The present disclosure pertains to preventing unauthorized messages in communication systems.
The disclosure reveals an authentication system having a communications bus, a transmitter connected to the bus, and a receiver connected to the bus. A physical layer signal may be applied by the transmitter to a message on the bus for authenticating the transmitter. The physical layer signal may incorporate an identifier (ID) of the transmitter. The receiver may receive the message and decode the physical layer signal on the message. Decoding the physical layer signal on the message may reveal the ID of the transmitter sending the message. The receiver may look up the ID on a list of IDs corresponding to transmitters approved to send the message, to determine whether the ID of the transmitter sending the message matches an ID on the list. Only if the ID of the transmitter matches an ID on the list, then the transmitter may be authenticated and authorized to send the message.
The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.
This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.
Aspects of the system or approach may be described in terms of symbols in the drawing. Symbols may have virtually any shape (e.g., a block) and may designate hardware, objects, components, activities, states, steps, procedures, and other items.
Authentication system and approach for electronic control unit on a bus may involve electronic control unit (ECU) radio frequency (RF) identification. A present system may integrate some of the identification/authentication functions into a transceiver in order to reduce costs.
The present system and approach may use controller area network (CAN) herein for illustrative purposes, but instead media such as other wired media, optical media, radio frequency media, or so on, may be used singularly or in combination.
A CAN based bus used within the automotive environment does not necessarily appear to provide source authentication of messages on the bus. This may be a security issue. Cryptographic methods of providing source authentication may be problematic due to protocol restrictions and the complexities of key management in the repair environment.
A feature of the present system can be unique because it may eliminate a need for costly and complex cryptographic key management. The system may provide an ability to authenticate the sources of a message on the CAN bus. This may in turn allow a higher level of security for connected cars and self-driving cars (aka, highly automated vehicles).
This system may draw licensing revenue if offered to CAN bus transceiver vendors. There may be a market for companies to offer a CAN intrusion detection system (IDS) with a capability that may differentiate it from other systems.
The present system may add a modulator function to the CAN bus transceiver such that each node on the network applies a unique analog fingerprint to the messages it sends. A secure/authenticating receiver may then check the message type and fingerprint to ensure that the message is from an authorized source. If the message is not from an authorized source, the authenticating receiver may block the message in such a way that all other ECUs on the bus also reject the unauthorized message.
The present system may have an embedded software type. The software may run in a device/unit (e.g., firmware).
A CAN transceiver vendor may be available, such as Texas Instruments or NXP. The system may improve automotive software CAN bus intrusion detection.
Modern vehicles may incorporate on-board computing functions (e.g., electronic control units (ECUs) 13 connected by a controller area network (CAN) bus 12 as shown by architecture 11 in
Hackers have demonstrated the ability to hack into such systems in cars and interfere with critical functions such as braking and steering. Thus, vehicle manufacturers may be looking for a low-cost way to address the security issues. Some approaches may attempt to apply cryptography to CAN bus messages as a way of performing source authentication. There may be some issues associated with CAN bus encryption.
One issue may involve key management. When cryptography is used, each ECU may need a unique cryptographic key to allow the source of messages to be cryptographically authenticated. When a vehicle is produced in the factory, the original equipment manufacturer (OEM) may generate the keys and load them into the vehicle. However, when vehicle maintenance requires the replacement of a module, the new module needs to be loaded with the appropriate key. One may ask from where the new key comes. Many issues may be associated with obtaining a copy of the original key. There may be also issues if the module is loaded with a new randomly generated key. That implies that all other modules in the vehicle need to be updated to recognize the new key/module pair. Many security issues arise with attackers manipulating the key management system to extract real keys or to inject false keys. Given the number of years a vehicle may be in service and the range of repair options (dealers, independent shops, and owners), using new parts or parts from a salvage yard, key management may become complex and error prone.
Another issue may involve a cryptographic algorithm and mode. The issue with the CAN bus may be that the payload is only 8 bytes (64 bits). Thus, there may be issues using modern cryptographic algorithms such as the advanced encryption standard (AES) which operates on 128 bit blocks. One may consider using non-standard cryptographic algorithms and modes. However, history appears to be littered with cases of home grown cryptography being broken. An alternate approach may be using a newer CAN protocol, a flexible data rate (CAN-FD). This approach may permit for larger data frames and thus allow a use of strong cryptography. However, CAN-FD based approaches may still suffer from the key management issues noted above.
The present system may allow ECUs on the bus to authenticate to a secure gateway/vehicle security module without the need for cryptography. Thus, there may be no compatibility issues between cryptographic algorithms and the CAN protocol. So, the complexity of key management in the vehicle maintenance environment may be reduced or eliminated.
The present system may be different than other CAN bus authentication proposals in that it explicitly takes advantage of an unbroken physical layer (as defined by an open system interconnect (OSI), a seven-layer model 14 or similar model) among ECUs on a bus. A diagram of
The present system may solve the issue of ECU authentication according to the following approach. First, an analog signal (at the physical layer) may be applied to the message being transmitted. This signal may be unique for each transmitter on the bus. Thus, if there are 20 ECUs on a CAN bus, then 20 different analog signals may be used. These signals may be differentiated by time (when the analog signal starts and stops), frequency, type of modulation (amplitude, frequency/phase shift) or any combination of these factors. One implementation is to encode an ID number of the transmitter within the signal. The analog signal does not necessarily need to cover all bits of the message as in traditional communications. The analog signal only needs to cover enough bits so that the detector in the authenticating receiver can determine the ECU ID.
Second, one authenticating receiver 23 may be employed per bus 25. Receiver 23 may contain electronics to detect the analog signal and then determine the ECU 24 bound to that analog signal. This in effect may identify the ECU 24 which is transmitting. The authenticating receiver 23 may then check the message being transmitted against the set of ECUs 24 authorized to transmit the message. If a transmitter is sending an authorized message, the authenticating receiver 23 may allow the message to be transmitted. If the transmitter is sending an unauthorized message, then authenticating receiver may block the message by corrupting the cyclic redundancy code (CRC) on the message (
Each ECU 24 on a bus 25 which is to be authenticated may have a modulator 26 associated with its CAN bus transceiver 27. This modulator 26 may apply an analog signal to the messages sent by an ECU 24. The analog signal may be unique to the ECU 24 identifier. Thus, ECU_1 messages may be tagged with an analog signal 1. ECU_2 messages may be tagged with an analog signal 2, and so on. ECUs 24 may apply a similar analog signal (e.g., at the same frequency) but at different times. For example, ECU_1 may apply the analog signal to bits 0-3 of the messages while ECU_2 applies the same analog signal to bits 4-7 of the message. These ECUs 24 may apply the standard CRC check as specified by the CAN bus 25 protocol.
