The present invention concerns an authentication and access control device (AACD) for providing access to a controlled resource. Referring to
The controlled resource 102 can include several components. These components can include a human/machine interface 106 and an input/output (I/O) system 108 for communicating data into and out of the device. The human/machine interface 106 can include a keypad for data entry and an LCD or other type of display screen. Advantageously, the I/O system 108 can include a wireless interface. I/O system 108 can be connected to a suitable transducer 109 for wireless communications. If the I/O system is RF based, the transducer can be an antenna. If the system is optically based, a suitable optical transducer can be used. Alternatively, any other suitable wireless transducer can be used. The wireless interface can be based on any of a variety of well known wireless interface standards. Examples of such well known wireless interface standards can include the Bluetooth wireless standard, and the IEEE 802.11 family of standards. However, the invention is not limited in this regard and any other wireless interface standard can be used.
According to one embodiment of the invention, the secure information processing system can be a personal electronic device. Personal electronic devices (PEDs) are well known in the art. For example mobile handheld computers, which are sometimes called personal digital assistants or PDAs, have the ability to store, process and communicate data. PDAs generally fall into one of several categories which can include handheld PCs, palm size PCs, smart phones, and handheld instruments. PDAs typically include some kind of microprocessor with a commercially available operating system such as Linux, Palm OS, or Widows CE (Pocket PC). Many PDAs also have built in LCD displays, touch sensitive screens, and keypads for the human/machine interface. Some PDAs also include wireless networking capabilities. For example, many such devices can communicate with other devices using well known wireless networking. The foregoing capabilities make these compact devices highly useful for various business and personal applications. It is anticipated that recent developments in PDA technology will increasingly facilitate secure processing on these types of devices.
If the controlled resource 102 is an electronic security system that is used to secure physical access to a perimeter, then the controlled resource can be linked to one or more electronically controlled locks (not shown). Other control and surveillance systems, such as video cameras and/or other types of surveillance sensors, can also be used to provide perimeter physical access control. Still, it will be appreciated that the invention is not limited to any particular type of controlled resource.
Referring once again to
According to one embodiment of the invention, each security sub-system which is implemented on the AACD 104 can generate and transmit at least one key code that is associated with that particular sub-system. For example, a first sub-system 110 can include a personal identification code that is associated with a particular user. In this regard, the first sub-system can be similar to conventional common access control cards that are swiped, scanned or otherwise designed to respond to a conventional stimulus signal for generating a security code. Consequently, for this type of sub-system the key code can be any particular code that can be associated with a specified user.
The sub-system 110 can be useful for automatically limiting access to the controlled resource. For example, in response to an interrogation signal 120, the security key subsystem 110 can transmit a key code associated with a particular user. When the key-code is received by the controlled resource 102, it can determine whether the user has privileges to use or access the controlled resource.
Notwithstanding the advantages of central access control type devices which can be included as part of sub-system 110, those devices have their limitations. For example, with a CAC type device, the controlled resource 102 can determine that an individual is present with MCD 104 that has generated a valid user key code. However, the controlled resource cannot know whether the user who possesses the device is the legitimate owner or authorized user of the MCD. Accordingly, it can be advantageous to combine the sub-system 110 with at least a second sub-system. For example, the second sub-system can be used to authenticate that the individual possessing the MCD 104 is in fact the person who is authorized to use the MCD. One method to accomplish such authentication would be to include a biometric scanner sub-system 112 as part of the MCD 104. Another method would be to include a keypad 114 or other data entry device as part of the MCD 104 to allow a user to enter a user password.
Stated in more general terms, a first one of the security key sub-systems 110, 112, 114, 116, 118 can be selected from the group consisting of (1) a biometric scanner, (2) a keypad configured for entry by a user of at least one of alpha and numeric data, (3) a data store containing a personal identification code for a particular user, (4) a data store containing a cryptographic fill key, and (5) a data store containing a cryptographic ignition key. Further, a second one of the security key sub-systems 110, 112, 114, 116, 118 can be selected from the same group. The first and second security key sub-systems can be of the same type, but it can be advantageous to select the second one of the security key subsystems so that it is not the same type of subsystem as the first security key sub-system.
Referring now to
As shown in
Microprocessor 202 is capable of receiving and transmitting data through input/output (I/O) subsystem 204, which can include a wireless transceiver, and any other conventional data communication service. A suitable transducer 212 can be provided for any wireless applications. If the I/O subsystem relies on an RF link, the transducer can be an antenna. Alternatively, for an optical based system, an optical transducer can be used. The wireless interface can be based on any of a variety of well known wireless interface standards. Examples of such well known wireless interface standards can include the Bluetooth wireless standard, and the IEEE 802.11 family of standards. However, the invention is not limited in this regard and any other wireless interface standard can be used.
Those skilled in the art will appreciate that the wireless data communications between MCD 104 and controlled resource 102 are subject to interception. Accordingly, it can be advantageous to make use of various cryptographic techniques for the purpose of conducting all or part of such communications. Any suitable cryptographic technique or process can be used for preventing unauthorized use of the information that is transmitted between the two devices.
Microprocessor 202 can be any of a variety of commercially available processor. For example, microprocessor 202 can be selected from the StrongARM or XScale processors (e.g., SA-110 or PXA270) available from Intel Corp. of Santa Clara, Calif., the i.MX or Dragonball family of processors available from Freescale Semiconductor, Inc. of Austin, Tex., or the OMAP family of processors offered for sale by Texas Instruments of Dallas, Tex. Microprocessor 202 can utilize any suitable commercially available operating system. Alternatively, in order to reduce energy consumption and costs, processor 202 can be implemented as a microelectronic controller. Suitable commercially available controllers can include the MCS51 family of microcontrollers available from Intel Corp. of Santa Clara, Calif., the MSP430 family of microcontrollers available from Texas Instruments of Dallas, Tex., or the P87LPC 7xx family of microcontrollers available from Philips Electronics of the Netherlands.
