidelity Texture Mapping for 3-D Video,” IEEE Transactions On Circuits and Systems for Video Technology, vol. 14, No. 3, Mar. 2004, pp. 357-369. |
May, S., et al., “Robust 3D-Mapping with Time-of-Flight Cameras,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, NJ, USA, Oct. 10, 2009, pp. 1673-1678. |
Melax et al., “Dynamics Based 3D Skeletal Hand Tracking”, May 29, 2013 [retrieved Jul. 14, 2016], Proceedings of Graphics Interface, 2013, pp. 63-70. Retrived from the Internet: <http://dl.acm.org/citation.cfm?id=2532141>. |
Mendez, et al., “Importance Masks for Revealing Occluded Objects in Augmented Reality,” Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, 2 pages, ACM, 2009. |
Oka et al., “Real-Time Fingertip Tracking and Gesture Recognition”, Nov./Dec. 2002 [retrieved Jul. 15, 2016], IEEE Computer Graphics and Applications, vol. 22, Issue: 6, pp. 64-71. Retrieved from the Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arumber=1046630&ur/=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabsall.jsp%3Farnumber%3D1046630>. |
Olsson, K., et al., “Shape from Silhouette Scanner—Creating a Digital 3D Model of a Real Object by Analyzing Photos From Multiple Views,” University of Linkoping, Sweden, Copyright VCG 2001, Retrieved from the Internet: <http://liu.diva-portal.org/smash/get/diva2:18671/FULLTEXT01> on Jun. 17, 2013, 52 pages. |
PCT/JP2008/062732, WO English Abstract with Japanese Publication of WO 2010/007662 A1, “Heat-Resistant Cushion material for Forming Press,” Jan. 21, 2010, Ichikawa Co Ltd, 35 pages. |
PCT/US2013/021709—International Preliminary Report on Patentability dated Jul. 22, 2014, 22 pages. |
PCT/US2013/021709—International Search Report and Written Opinion dated Sep. 12, 2013, 22 pages. |
PCT/US2013/021713—International Preliminary Report on Patentability dated Jul. 22, 2014, 13 pages. |
PCT/US2013/021713—International Search Report and Written Opinion dated Sep. 11, 2013, 7 pages. |
PCT/US2013/069231—International Preliminary Report with Written Opinion dated May 12, 2015, 8 pages. |
PCT/US2013/069231—International Search Report and Written Opinion dated Mar. 13, 2014, 7 pages. |
PCT/US2014/013012—International Search Report and Written Opinion dated May 14, 2014, published as WO 2014116991, 12 pages. |
PCT/US2014/028265, International Search Report and Written Opinion, dated Jan. 7, 2015, 15 pages. |
Pedersini, et al., Accurate Surface Reconstruction from Apparent Contours, Sep. 5-8, 2000 European Signal Processing Conference EUSIPCO 2000, vol. 4, Retrieved from the Internet: http://home.deib.polimi.it/sarti/CV_and_publications.html, pp. 1-4. |
Rasmussen, Matihew K., “An Analytical Framework for the Preparation and Animation of a Virtual Mannequin forthe Purpose of Mannequin-Clothing Interaction Modeling”, A Thesis Submitted in Partial Fulfillment of the Requirements for the Master of Science Degree in Civil and Environmental Engineering in the Graduate College of the University of Iowa, Dec. 2008, 98 pages. |
Schaar, R., VCNL4020 Vishay Semiconductors. Application Note [online]. Extended Detection Range with VCNL Family of Proximity Sensor Vishay Intertechnology, Inc, Doc No. 84225, Revised Oct. 25, 2013 [retrieved Mar. 4, 2014]. Retrieved from the Internet: <www.vishay.com>. 4 pages. |
Schlattmann et al., “Markerless 4 gestures 6 DOF real-time visual tracking of the human hand with automatic initialization”, 2007 [retrieved Jul. 15, 2016], Eurographics 2007, vol. 26, No. 3, 10 pages, Retrieved from the Internet: <http://cg.cs.uni-bonn.de/aigaion2root/attachments/schlattmann-2007-markerless.pdf>. |
Texas Instruments, “4-Channel, 12-Bit, 80-MSPS ADC,” VSP5324, Revised Nov. 2012, Texas Instruments Incorporated, 55 pages. |
Texas Instruments, “QVGA 3D Time-of-Flight Sensor,” Product Overview: OPT 8140, Dec. 2013, Texas Instruments Incorporated, 10 pages. |