The number of possible schemes (frequency, timing, modulation, binary encoding of an ID number, and so forth) for tagging CAN bus 25 messages may be nearly unlimited. No attempt is necessarily made here to enumerate all the possible combinations. The parameters that a designer should work with may include the following items. One may be frequency. The frequency of the signal may be varied such that a low frequency represents one tag and a higher frequency represents a second tag. Another may be timing. The timing of when the modulation is applied, may be varied. The modulation may start at different bit times within a message, and its duration may also vary. It is also possible to support various patterns such as, for example, modulation on for 3 bits, off for 4 bits and then on for 5 bits. A binary number may be encoded using a modulation scheme such as frequency shift keying, on/off keying or other encoding techniques.
Another parameter may be waveform. There are many waveforms which may be used for signaling in addition to a simple sine wave. For example, quadrature phase shift keying may be used to encode many transmitter IDs.
Another parameter may be amplitude. The amplitude of the signal may be varied. While amplitude variation is possible, it may introduce potential issues of noise, attenuation and other physical issues which could make signal detection more complex.
Each ECU 24 on bus 25, which does not necessarily require source authentication, may have a legacy transceiver without a modulator. Thus, authenticating ECUs and non-authenticating ECUs may be mixed on the same bus and interoperate. There may be a risk that a non-authenticating ECU could transmit an unauthorized message. However, the reality of vehicle production may require that ECUs without authentication capability be accommodated until the supply chain is switched over to authenticating ECUs. The non-authenticating ECU may still apply a standard CRC check as specified by CAN bus protocol. The authenticating receiver should contain a list of messages (arbitration IDs) which require authentication. If a non-authenticating ECU attempts to forge a message which requires authentication, the authenticating receiver may detect the missing analog signature and mark the message as unauthorized by stomping on the CRC, thus causing all ECUs 24 to reject the non-authenticated message. Therefore, the non-authenticating ECU may still discard messages which the authenticating receiver marks as unauthorized by corrupting the CRC.
For each CAN bus 25, there may be an authenticating receiver 23 (sometimes called a vehicle security module). Vehicle manufacturers may place multiple authenticating receivers 23 in a gateway module which connects multiple CAN busses 25. The authenticating receiver 23 may perform the following functions.
One may be demodulation. The CAN bus signal may be received and demodulated. A demodulator 31 may convert the analog signal on the CAN message to an input to the ECU identification 32. This input may indicate one or more characteristics of frequency, timing, and modulation type, or all three of the characteristics. Depending upon the analog scheme chosen for the implementation, demodulator 31 may also directly output the number of the transmitting ECUs 24.
Another function may be ECU identification 32. For generality, one may assume that the demodulator 31 outputs characteristics of the demodulated signal that are used by the ECU identification 32 function to determine the ECU identifier. The ECU identifier may be able to output an identity of the transmitting ECU 24 in digital form (e.g., 1, 2, and so on).
Another function may be intrusion detector 33. The intrusion detector 33 function may receive two inputs. The function may accept the ECU identifier from the ECU identification 32 function. It also may accept CAN bus 25 data from the transceiver 27 (typically co-located with demodulator 26). Intrusion detector 33 may use the message identifier (i.e., an arbitration ID) on the message together with the ECU identifier 32 to determine if the message is from an ECU 24 which is authorized to send the message. This determination may be implemented from a lookup table. If the intrusion detection 33 function determines that the transmitting ECU 24 is authorized to transmit the message, then intrusion detection does not necessarily invoke a function of a bit stomper 34. However, if the intrusion detector 33 determines that the transmitting ECU 24 is not authorized to send the message (based upon the message ID), then bit stomper 34 may be activated. Bit stomper 34 may actively drive the signal on the CAN bus 25 to force a CRC error. The CRC error in turn may cause all ECUs 24 on bus 25 to reject the message.
A result of the present system is that an ECU 24 may be prevented from transmitting an unauthorized message that is accepted by other ECUs on bus 25. CAN bus 25 signaling may be described in a context of the modulation scheme which adds an analog component.
CAN bus 25 may be a two-wire system as shown in
Each of differential signals or voltages 45 and 46 on CAN bus 25 may be a 5V or 3.3 V signal, as shown in
A representation of the modulated CAN signal (i.e., with an analog signature 49 added) is shown in a waveform 48 in
The modulator function may be applied in any of four locations. First, the modulator function may be integrated in a CAN bus connector. A modulator chip may be embedded into the CAN bus connector connecting a legacy (i.e., with no modulator capability) ECU to the CAN bus.
Second, the modulator function may be integrated between the CAN wiring harness and the ECU. An additional “modulating connector” may be spliced between the existing CAN connector and the legacy ECU.
Third, the modulator function may be integrated as a chip on the ECU PCB. The modulator function may be implemented on a printed circuit board (PCB) of the ECU outside of the legacy transceiver.
Fourth, the modulator function may be integrated into the CAN transceiver. The modulation function may be integrated into the transceiver chip itself.
Line 51 may be for a CAN transmit data input, also called TXD, a driver input. Line 52 may be a CAN mode select, low power versus high speed. Line 51 may go to an input of an amp 53 that may provide inverted and non-inverted outputs, first and second outputs, respectively, to a gate of a P-channel FET 54 and to a gate of an N-channel FET 55. FET 54 may have a source connected to a cathode of a Zener diode 56 and a drain connected to a modulator circuit 58. FET 55 may have a drain connected to a cathode of a Zener diode 57 and a source connected to a ground (GND) terminal. An anode of diode 56 may be connected to a voltage supply (Vcc). An anode of diode 57 may be connected to modulator 58. An output 61 from modulator 58 may be a CANH, a high level CAN bus line. An output 62 from modulator 58 may be a CANL, a low level CAN bus line. Outputs 61 and 62 may be connected to a Schmitt trigger 63. An output 64 from trigger 63 may be CAN received data, also called RXD. Input 52 may go to a slope control and mode logic circuit 65, which may have an output to amp 53 and an output to trigger 63.
As to
The portions of an ECU fingerprint may incorporate one bit for a Start of Frame (SF) 81, 11 to 29 bits for a message identifier 82, 6 bits for control 83, up to 64 bits for data 84, 16 bits for CRC 85, 2 bits for ACK 86 and 7 bits for End of Frame (EF) 87. The ECU identification may be applied during the transmission of control bits and data bits. The bit stomping could be applied during the transmission of the control, data or CRC bits.
Requirements for classic CAN device authentication transmitter may be noted. The authenticating transmitter may start transmitting an FSK modulated carrier when the device transmitter begins a transmission. Due to delays in responding to a start of transmission indication, this should occur <1-2 uS after the CAN transmission starts.
The message may consist of a packet containing, at a minimum, a sync header and ID number for the CAN ECU. The ID number may be the base CAN ID (11 bit ID) in systems where multiple virtual devices exist in a single ECU.
