Exemplary embodiments of the present invention are related to systems and methods for performing aural smoothing in a vehicle.
Vehicle control systems monitor vehicle power demands and selectively control one or more powertrain components such that an improved fuel economy can be provided. For example, during low power consumption activity, the vehicle control systems can transition the powertrain from operating an engine to operating a motor. Likewise, during high power consumption activity, the vehicle control system can transition the powertrain from operating the motor to operating the engine. Such transitions can cause abrupt changes in the sounds emitted from the vehicle. Unexpected abrupt changes in sound can be undesirable to a vehicle operator. Accordingly, it is desirable to provide systems and methods for improving the overall soundscape of a vehicle.
In one exemplary embodiment, a method of controlling sounds associated with a vehicle is provided. The method includes performing on a processor, monitoring powertrain data; determining a powertrain transition event based on the powertrain data; and selectively controlling the generation of one or more tones based on the powertrain transition event.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Other objects, features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. As used herein, the term module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
In accordance with an exemplary embodiment of the present invention a vehicle is shown generally at 10. The vehicle includes an aural smoothing system 12. The aural smoothing system 12 communicates with one or more control modules 14. The one or more control modules 14 (hereinafter referred to as control module) control a powertrain 16 of the vehicle 10. The powertrain 16 includes one or more sources of propulsion for the vehicle 10.
In various embodiments, as shown in
In the example engine system 18, air is drawn into an intake manifold 22 through a throttle 25. The throttle 25 regulates mass airflow into the intake manifold 22. Air within the intake manifold 22 is distributed into cylinders 24. Although a single cylinder 24 is illustrated, it can be appreciated that the aural smoothing system of the present disclosure can be implemented in engines 20 having a plurality of cylinders 24 including, but not limited to, 2, 3, 4, 5, 6, 8, 10, 12 and 16 cylinders arranged in a v-type flat or inline configuration.
A fuel injector 26 injects fuel that is combined with the air as it is drawn into the cylinder 24 through an intake port. The fuel injector 26 may be an injector associated with an electronic or mechanical fuel injection system 28, a jet or port of a carburetor or another system for mixing fuel with intake air. The fuel injector 26 is controlled to provide a desired air-to-fuel (A/F) ratio within each cylinder 24.
An intake valve 30 selectively opens and closes to enable the air/fuel mixture to enter the cylinder 24. The intake valve position is regulated by an intake camshaft 32. A piston (not shown) compresses the air/fuel mixture within the cylinder 24. A spark plug 34 initiates combustion of the air/fuel mixture, which drives the piston in the cylinder 24. The piston, in turn, drives a crankshaft (not shown) to produce drive torque. Combustion exhaust within the cylinder 24 is forced out of an exhaust port when an exhaust valve 36 is in an open position. The exhaust valve position is regulated by an exhaust camshaft 38. The exhaust exits the engine 20 through an exhaust manifold 40, is treated in an exhaust system 42, and is released to atmosphere.
In various embodiments, the engine 20 is controlled to selectively activate and deactivate the operation of one or more cylinders 24 to accommodate the changes in power demands of the vehicle 10. For example, an eight cylinder engine can be controlled to transition from operating with four cylinders firing to operating with eight cylinders firing due to an increase in a power demand. Such transition can be referred to as an activation transition. In another example, the eight cylinder engine can be controlled to transition from operating with eight cylinders firing to operating with four cylinders firing due to a decrease in a power demand. Such transition can be referred to as a deactivation transition.
In various other embodiments, as shown in
When in the parallel configuration (configuration not shown), the engine 20 and the electric drive motor 46 each function as a source of propulsion of the vehicle 10. The engine 20 and the electric drive motor 46 can operate together to propel the vehicle 10 and/or individually based on torque demands.
In various other embodiments, as shown in
With reference back to
As can be appreciated, the aural smoothing system 12 can be integrated within the control module 14, can be integrated within the infotainment module 62, or can be separate from the control module 14 and the infotainment module 62 and can communicate with each via a vehicle communication network 66. For exemplary purposes, the disclosure will be discussed in the context of the aural smoothing system 12 being separate from and in communication with the infotainment module 62 and the control module 14.