Texas Instruments, “Time-of-Flight Controller (TFC),” Product Overview; OPT9220, Jan. 2014, Texas Instruments Incorporated, 43 pages. |
VCNL4020 Vishay Semiconductors. Application Note [online]. Designing VCNL4020 into an Application. Vishay Intertechnology, Inc, Doc No. 84136, Revised May 22, 2012 [retrieved Mar. 4, 2014]. Retrieved from the Internet: <www.vishay.com>. 21 pages. |
VCNL4020 Vishay Semiconductors. Datasheet [online], Vishay Intertechnology, Inc, Doc No. 83476, Rev. 1.3, Oct. 29, 2013 [retrieved Mar. 4, 2014]. Retrieved from the Internet: <www.vishay.com>. 16 pages. |
Wang et al., “Tracking of Deformable Hand in Real Time as Continuous Input for Gesture-based Interaction”, Jan. 28, 2007 [retrieved Jul. 15, 2016], Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 235-242. Retrieved fromthe Internet: <http://dl.acm.org/citation.cfm?id=1216338>. |
Zhao et al., “Combining Marker-Based Mocap and RGB-D Camera for Acquiring High-Fidelity Hand Motion Data”, Jul. 29, 2012 [retrieved Jul. 15, 2016], Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33-42, Retrieved from the Internet: <http://dl.acm.org/citation.cfm?id=2422363>. |
Korida, et al., “An Interactive 3D Interface for a Virtual Ceramic Art Work Environment”, published on Virtual Systems and MultiMedia, 1997. VSMM '97. Proceedings., International Conference (Sep. 10, 1997), 8 pages. |
U.S. Appl. No. 14/821,499, filed Aug. 7, 2015, US-2016-0044298-A1, Feb. 11, 2016, U.S. Pat. No. 10,349,036, Jul. 9, 2019, Issued. |
U.S. Appl. No. 16/505,265, filed Jul. 8, 2019, US-2019-0335158-A1, Oct. 31, 2019, U.S. Pat. No. 10,880,537, Dec. 29, 2020, Issued. |
U.S. Appl. No. 17/133,616, filed Dec. 23, 2020, US-2021-0120222-A1, Apr. 22, 2021, U.S. Pat. No. 11,483,538, Oct. 9, 2022, Issued. |
U.S. Appl. No. 14/625,635, filed Feb. 19, 2015, US-2015-0346701-A1, Dec. 3, 2015, U.S. Pat. No. 10,782,657, Sep. 22, 2020, Issued. |
U.S. Appl. No. 17/027,366, filed Sep. 21, 2020, US-2021-0003977-A1, Jan. 7, 2021, U.S. Pat. No. 11,561,519, Jan. 24, 2023, Issued. |
U.S. Appl. No. 18/093,257, filed Jan. 4, 2023, Pending. |
U.S. Appl. No. 14/997,454, filed Jan. 15, 2016, U.S. Pat. No. 10,656,720, May 19, 2020, Issued. |
U.S. Appl. No. 16/877,231, filed May 18, 2020, US-2020-0278756-A1, Sep. 3, 2020, U.S. Pat. No. 11,036,304, Jun. 15, 2021, Issued. |
U.S. Appl. No. 17/345,919, filed Jun. 11, 2021, US-2021-0303079-A1, Sep. 30, 2021, Published. |
U.S. Appl. No. 14/626,904, filed Feb. 19, 2015, Abandoned. |
PCT/US2015/032705—International Search Report dated Sep. 15, 2015, 3 pages. |
PCT/US2015/032705—International Preliminary Report on Patentability dated Nov. 29, 2016, 11 pages. |
“EigenSolver <_MatrixType> Class Template Reference,” Reference Eigen Values Module, retrieved from the internet: <http://eigen.luxfamily.org/dox/classEigen_1_1EigenSolver.html> on Mar. 12, 2015, pp. 1-8. |
“Hessian Matrix of the Image,” Matlab—Hessian Matrix of the Image—Stack Overflow, last edited Mar. 13, 2014, retrieved from the internet: <http://stackoverflow.com/questions/22378360/hessian-matrix-of-the-image> on Mar. 10, 2015, 3 pages. |
“How Hessian Feature Detector Works?” Signal Processing Stack Exchange, last edited Oct. 2013, retrieved from the internet: <http://dsp.stackexchange.com/questions/10579/how0hessian-feature-detector-works> on Mar. 10, 2015, 3 pages. |
“SVD Module,” Reference, Eigen: SVD Module, retrieved from the internet: <http://eigen.luxfamily.org/dox/group_SVD_Module.html> on Mar. 12, 2015, 1 page. |
Bhutami, R., “What are the Ways of Calculating 2x2 Hessian Matrix for 2D Image of Pixel at (x,y) Position?,” Quora, last updated May 2013, retrieved from the internet: <http://www.quora.com/What-are-the-ways-of-calculating-2-x-2-hessian-m-atrix-for-2d-image-of-pixel-at-x-y-position> on Mar. 10, 2015, 4 pages. |