The data rate for the authentication transmission should be sufficiently fast such that the authentication message is complete well before the shortest CAN message can be transmitted. For a standard rate CAN bus {1 MHz), this may be before the end of the 36th bit of the message (assuming a single 8 bit data field), or 36 microseconds (uS). The design must allow sufficient time for the authenticating receiver to process the message and act upon it.
The authenticating receiver may use a microcontroller or hardware based logic (e.g., a gate array) to accomplish the required calculations within the required time.
Needs for a CAN device authentication receiver may be noted. The authenticating receiver of a vehicle security module (VSM) may listen continuously for transmissions containing analog authenticating transmissions. When a CAN transmission is detected, the message ID may be decoded and compared to the analog ID received, if any. The CAN message ID may be compared against the analog ID to see what types of commands this ECU is allowed to transmit. If this is a valid message for this particular ECU to transmit (i.e., a correct analog ID, allowed command type for this particular ECU), no action is necessarily taken.
If the message from the ECU is not accompanied by a validating analog (RF) transmission with the correct ID number and this ECU is required to be accompanied by a validating analog (RF) transmission, the authenticating receiver should short the bus (assert a dominant 1 bit) for more than 6 bit times before releasing the bus. This should invalidate the bus traffic as this is not necessarily a valid message for this ECU, real or spoofed, to send.
If the message from the ECU is accompanied by a validating analog (RF) transmission with the correct ID number, the authenticating receiver should decode the command field of the message and determine if this device is allowed to transmit this command. If it is not allowed to transmit this command, then the authenticating receiver should short the bus (assert a dominant 1 bit) for more than 6 bit times before releasing the bus. This may invalidate the bus traffic as this is not necessarily a valid message for this ECU, real or spoofed, to send.
If this message is from an ECU that is not required to have an accompanying validating RF transmission, then the authenticating receiver may still need to decode the message and determine if this is a valid command for this ECU to send. If it is not, then the VSM should short the bus (assert a dominant 1 bit) for more than 6 bit times before releasing the bus. This may invalidate the bus traffic as this is not necessarily a valid message for this ECU, real or spoofed, to send.
It may be noted that it is not necessarily needed for all ECU's to have an authenticating analog (FSK) transmission, but all messages from all ECU's should be checked against a list of valid commands for any particular ECU to send.
An analysis for the system may include looking at the timing budget for the sender to apply the electronic control unit (ECU) identifier and for the receiver (policy enforcement) to decode the signal and make a decision whether or not to stomp on the CRC.
Vehicle security module 203 may have an RF receiver/decoder 225. RF receiver/decoder 225 may be a TI CC1200 dev kit or other model as desired. An output line (Tx.d) 226 and line (Tx/Rx) 227 of RF receiver/decoder 225 may go to a transceiver 229. An output line (Rx.d) 228 may go to receiver/decoder 225. Output lines 231 and 232 may go from receiver/decoder 225 to a first winding of a transformer 233. A model of transformer 233 may be like that of transformer 218. Lines 234 and 235 may go from a second winding of transformer 233 to first terminals of capacitors 236 and 237, respectively. The second terminals of capacitors 336 and 337 may be connected to lines 211 and 212, respectively, of bus 213.
A message packet 106 may run on a CAN FD at 250 bkbps, which is one-half the speed that packet 105 is run. Bits 15, 17 and 18 may represent flexible data 121, bit rate switch 122 and error status indicator, respectively. Data length 113 may be represented by bits 19-22. Eight-bit data length 114 may be represented by bits 23-30. A seventeen bit CRC 115 may be represented by bits 31-47. CRC delimiter 118 may be represented by bit 48.
A 20 uS mark 125 may occur at bit 10 in packet 105. That may be a 40 uS mark 126 at bit 10 in packet 106. Each bit may be 2 uS in packet 105 and 4 uS in packet 106.
Bus Tx startup 112 may be during bits 12 and 13 in packet 106. An 88 uS transmission 116 may be during bits 14-36. A 20 uS stomp decision 117 may be during bits 37-41. Seven bits 119 may remain after stomp decision 117.
Requirements for a CAN authentication transmitter may be noted. The authenticating transmitter should decode the ECU 10 field while monitoring both the transmitter enable line and transmitter data line on the ECU in order to determine if the ECU to which the ID transmitter is attached has actually taken control of the bus. This may be done by decoding the transmitted address. Normally, a non-bit-stuffed ECU 10 field may be 11 bits in length. Because CAN data is limited to a run length of 5 bits, maximum, this could expand the 10 field to as long as 13 bits if there are two sequences of run length limits in the 10 field. The authenticating RF transmitter should monitor the transmitted 10 field and determine if bit-stuffing has occurred in order to properly determine when the end of the 10 field occurs. If the transmitter is still active after the last bit of the bit-stuffed ID field, then the device may have taken control of the bus and the authenticating transmitter may be engaged to send the RF ID data to the authenticating receiver (VSM).
For proof of the present system, the RF components may be implemented outside of the CAN transceiver chip. The proof of concept design for the transmitting ECU is shown herein.
Packet 135 may begin with a start of frame bit 107. An arbitration field 108 may follow bit 107. A Tx start up 112 may run from field 108 to a start of a 20 symbol preamble 136. Sync bits 137 may follow preamble 136 up to data 138. CRC 139 may go from data 138 to a stomp decision 117. If there is no stomp decision, then CRC 139 may continue, including 7 bits remaining 119, to CRC delimiter 118. Bits following Tx start up 112 up to stomp decision 117 may be a verification transmission length 141. Total time available may run from a beginning of Tx start up 112 through stomp decision 117.
A transmission may be initiated by pressing the button attached to the ECU. An LED may light up to indicate that a bus transaction has started. When the ECU has captured the bus and has finished sending its ID, the transceiver may switch from receive to transmit and send out a preamble, sync sequence, the ECU ID #, and the message CRC. This may identify the device originating the transmission and the validity of the transmission may be determined by the vehicle security module.
For our demonstration purposes, a CC1200 need only delay after the start of the transmission because there will be necessarily no devices contending for the bus. A receive function of the RF transceiver can be used only to hold the transmit frequency. This appears necessary to speed up the time from transmitter initiation to actual RF output.
The receiver (vehicle security module which may perform enforcement) is shown in
If no RF appears in the receiver before 200 uS has elapsed, the microcontroller may turn on the CAN transceiver and send out either a 7 byte sequence of solid zeros or a hash of random data to jam the bus and invalidate the transmission. After the 7 byte quash/jam sequence is sent, the VSM may go back to sleep. A red LED may indicates that the VSM has quashed a transmission. A green LED may indicate that an authenticated transmission has occurred. A red LED may indicate that an invalid transmission was detected. The LED indication may be for illustrative purposes.