In various embodiments, the aural smoothing system 12 monitors data that is generated by the control module 14 and that is communicated on the communication network 66. Based on the data, the aural smoothing system 12 identifies powertrain transition events and performs one or more sound management methods. The sound management methods communicate with the infotainment system 60 to perform aural smoothing of sounds generated by the vehicle 10. In various embodiments, the sound management methods can include one or more active noise cancellation methods and/or one or more sound blending methods. In various embodiments, the active noise cancellation methods remove objectionable sounds generated by the powertrain 16. In various embodiments, the sound blending methods introduce one or more sounds to blend sounds generated by the powertrain 16.
Referring now to
The transition determination module 70 receives as input powertrain data 76. Such powertrain data 76 can include, for example, but is not limited to, engine torque 78, manifold absolute pressure 80, engine speed 82, engine activation/deactivation signals 84, or other signals indicative of transition events.
Based on the powertrain data 76, the transition determination module 70 determines a transition type 92 and/or a transition stage 94. The transition type 92 indicates the type of transition occurring. For example, when the powertrain 16 (
The transition stage 94 indicates a stage of the transition occurring. In various embodiments, the transition stage 94 can merely identify the transition and can be for example, transition, or no transition. In various other embodiments, the transition stage 94 can identify stages of the transition and can be, for example, entering the transition, transitioning, exiting the transition, transition complete, or no transition. The transition determination module 70 determines the transition stage 94 by evaluating the powertrain data 76 against predetermined transition data.
The tone manager module 72 receives as input the transition stage 94 and/or the transition type 92. Based on the inputs 92, 94, the tone manager module 72 identifies one or more tones 96 that can counteract (e.g., by masking, blending or cancellation) the amplitude, frequency, and timing of the sounds emitted by the powertrain 16 (
In various embodiments, the tone manager module 72 can determine in-vehicle tones and/or outside the vehicle tones to be used in the aural smoothing. The tones 96 can be predetermined and stored in the datastore 97 as two or more tables based on the transition stage 94 and/or the transition type 92. Alternatively, the tones 96 can be estimated based on one or more tone estimating equations.
The speaker manager module 74 receives as input the selected tones 96, and the transition type 92 and/or the transition stage 94. Based on the inputs, 92, 94, 96, the speaker manager module 74 determines when to generate the tones 96 and further determines which speakers 64 (
Referring now to
In various embodiments, the method can be scheduled to run based on predetermined events, and/or run continually during operation of the vehicle 10 (
In one example, the method may begin at 100. The powertrain data 76 is monitored at 110 and a transition event is evaluated at 120. If the powertrain data 76 indicates a transition event has not occurred at 121, the method continues with monitoring the powertrain status data at 110.
If, however, the powertrain data 76 indicates that a transition event is occurring at 122, the transition type 92 is determined at 130 and/or the transition stage 94 is determined at 140. The transition stage 94 is then evaluated at 150 and 160.
If the transition stage 94 indicates, for example, entering the transition at 151, the tones 96 are selected based on the transition type 92 and/or the transition stage 94 at 170. For example, tones that provide active noise cancellation and blending can be selected during the entering the transition stage. Further based on the transition type 92 and/or the transition stage 94, one or more speakers 64 (
If, however, the transition stage 94 does not indicate entering the transition at 152, rather, it indicates transitioning or exiting the transition at 161, the selected tones 96 are adjusted based on the transition type 92 and/or the transition stage 94 at 190. For example, the tones 96 that provide the blending can be selected during the transitioning stage and/or the exiting the transition stage. Once the tones have been selected, further based on the transition type 92 and/or the transition stage 94, one or more speakers 64 (
The method of selecting the tones and controlling the speakers continues until the transition stage indicates that the transition is complete or until there is no transition at 162. Thereafter, the method continues with monitoring the powertrain data 94 for another transition event at 110.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the present application.