Grauman, K., et al., “Chapter 3—Local Features: Detection and Description,” Visual Object Recognition: Synthesis Lectures on Artificual Intelligence and Machine Learning, Apr. 2011, retrieved from the internet: <www.morganclaypool.com/doi/abs/10.2200/S00332Ed1V01Y201103A- M011> on Mar. 12, 2015, pp. 1, 23-39. |
Hladuvka, J., et al., “Exploiting Eigenvalues of the Hessian Matrix for Volume Decimation,” CiteSeerx, Copyright 2001, retrieved from the internet: <http://citeseerx.isf.psu.edu/viewdoc/summary?doi=10.1.1.67.-565> on Mar. 12, 2015, fromVienna University of Technology, 7 pages. |
Rudzki, M., “Vessel Detection Method Based on Eigenvalues of Hessian Matrix and its Applicability to Airway Tree Segmentation,” XI International PhD Workshop, OWD 2009, Silesian University of Technology, Oct. 17-20, 2009, 6 pages. |
ShinodaLab, “Visuo-Tactile Projector,” YouTube Video, published on May 14, 2013, retrieved from the internet: <http://www.youtube.com/watch?v=Bb0hNMxxewg> on Mar. 12, 2015, 2 pages. |
Shlens, J., “A Tutorial on Principal Component Analysis,” Derivation, Discussion and Singular Value Decomposition, Version 1, Mar. 25, 2013, UCSD. edu, pp. 1-16. |
Wikipedia, “Axis-angle Representation,” Wikipedia—the Free Encyclopedia, last modified Dec. 30, 2014, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Axis-angle_representation&oldid=640273193> on Mar. 12, 2015, 5 pages. |
Wikipedia, “Euclidean Group,” Wikipedia—the Free Encyclopedia, last modified Feb. 24, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Euclidean_group&oldid=648705193> on Mar. 12, 2015, 7 pages. |
Wikipedia, “Multilateration,” Wikipedia—the Free Encyclopedia, Nov. 16, 2012, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Multilateration&oldid=523281858> on Mar. 12, 2015, 10 pages. |
Wikipedia, “Rotation Group SO(3),” Wikipedia—the Free Encyclopedia, last modified Feb. 20, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Rotation_group_SO(3)&oldid=648012313> on Mar. 13, 2015, 17 pages. |
Wikipedia, “Rotation Matrix,” Wikipedia—the Free Encyclopedia, last modified Mar. 11, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Rotation.sub.-matrix&oldid- =650875954> on Mar. 12, 2015, 21 pages. |
Wikipedia, “Transformation Matrix,” Wikipedia—the Free Encyclopedia, last modified Mar. 5, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Transformation.sub.-matrix-&oldid=649936175> on Mar. 12, 2015, 8 pages. |
PCT/US2015/032705—Written Opinion of the ISA, dated Sep. 15, 2015, 10 pages. |
Wikipedia, “Affine Transmation,” Wikipedia—the Free Encyclopedia, last modified Mar. 5, 2015, retrieved from the internet: <http://en.wikipedia.org/w/index.php?title=Affine.sub.-transformation-&oldid=650023248> on Mar. 12, 2 015, 8 pages. |
Kanhangad, V., et al., “Combining 2D And 3D Hand Geometry Features for Biometric Verification”, IEEE 2009, 6 pages. |
Choras, M., et al., “Contactless Palmprint and Knuckle Biometrics for Mobile Devices”, Springerlink, Dec. 8, 2009, 13 pages. |
CN 201580041594.3—First Office Action dated Feb. 3, 2019, 29 pages. |
Interactive Gaming Smart Vending Machine. Silikron Smart Vending, URL: https:///www.youtube.com/watch?v=tK17sXvzLtU, Dec. 12, 2013. |
Solanki, Utpal V. and Nilesh H. Desai. “Hand Gesture Based Remote Control for Home Appliances: Handmote,” 2011 World Congress on Information and Communication Technologies, Mumbai, (2011), p. 419-423. |
Franco, Michael. “Wave Your Hand to Control Smart Devices—Even if it's Out of Sight.” Cnet (Feb. 28, 2014). |
Pointgrab LTD. “New Line of Acer All-in-One Devices Among the First Products to Feature PointGrab's Windows 8 Hand Gesture Control Solution,” Business Wire (English), (Nov. 13, 2012). |
Wong, Kie Yih Edward, et. al., “Palmprint Identification Using Sobel Operator,” 10th International Conference on Control, automation, Robotics and Vision, Dec. 17-20, 2008, 4 pages. |