Microcontroller 164 may have an LED indicator 169. Lines 171 and 172 may connect microcontroller 164 to a CC1200 RF transceiver 174. Transceiver 165 may be connected to lines 152 and 153 of bus 154. Transceiver 174 may have lines 175 and 176 connected to a first winding of a Minicircuits ADT2-1T-1P+ 1:2 transformer 177. Transformer 177 may be instead one of several other available models. A second winding of transformer 177 may be connected to lines 178 and 179, which in turn may be connected to first terminals of capacitors 181 and 182, respectively. The second terminals of capacitors 181 and 182 may be connected to lines 152 and 153, respectively, of bus 154. Nominal values of capacitors 181 and 182 may be 10 pf, or other values as desired.
To recap, an authentication system may incorporate a bus, a transmitter connected to the bus, and a receiver connected to the bus. A physical layer signal may be applied by the transmitter to a message on the bus for authenticating the transmitter. The physical layer signal may incorporate an identifier (ID) of the transmitter. The receiver may receive the message and decode the physical layer signal on the message. A decoding of the physical layer signal on the message may reveal the ID of the transmitter sending the message. The receiver may look up the ID on a list of IDs corresponding to transmitters approved to send the message, to determine whether the ID of the transmitter sending the message matches an ID on the list. If the ID of the transmitter matches an ID on the list, then the transmitter may be authenticated and authorized to send the message.
If the transmitter is authenticated, the message sent by the transmitter that is received by the receiver may be processed by the receiver. If the transmitter cannot be authenticated, then the message sent by the transmitter that is received by the receiver may be blocked and not processed by the receiver.
A message having a physical layer signal, may be received by the receiver without interference to an ability of the receiver to receive and decode another message that is a normal signal digitized data message per a communications standard.
The bus may be a controller area network (CAN). The message may be a CAN message. The CAN message may have a dominant portion and a recessive portion. The physical layer signal may be applied to a dominant portion, a recessive portion, or both a dominant and a recessive portion of the CAN message. Or one or more media may be selected from a group incorporating wired media, optical media, radio frequency media, that may be used singularly or in combination for the system.
The bus may incorporate one or more additional receivers that detect the blocking of the message by the receiver that checks the ID decoded from the physical layer signal on the message from the transmitter and determines that the ID of the transmitter does not match an ID on a list of IDs corresponding to transmitters approved to send the message, and in turn blocks the message.
Only one receiver on the bus needs to receive the message and decode the physical layer signal applied to the message. The system only needs one authenticating receiver because the bit stomping function, together with the CRC allows the authenticating receiver to block other receivers from receiving the message. However, the system may have one or more receivers on the bus which can decode the physical layer signal applied to the message.
The bit stomping function is not necessarily the only way to block an unauthorized message. Having one authenticating receiver which performs bit stomping (invalidating the CRC) may be a cost effective way of implementing the system because one authenticating receiver can block the unauthorized message from all receivers. A system could have two or more authenticating receivers which decode the authentication signal and simply prevent the local node from processing the message, i.e., they do not necessarily do bit stomping to prevent other nodes from receiving the message.
If a transmitter is authorized to transmit a message, the receiver may allow the message to be processed without interfering with the message.
If the transmitter is not authorized to transmit a message, according to an ID check, then the receiver may block a processing of the message by asserting a signal on the bus that causes a cyclic redundancy code (CRC) associated with the message to be corrupted.
One or more nodes on the bus having receivers may detect corruption of the CRC associated with the message and thus may not process the message.
Two or more receivers on the bus may receive and decode a physical layer signal on the message to obtain an ID of the transmitter of the message and determine whether the ID matches an ID on a list of IDs of transmitters authorized to send the message.
If the any one of the two or more receivers determines that the transmitter is authorized to transmit the message, then the any one of the two or more receivers may allow the message to be processed by a local processor. If the any one of the two or more receivers determines that the entity was not authorized to transmit the message, then the any one of the two or more receivers may block a processing of the message by the local processor.
The transmitter may apply a modulated signal to the physical layer signal to code an ID for authentication of the transmitter. One or more modulation types may be selected from a group having frequency shift keying (FSK), amplitude shift keying, (ASK) on/off keying (OOK), phase shift keying (PSK), quadrature phase shift keying (QPSK), quadrature amplitude modulation (QAM) and continuous phase modulation (CPM).
The bus may incorporate one of the following receiver and transmitter combinations of components: one or more authenticating receivers, and one or more authenticating transmitters; one or more authenticating receivers, one or more authenticating transmitters, and one or more non-authenticating receivers; one or more authenticating receivers, one or more authenticating transmitters, and one or more non-authenticating transmitters; one or more authenticating receivers, one or more authenticating transmitters, one or more non-authenticating receivers, and one or more mon-authenticating transmitters; only one authenticating receiver and only one authenticating transmitter; only one authenticating receiver, only one authenticating transmitter, and one or more non-authenticating receivers; only one authenticating receiver, only one authenticating transmitter, and one or more non-authenticating transmitters; or only one authenticating receiver, only one authenticating transmitter, one or more non-authenticating receivers, and one or more non-authenticating transmitters.
A receiver and transmitter combination that has components that perform authenticating functions and non-authenticating functions may interoperate in accordance with a security policy applied by one or more authenticating components.
An authentication approach may incorporate applying a physical layer authentication signal to a message to be sent by a transmitter on a bus; decoding an identifier (ID) from the physical layer authentication signal on the message to be received by a receiver on the bus; and looking up the ID on a list of IDs corresponding to transmitters approved to send the message, to determine whether the ID decoded from the physical layer authentication signal matches an ID on the list. If the ID matches an ID on the list, then the message on the bus may be authorized. If the ID matches no ID on the list, then the message on the bus may be unauthorized.
The approach may further incorporate accepting and processing the message on the bus if the message is authorized, and blocking the message on the bus if the message on the bus is unauthorized.
Only one receiver on the bus may receive the message and decode the physical layer authentication signal applied to the message.
A mechanism for authenticating transmissions, may incorporate a transmitting entity, a receiving entity, and a bus connected to the transmitting entity and the receiving entity. A physical layer signal may be applied by the transmitting entity to a message on the bus to authenticate the transmitting entity. The physical layer signal may incorporate an identifier (ID) of the transmitting entity. The receiving entity may receive the message and decode the physical layer signal on the message. A decoding of the physical layer signal on the message may reveal the ID of the transmitting entity sending the message. The receiving entity may look up the ID on a list of IDs corresponding to transmitting entities approved to send the message, to determine whether the ID of the transmitting entity sending the message matches an ID on the list. If the ID of the transmitting entity matches an ID on the list, then the transmitting entity may be authenticated. If the ID of the transmitting entity does not match an ID on the list, then the transmitting entity may be not authenticated.
If the transmitting entity is authenticated, the message sent by the transmitting entity that is received by the receiving entity may be processed by the receiving entity. If the transmitting entity is not authenticated, then the message sent by the transmitting entity that is received by the receiving entity may be blocked and not processed by the receiving entity.
A message having a physical layer signal, may be received by the receiving entity without interference to an ability of the receiving entity to receive and decode another message that is a normal signal digitized data message per a communications standard.