Processor 202 can communicate respectively with data store 206. Data stores 206 can be comprised of any suitable data storage system such as flash memory, read-only memory (ROM), EE PROM and/or dynamic random access memory (DRAM). The operating system for the processor can be stored in non-volatile memory in data store 206. Still, those skilled in the art will appreciate that the invention is not limited with regard to the particular type of data store that is used for the operating system or application software of processor 202.
Suitable data communication links can be provided between the processor 202, data store 206, keypad, 208 and biometric scanner 210. The data communication links can be any suitable type serial or parallel type data channels. For example, if the communication link is a parallel type data link then it can conform to any of a number of well known bus standards, including without limitation ISA, EISA, VESA, PCI, EMIF and so on. Alternatively, if a serial data channel is used, then it can be an I2C, SPI, Microwire, Maxim or other type serial data bus. Those skilled in the art will appreciate that the invention is not limited to any particular data link arrangement among the various components of the AACD 104.
One or more of the authorization access and control sub-systems 110, 112, 114, 116, 118 can be implemented in the AACD 104 that is shown in
Security key sub-system 110 can utilize any conventional key code that can be used to identify a user. However, a security key code for security key sub-system 116 can include a cryptographic ignition key (CIK). Those skilled in the art will appreciate that the CIK can be used to enable a secure device when the CIK is loaded into the secure device. Similarly, certain data processing functions of secure devices can require the insertion of a cryptographic key. Accordingly, such a cryptographic fill key can be stored in data store 206 as part of the secure wireless fill key device 118. The wireless capability of the AACD 104, combined with its secure authorization and access control features ensure that only authorized users will be able to make use of the CIK and wireless fill key.
With regard to biometric scanner 210, the key code can be generated as a result of a biometric scan. According to one embodiment, a data file associated with the biometric scan can be communicated to the processor 202. Processor 202 can cause the data file to be directly transmitted to the controlled resource 102 using I/O subsystem 204. In that case, the data file can be evaluated by controlled resource 102 and compared to a database of biometric scan data for the purpose of determining whether the user should be granted access.
According to an alternative embodiment, the key-code for the biometric scan can also be a digital code that is derived from the biometric scanning process. In that case, the digital code can be transmitted to the controlled resource for comparison to a reference file. According to yet another aspect, the biometric scan data can be compared to a reference file contained in data store 206. If the biometric scan data matches the information contained in the reference file, then microprocessor 202 can cause a specific key code to be transmitted to the controlled resource. One advantage of this arrangement would be that it avoids the need to wirelessly transmit biometric scan data.
Regardless of which arrangement is used for the biometric scanner 210, it will be appreciated that any type of biometric scanner can be used. For example, the biometric scanner can be a fingerprint scanner or a retinal scanner. Other types of scanners are also possible and the invention is not limited to these particular scanning types. For example, voice recognition systems can be used for this purpose. Still, the invention is not limited to any particular type of biometric scanner.
Similarly, keypad 208 can record a series of user key strokes indicating a user password. The key strokes can be communicated to the processor 202. In response, processor 202 can communicate the keystroke information to the I/O subsystem 204, which transmits the data to the controlled resource 102. The password can be evaluated by the controlled resource to determine if the user is authorized to access the controlled resource. Alternatively, the AACD 104 can compare the password entered by a user to a password stored in data store 206. If the password is correct, then processor 202 can cause a key code to be transmitted to the controlled resource. The controlled resource 102 can verify that the key code is sufficient to allow the user to access the controlled resource.
Notably, keypad 208 and biometric scanner 210 each provide a means for establishing that the AACD is being utilized by its proper owner. Accordingly, it can be desirable in some instances to use only one of these types of security key sub-systems. In fact, utilizing the combination of these security key sub-systems provides for substantially enhanced security.
Each of the security key sub-systems 110, 112, 114, 116, 118 that are implemented in the AACD 104 can advantageously be arranged to communicate wirelessly with the controlled resource 102. For example, in
Referring now to
Turning now to
Referring to
If a keypad 208 is included in the AACD 104, then the process can continue with steps 408 and 410. Otherwise, the process can continue directly to step 414. In step 408, the processor 202 can monitor the keypad for key stroke entry. In step 410, the processor can determine if a valid password has been entered on the key pad. If not, then the processor 202 can return to step 402. However, if a valid password is entered, then the AACD 104 can begin monitoring an input from I/O subsystem 204 to determine if a valid interrogation signal has been received from the controlled resource 102. If, after a period of time, no valid interrogation signal is received in step 414, then the process continues on to step 418. However, if a valid interrogation signal is received, then a common access control (CAC) key code can be automatically transmitted in response by the AACD 104. Alternatively, the AACD can automatically transmit the CAC key code without waiting for an interrogation signal.
In either case, the process can continue on to step 418. In step 418, the processor 202 can determine whether a cryptographic ignition key (CIK) has been requested or is to be transmitted to the controlled resource. A request for the CIK can be transmitted by the controlled resource and received using I/O subsystem 204. Alternatively, the transmission of the CIK can be requested by one or more user keystrokes. Assuming a proper request is received, then the CIK is transmitted in step 420.
Similarly, in step 422, the AACD 104 can determine whether a request has been received for the AACD 104 to transmit a cryptographic fill key. The request can be transmitted to the AACD 104 by the controlled resource, or can be initiated by a series of user keystrokes. If a valid request is received in step 422, then the cryptographic fill key can be transmitted in step 424.
The invention described and claimed herein is not to be limited in scope by the preferred embodiments herein disclosed, since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.