Genovese, Angelo, Contactless and less Constrained Palmprint Recognition, Mar. 18, 2014, 48 pages. |
Jin et al., Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method, Hindawi, dated Jun. 28, 2013, 8 pages. |
Arthington, et al., “Cross-section Reconstruction During Uniaxial Loading,” Measurement Science and Technology, vol. 20, No. 7, Jun. 10, 2009, Retrieved from the Internet: http:iopscience.iop.org/0957-0233/20/7/075701, pp. 1-9. |
Ballan et al., “Lecture Notes Computer Science: 12th European Conference on Computer Vision: Motion Capture of Hands in Action Using Discriminative Salient Points”, Oct. 7-13, 2012 [retrieved Jul. 14, 2016], Springer Berlin Heidelberg, vol. 7577, pp. 640-653. Retrieved from the Internet: <http://link.springer.com/chapter/1 0.1007/978-3-642-33783-3 46>. |
Barat et al., “Feature Correspondences From Multiple Views of Coplanar Ellipses”, 2nd International Symposium on Visual Computing, Author Manuscript, 2006, 10 pages. |
Bardinet, et al., “Fitting of iso-Surfaces Using Superquadrics and Free-Form Deformations” [on-line], Jun. 24-25, 1994 [retrieved Jan. 9, 2014], 1994 Proceedings of IEEE Workshop on Biomedical Image Analysis, Retrieved from the Internet: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=315882&tag=1, pp. 184-193. |
Butail, S., et al., “Three-Dimensional Reconstruction of the Fast-Start Swimming Kinematics of Densely Schooling Fish,” Journal of the Royal Society Interface, Jun. 3, 2011, retrieved from the Internet <http://www.ncbi.nlm.nih.gov/pubmed/21642367>, pp. 0, 1-12. |
Cheikh et al., “Multipeople Tracking Across Multiple Cameras”, International Journal on New Computer Architectures and Their Applications (IJNCAA), vol. 2, No. 1, 2012, pp. 23-33. |
Chung, et al., “International Journal of Computer Vision: RecoveringLSHGCs and SHGCs from Stereo” [on-line], Oct. 1996 [retrieved on Apr. 10, 2014], Kluwer Academic Publishers, vol. 20, issue 1-2, Retrieved from the Internet: http://link.springer.com/article/10.1007/BF00144116#, pp. 43-58. |
CN 2013800122765—Office Action dated Nov. 2, 2015, 17 pages. |
CN 2013800122765—Response to First Office Action dated Nov. 2, 2015 filed May 14, 2016, 14 pages. |
CN 2013800122765—Response to Second Office Action dated Jul. 27, 2016 filed Oct. 11, 2016, 3 pages. |
CN 2013800122765—Second Office Action dated Jul. 27, 2016, 6 pages. |
Cui et al., “Applications of Evolutionary Computing: Vision-Based Hand Motion Capture Using Genetic Algorithm”, 2004 [retrieved Jul. 15, 2016], Springer Berlin Heidelberg, vol. 3005 of LNCS, pp. 289-300. Retrieved from the Internet: <http://link.springer.eom/chapter/10.1007/978-3-540-24653-4_30>. |
Cumani, A., et al., “Recovering the 3D Structure of Tubular Objects from Stereo Silhouettes,” Pattern Recognition, Elsevier, GB, vol. 30, No. 7, Jul. 1, 1997, 9 pages. |
Davis et al., “Toward 3-D Gesture Recognition”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 13, No. 03, 1999, pp. 381-393. |
DE 11 2013 000 590.5—First Office Action dated Nov. 5, 2014, 7 pages. |
DE 11 2013 000 590.5—Notice of Allowance dated Jan. 18, 2016, 8 pages. |
DE 11 2013 000 590.5—Response to First Office Action dated Nov. 5, 2014 filed Apr. 24, 2015, 1 page. |
DE 11 2013 000 590.5—Response to Second Office Action dated Apr. 29, 2015 filed Sep. 16, 2015, 11 pages. |
DE 11 2013 000 590.5—Response to Third Office Action dated Sep. 28, 2015 filed Dec. 14, 2015, 64 pages. |
Number | Date | Country | |
---|---|---|---|
20230042990 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
62035008 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17133616 | Dec 2020 | US |
Child | 17972288 | US | |
Parent | 16505265 | Jul 2019 | US |
Child | 17133616 | US | |
Parent | 14821499 | Aug 2015 | US |
Child | 16505265 | US |