Any publication or patent document noted herein is hereby incorporated by reference to the same extent as if each publication or patent document was specifically and individually indicated to be incorporated by reference.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3744461 | Davis | Jul 1973 | A |
4005578 | McInerney | Feb 1977 | A |
4055158 | Marsee | Oct 1977 | A |
4206606 | Yamada | Jun 1980 | A |
4252098 | Tomczak et al. | Feb 1981 | A |
4359991 | Stumpp et al. | Nov 1982 | A |
4383441 | Willis et al. | May 1983 | A |
4426982 | Lehner et al. | Jan 1984 | A |
4438497 | Willis et al. | Mar 1984 | A |
4440140 | Kawagoe et al. | Apr 1984 | A |
4456883 | Bullis et al. | Jun 1984 | A |
4485794 | Kimberley et al. | Dec 1984 | A |
4601270 | Kimberley et al. | Jul 1986 | A |
4616308 | Morshedi et al. | Oct 1986 | A |
4653449 | Kamel et al. | Mar 1987 | A |
4671235 | Hosaka | Jun 1987 | A |
4735181 | Kaneko et al. | Apr 1988 | A |
4947334 | Massey et al. | Aug 1990 | A |
4962570 | Hosaka et al. | Oct 1990 | A |
5044337 | Williams | Sep 1991 | A |
5076237 | Hartman et al. | Dec 1991 | A |
5089236 | Clerc | Feb 1992 | A |
5094213 | Dudek et al. | Mar 1992 | A |
5095874 | Schnaibel et al. | Mar 1992 | A |
5108716 | Nishizawa et al. | Apr 1992 | A |
5123397 | Richeson | Jun 1992 | A |
5150289 | Badavas | Sep 1992 | A |
5186081 | Richardson et al. | Feb 1993 | A |
5233829 | Komatsu | Aug 1993 | A |
5270935 | Dudek et al. | Dec 1993 | A |
5273019 | Matthews et al. | Dec 1993 | A |
5282449 | Takahashi et al. | Feb 1994 | A |
5293553 | Dudek et al. | Mar 1994 | A |
5349816 | Sanbayashi et al. | Sep 1994 | A |
5365734 | Takeshima | Nov 1994 | A |
5394322 | Hansen | Feb 1995 | A |
5394331 | Dudek et al. | Feb 1995 | A |
5398502 | Watanabe | Mar 1995 | A |
5408406 | Mathur et al. | Apr 1995 | A |
5431139 | Grutter et al. | Jul 1995 | A |
5452576 | Hamburg et al. | Sep 1995 | A |
5477840 | Neumann | Dec 1995 | A |
5560208 | Halimi et al. | Oct 1996 | A |
5570574 | Yamashita et al. | Nov 1996 | A |
5598825 | Neumann | Feb 1997 | A |
5609139 | Ueda et al. | Mar 1997 | A |
5611198 | Lane et al. | Mar 1997 | A |
5682317 | Keeler et al. | Oct 1997 | A |
5690086 | Kawano et al. | Nov 1997 | A |
5692478 | Nogi et al. | Dec 1997 | A |
5697339 | Esposito | Dec 1997 | A |
5704011 | Hansen et al. | Dec 1997 | A |
5740033 | Wassick et al. | Apr 1998 | A |
5746183 | Parke et al. | May 1998 | A |
5765533 | Nakajima | Jun 1998 | A |
5771867 | Amstutz et al. | Jun 1998 | A |
5785030 | Paas | Jul 1998 | A |
5788004 | Friedmann et al. | Aug 1998 | A |
5842340 | Bush et al. | Dec 1998 | A |
5846157 | Reinke et al. | Dec 1998 | A |
5893092 | Driscoll | Apr 1999 | A |
5917405 | Joao | Jun 1999 | A |
5924280 | Tarabulski | Jul 1999 | A |
5942195 | Lecea et al. | Aug 1999 | A |
5964199 | Atago et al. | Oct 1999 | A |
5970075 | Wasada | Oct 1999 | A |
5974788 | Hepburn et al. | Nov 1999 | A |
5995895 | Watt et al. | Nov 1999 | A |
6029626 | Bruestle | Feb 2000 | A |
6035640 | Kolmanovsky et al. | Mar 2000 | A |
6048620 | Zhong et al. | Apr 2000 | A |
6048628 | Hilman et al. | Apr 2000 | A |
6055810 | Borland et al. | May 2000 | A |
6056781 | Wassick et al. | May 2000 | A |
6058700 | Yamashita et al. | May 2000 | A |
6067800 | Kolmanovsky et al. | May 2000 | A |
6076353 | Freudenberg et al. | Jun 2000 | A |
6105365 | Deeba et al. | Aug 2000 | A |
6122555 | Lu | Sep 2000 | A |
6134883 | Kato et al. | Oct 2000 | A |
6153159 | Engeler et al. | Nov 2000 | A |
6161528 | Akao et al. | Dec 2000 | A |
6170259 | Boegner et al. | Jan 2001 | B1 |
6171556 | Burk et al. | Jan 2001 | B1 |
6178743 | Hirota et al. | Jan 2001 | B1 |
6178749 | Kolmanovsky et al. | Jan 2001 | B1 |
6208914 | Ward et al. | Mar 2001 | B1 |
6216083 | Ulyanov et al. | Apr 2001 | B1 |
6233922 | Maloney | May 2001 | B1 |
6236956 | Mantooth et al. | May 2001 | B1 |
6237330 | Takahashi et al. | May 2001 | B1 |
6242873 | Drozdz et al. | Jun 2001 | B1 |
6263672 | Roby et al. | Jul 2001 | B1 |
6273060 | Cullen | Aug 2001 | B1 |
6279551 | Iwano et al. | Aug 2001 | B1 |
6312538 | Latypov et al. | Nov 2001 | B1 |
6314351 | Chutorash | Nov 2001 | B1 |
6314662 | Ellis, III | Nov 2001 | B1 |
6314724 | Kakuyama et al. | Nov 2001 | B1 |
6321538 | Hasler et al. | Nov 2001 | B2 |
6327361 | Harshavardhana et al. | Dec 2001 | B1 |
6338245 | Shimoda et al. | Jan 2002 | B1 |
6341487 | Takahashi et al. | Jan 2002 | B1 |
6347619 | Whiting et al. | Feb 2002 | B1 |
6360159 | Miller et al. | Mar 2002 | B1 |
6360541 | Waszkiewicz et al. | Mar 2002 | B2 |
6360732 | Bailey et al. | Mar 2002 | B1 |
6363715 | Bidner et al. | Apr 2002 | B1 |
6363907 | Arai et al. | Apr 2002 | B1 |
6379281 | Collins et al. | Apr 2002 | B1 |
6389203 | Jordan et al. | May 2002 | B1 |
6425371 | Majima | Jul 2002 | B2 |
6427436 | Allansson et al. | Aug 2002 | B1 |
6431160 | Sugiyama et al. | Aug 2002 | B1 |
6445963 | Blevins et al. | Sep 2002 | B1 |
6446430 | Roth et al. | Sep 2002 | B1 |
6453308 | Zhao et al. | Sep 2002 | B1 |
6463733 | Zhao et al. | Sep 2002 | B1 |
6463734 | Tamura et al. | Oct 2002 | B1 |
6466893 | Latwesen et al. | Oct 2002 | B1 |
6470682 | Gray, Jr. | Oct 2002 | B2 |
6470862 | Isobe et al. | Oct 2002 | B2 |
6470886 | Jestrabek-Hart | Oct 2002 | B1 |
6481139 | Weldle | Nov 2002 | B2 |
6494038 | Kobayashi et al. | Dec 2002 | B2 |
6502391 | Hirota et al. | Jan 2003 | B1 |
6505465 | Kanazawa et al. | Jan 2003 | B2 |
6510351 | Blevins et al. | Jan 2003 | B1 |
6512974 | Houston et al. | Jan 2003 | B2 |
6513495 | Franke et al. | Feb 2003 | B1 |
6532433 | Bharadwaj et al. | Mar 2003 | B2 |
6542076 | Joao | Apr 2003 | B1 |
6546329 | Bellinger | Apr 2003 | B2 |
6549130 | Joao | Apr 2003 | B1 |
6550307 | Zhang et al. | Apr 2003 | B1 |
6553754 | Meyer et al. | Apr 2003 | B2 |
6560528 | Gitlin et al. | May 2003 | B1 |
6560960 | Nishimura et al. | May 2003 | B2 |
6571191 | York et al. | May 2003 | B1 |
6579206 | Liu et al. | Jun 2003 | B2 |
6591605 | Lewis | Jul 2003 | B2 |
6594990 | Kuenstler et al. | Jul 2003 | B2 |
6601387 | Zurawski et al. | Aug 2003 | B2 |
6612293 | Schweinzer et al. | Sep 2003 | B2 |
6615584 | Ostertag | Sep 2003 | B2 |
6625978 | Eriksson et al. | Sep 2003 | B1 |
6629408 | Murakami et al. | Oct 2003 | B1 |
6637382 | Brehob et al. | Oct 2003 | B1 |
6644017 | Takahashi et al. | Nov 2003 | B2 |
6647710 | Nishiyama et al. | Nov 2003 | B2 |
6647971 | Vaughan et al. | Nov 2003 | B2 |
6651614 | Flamig-Vetter et al. | Nov 2003 | B2 |
6662058 | Sanchez | Dec 2003 | B1 |
6666198 | Mitsutani | Dec 2003 | B2 |
6666410 | Boelitz et al. | Dec 2003 | B2 |
6671596 | Kawashima et al. | Dec 2003 | B2 |
6671603 | Cari et al. | Dec 2003 | B2 |
6672052 | Taga et al. | Jan 2004 | B2 |
6672060 | Buckland et al. | Jan 2004 | B1 |
6679050 | Takahashi et al. | Jan 2004 | B1 |
6687597 | Sulatisky et al. | Feb 2004 | B2 |
6688283 | Jaye | Feb 2004 | B2 |
6694244 | Meyer et al. | Feb 2004 | B2 |
6694724 | Tanaka et al. | Feb 2004 | B2 |
6705084 | Allen et al. | Mar 2004 | B2 |
6718254 | Hashimoto et al. | Apr 2004 | B2 |
6718753 | Bromberg et al. | Apr 2004 | B2 |
6725208 | Hartman et al. | Apr 2004 | B1 |
6736120 | Sumilla | May 2004 | B2 |
6738682 | Pasadyn | May 2004 | B1 |
6739122 | Kitajima et al. | May 2004 | B2 |
6742330 | Genderen | Jun 2004 | B2 |
6743352 | Ando et al. | Jun 2004 | B2 |
6748936 | Kinomura et al. | Jun 2004 | B2 |
6752131 | Poola et al. | Jun 2004 | B2 |
6752135 | McLaughlin et al. | Jun 2004 | B2 |
6757579 | Pasadyn | Jun 2004 | B1 |
6758037 | Terada et al. | Jul 2004 | B2 |
6760631 | Berkowitz et al. | Jul 2004 | B1 |
6760657 | Katoh | Jul 2004 | B2 |
6760658 | Yasui et al. | Jul 2004 | B2 |
6770009 | Badillo et al. | Aug 2004 | B2 |
6772585 | Iihoshi et al. | Aug 2004 | B2 |
6775623 | Ali et al. | Aug 2004 | B2 |
6779344 | Hartman et al. | Aug 2004 | B2 |
6779512 | Mitsutani | Aug 2004 | B2 |
6788072 | Nagy et al. | Sep 2004 | B2 |
6789533 | Hashimoto et al. | Sep 2004 | B1 |
6792927 | Kobayashi | Sep 2004 | B2 |
6804618 | Junk | Oct 2004 | B2 |
6814062 | Esteghlal et al. | Nov 2004 | B2 |
6817171 | Zhu | Nov 2004 | B2 |
6823667 | Braun et al. | Nov 2004 | B2 |
6826903 | Yahata et al. | Dec 2004 | B2 |
6827060 | Huh | Dec 2004 | B2 |
6827061 | Nytomt et al. | Dec 2004 | B2 |
6827070 | Fehl et al. | Dec 2004 | B2 |
6834497 | Miyoshi et al. | Dec 2004 | B2 |
6837042 | Colignon et al. | Jan 2005 | B2 |
6839637 | Moteki et al. | Jan 2005 | B2 |
6849030 | Yamamoto et al. | Feb 2005 | B2 |
6857264 | Ament | Feb 2005 | B2 |
6873675 | Kurady et al. | Mar 2005 | B2 |
6874467 | Hunt et al. | Apr 2005 | B2 |
6879906 | Makki et al. | Apr 2005 | B2 |
6882929 | Liang et al. | Apr 2005 | B2 |
6904751 | Makki et al. | Jun 2005 | B2 |
6911414 | Kimura et al. | Jun 2005 | B2 |
6915779 | Sriprakash | Jul 2005 | B2 |
6920865 | Lyon | Jul 2005 | B2 |
6923902 | Ando et al. | Aug 2005 | B2 |
6925372 | Yasui | Aug 2005 | B2 |
6925796 | Nieuwstadt et al. | Aug 2005 | B2 |
6928362 | Meaney | Aug 2005 | B2 |
6928817 | Ahmad | Aug 2005 | B2 |
6931840 | Strayer et al. | Aug 2005 | B2 |
6934931 | Plumer et al. | Aug 2005 | B2 |
6941744 | Tanaka | Sep 2005 | B2 |
6945033 | Sealy et al. | Sep 2005 | B2 |
6948310 | Roberts, Jr. et al. | Sep 2005 | B2 |
6953024 | Linna et al. | Oct 2005 | B2 |
6965826 | Andres et al. | Nov 2005 | B2 |
6968677 | Tamura | Nov 2005 | B2 |
6971258 | Rhodes et al. | Dec 2005 | B2 |
6973382 | Rodriguez et al. | Dec 2005 | B2 |
6978744 | Yuasa et al. | Dec 2005 | B2 |
6988017 | Pasadyn et al. | Jan 2006 | B2 |
6990401 | Neiss et al. | Jan 2006 | B2 |
6996975 | Radhamohan et al. | Feb 2006 | B2 |
7000379 | Makki et al. | Feb 2006 | B2 |
7013637 | Yoshida | Mar 2006 | B2 |
7016779 | Bowyer | Mar 2006 | B2 |
7028464 | Rosel et al. | Apr 2006 | B2 |
7039475 | Sayyarrodsari et al. | May 2006 | B2 |
7047938 | Flynn et al. | May 2006 | B2 |
7050863 | Mehta et al. | May 2006 | B2 |
7052434 | Makino et al. | May 2006 | B2 |
7055311 | Beutel et al. | Jun 2006 | B2 |
7059112 | Bidner et al. | Jun 2006 | B2 |
7063080 | Kita et al. | Jun 2006 | B2 |
7067319 | Wills et al. | Jun 2006 | B2 |
7069903 | Sumilla et al. | Jul 2006 | B2 |
7082753 | Dalla Betta et al. | Aug 2006 | B2 |
7085615 | Persson et al. | Aug 2006 | B2 |
7106866 | Astorino et al. | Sep 2006 | B2 |
7107978 | Itoyama | Sep 2006 | B2 |
7111450 | Sumilla | Sep 2006 | B2 |
7111455 | Okugawa et al. | Sep 2006 | B2 |
7113835 | Boyen et al. | Sep 2006 | B2 |
7117046 | Boyden et al. | Oct 2006 | B2 |
7124013 | Yasui | Oct 2006 | B2 |
7149590 | Martin et al. | Dec 2006 | B2 |
7151976 | Lin | Dec 2006 | B2 |
7152023 | Das | Dec 2006 | B2 |
7155334 | Stewart et al. | Dec 2006 | B1 |
7164800 | Sun | Jan 2007 | B2 |
7165393 | Betta et al. | Jan 2007 | B2 |
7165399 | Stewart | Jan 2007 | B2 |
7168239 | Ingram et al. | Jan 2007 | B2 |
7182075 | Shahed et al. | Feb 2007 | B2 |
7184845 | Sayyarrodsari et al. | Feb 2007 | B2 |
7184992 | Polyak et al. | Feb 2007 | B1 |
7188637 | Dreyer et al. | Mar 2007 | B2 |
7194987 | Mogi | Mar 2007 | B2 |
7197485 | Fuller | Mar 2007 | B2 |
7200988 | Yamashita | Apr 2007 | B2 |
7204079 | Audoin | Apr 2007 | B2 |
7212908 | Li et al. | May 2007 | B2 |
7275374 | Stewart et al. | Oct 2007 | B2 |
7275415 | Rhodes et al. | Oct 2007 | B2 |
7277010 | Joao | Oct 2007 | B2 |
7281368 | Miyake et al. | Oct 2007 | B2 |
7292926 | Schmidt et al. | Nov 2007 | B2 |
7302937 | Ma et al. | Dec 2007 | B2 |
7321834 | Chu et al. | Jan 2008 | B2 |
7323036 | Boyden et al. | Jan 2008 | B2 |
7328577 | Stewart et al. | Feb 2008 | B2 |
7337022 | Wojsznis et al. | Feb 2008 | B2 |
7349776 | Spillane et al. | Mar 2008 | B2 |
7357125 | Kolavennu | Apr 2008 | B2 |
7375374 | Chen et al. | May 2008 | B2 |
7376471 | Das et al. | May 2008 | B2 |
7380547 | Ruiz | Jun 2008 | B1 |
7383118 | Imai et al. | Jun 2008 | B2 |
7389773 | Stewart et al. | Jun 2008 | B2 |
7392129 | Hill et al. | Jun 2008 | B2 |
7397363 | Joao | Jul 2008 | B2 |
7398082 | Schwinke et al. | Jul 2008 | B2 |
7398149 | Ueno et al. | Jul 2008 | B2 |
7400933 | Rawlings et al. | Jul 2008 | B2 |
7400967 | Ueno et al. | Jul 2008 | B2 |
7413583 | Langer et al. | Aug 2008 | B2 |
7415389 | Stewart et al. | Aug 2008 | B2 |
7418372 | Nishira et al. | Aug 2008 | B2 |
7430854 | Yasui et al. | Oct 2008 | B2 |
7433743 | Pistikopoulos et al. | Oct 2008 | B2 |
7444191 | Caldwell et al. | Oct 2008 | B2 |
7444193 | Cutler | Oct 2008 | B2 |
7447554 | Cutler | Nov 2008 | B2 |
7467614 | Stewart et al. | Dec 2008 | B2 |
7469177 | Samad et al. | Dec 2008 | B2 |
7474953 | Hulser et al. | Jan 2009 | B2 |
7493236 | Mock et al. | Feb 2009 | B1 |
7505879 | Tomoyasu et al. | Mar 2009 | B2 |
7505882 | Jenny et al. | Mar 2009 | B2 |
7515975 | Stewart | Apr 2009 | B2 |
7522963 | Boyden et al. | Apr 2009 | B2 |
7536232 | Boyden et al. | May 2009 | B2 |
7577483 | Fan et al. | Aug 2009 | B2 |
7587253 | Rawlings et al. | Sep 2009 | B2 |
7591135 | Stewart | Sep 2009 | B2 |
7599749 | Sayyarrodsari et al. | Oct 2009 | B2 |
7599750 | Piche | Oct 2009 | B2 |
7603185 | Stewart et al. | Oct 2009 | B2 |
7603226 | Henein | Oct 2009 | B2 |
7627843 | Dozorets et al. | Dec 2009 | B2 |
7630868 | Turner et al. | Dec 2009 | B2 |
7634323 | Vermillion et al. | Dec 2009 | B2 |
7634417 | Boyden et al. | Dec 2009 | B2 |
7650780 | Hall | Jan 2010 | B2 |
7668704 | Perchanok et al. | Feb 2010 | B2 |
7676318 | Allain | Mar 2010 | B2 |
7698004 | Boyden et al. | Apr 2010 | B2 |
7702519 | Boyden et al. | Apr 2010 | B2 |
7712139 | Westendorf et al. | May 2010 | B2 |
7721030 | Fuehrer et al. | May 2010 | B2 |
7725199 | Brackney et al. | May 2010 | B2 |
7734291 | Mazzara, Jr. | Jun 2010 | B2 |
7738975 | Denison et al. | Jun 2010 | B2 |
7743606 | Havelena et al. | Jun 2010 | B2 |
7748217 | Muller | Jul 2010 | B2 |
7752840 | Stewart | Jul 2010 | B2 |
7765792 | Rhodes et al. | Aug 2010 | B2 |
7779680 | Sasaki et al. | Aug 2010 | B2 |
7793489 | Wang et al. | Sep 2010 | B2 |
7798938 | Matsubara et al. | Sep 2010 | B2 |
7808371 | Blanchet et al. | Oct 2010 | B2 |
7813884 | Chu et al. | Oct 2010 | B2 |
7826909 | Attarwala | Nov 2010 | B2 |
7831318 | Bartee et al. | Nov 2010 | B2 |
7840287 | Wojsznis et al. | Nov 2010 | B2 |
7844351 | Piche | Nov 2010 | B2 |
7844352 | Vouzis et al. | Nov 2010 | B2 |
7846299 | Backstrom et al. | Dec 2010 | B2 |
7850104 | Havlena et al. | Dec 2010 | B2 |
7856966 | Saitoh | Dec 2010 | B2 |
7860586 | Boyden et al. | Dec 2010 | B2 |
7861518 | Federle | Jan 2011 | B2 |
7862771 | Boyden et al. | Jan 2011 | B2 |
7877239 | Grichnik et al. | Jan 2011 | B2 |
7878178 | Stewart et al. | Feb 2011 | B2 |
7891669 | Araujo et al. | Feb 2011 | B2 |
7904280 | Wood | Mar 2011 | B2 |
7905103 | Larsen et al. | Mar 2011 | B2 |
7907769 | Sammak et al. | Mar 2011 | B2 |
7925399 | Comeau | Apr 2011 | B2 |
7930044 | Attarwala | Apr 2011 | B2 |
7933849 | Bartee et al. | Apr 2011 | B2 |
7958730 | Stewart et al. | Jun 2011 | B2 |
7970482 | Srinivasan et al. | Jun 2011 | B2 |
7987145 | Baramov | Jul 2011 | B2 |
7996140 | Stewart et al. | Aug 2011 | B2 |
8001767 | Kakuya et al. | Aug 2011 | B2 |
8019911 | Dressler et al. | Sep 2011 | B2 |
8025167 | Schneider et al. | Sep 2011 | B2 |
8032235 | Sayyar-Rodsari | Oct 2011 | B2 |
8046089 | Renfro et al. | Oct 2011 | B2 |
8046090 | MacArthur et al. | Oct 2011 | B2 |
8060290 | Stewart et al. | Nov 2011 | B2 |
8078291 | Pekar et al. | Dec 2011 | B2 |
8108790 | Morrison, Jr. et al. | Jan 2012 | B2 |
8109255 | Stewart et al. | Feb 2012 | B2 |
8121818 | Gorinevsky | Feb 2012 | B2 |
8145329 | Pekar et al. | Mar 2012 | B2 |
8146850 | Havlena et al. | Apr 2012 | B2 |
8157035 | Whitney et al. | Apr 2012 | B2 |
8185217 | Thiele | May 2012 | B2 |
8197753 | Boyden et al. | Jun 2012 | B2 |
8200346 | Thiele | Jun 2012 | B2 |
8209963 | Kesse et al. | Jul 2012 | B2 |
8213321 | Butts | Jul 2012 | B2 |
8229163 | Coleman et al. | Jul 2012 | B2 |
8245501 | He et al. | Aug 2012 | B2 |
8246508 | Matsubara et al. | Aug 2012 | B2 |
8265854 | Stewart et al. | Sep 2012 | B2 |
8281572 | Chi et al. | Oct 2012 | B2 |
8295951 | Crisalle et al. | Oct 2012 | B2 |
8311653 | Zhan et al. | Nov 2012 | B2 |
8312860 | Yun et al. | Nov 2012 | B2 |
8316235 | Boehl et al. | Nov 2012 | B2 |
8360040 | Stewart et al. | Jan 2013 | B2 |
8370052 | Lin et al. | Feb 2013 | B2 |
8379267 | Mestha et al. | Feb 2013 | B2 |
8396644 | Kabashima et al. | Mar 2013 | B2 |
8402268 | Dierickx | Mar 2013 | B2 |
8418441 | He et al. | Apr 2013 | B2 |
8453431 | Wang et al. | Jun 2013 | B2 |
8473079 | Havlena | Jun 2013 | B2 |
8478506 | Grichnik et al. | Jul 2013 | B2 |
RE44452 | Stewart et al. | Aug 2013 | E |
8504175 | Pekar et al. | Aug 2013 | B2 |
8505278 | Farrell et al. | Aug 2013 | B2 |
8543170 | Mazzara, Jr. et al. | Sep 2013 | B2 |
8555613 | Wang et al. | Oct 2013 | B2 |
8571689 | Macharia et al. | Oct 2013 | B2 |
8596045 | Tuomivaara et al. | Dec 2013 | B2 |
8620461 | Kihas | Dec 2013 | B2 |
8634940 | Macharia et al. | Jan 2014 | B2 |
8639925 | Schuetze | Jan 2014 | B2 |
8649884 | MacArthur et al. | Feb 2014 | B2 |
8649961 | Hawkins et al. | Feb 2014 | B2 |
8667288 | Yavuz | Mar 2014 | B2 |
8694197 | Rajagopalan et al. | Apr 2014 | B2 |
8700291 | Herrmann | Apr 2014 | B2 |
8737426 | Fredriksson | May 2014 | B1 |
8751241 | Oesterling et al. | Jun 2014 | B2 |
8762026 | Wolfe et al. | Jun 2014 | B2 |
8763377 | Yacoub | Jul 2014 | B2 |
8768996 | Shokrollahi et al. | Jul 2014 | B2 |
8813690 | Kumar et al. | Aug 2014 | B2 |
8825243 | Yang et al. | Sep 2014 | B2 |
8839967 | Schneider et al. | Sep 2014 | B2 |
8867746 | Ceskutti et al. | Oct 2014 | B2 |
8892221 | Kram et al. | Nov 2014 | B2 |
8899018 | Frazier et al. | Dec 2014 | B2 |
8904760 | Mital | Dec 2014 | B2 |
8983069 | Merchan et al. | Mar 2015 | B2 |
9100193 | Newsome et al. | Aug 2015 | B2 |
9141996 | Christensen et al. | Sep 2015 | B2 |
9170573 | Kihas | Oct 2015 | B2 |
9175595 | Ceynow et al. | Nov 2015 | B2 |
9223301 | Stewart et al. | Dec 2015 | B2 |
9243576 | Yu et al. | Jan 2016 | B2 |
9253200 | Schwarz et al. | Feb 2016 | B2 |
9325494 | Boehl | Apr 2016 | B2 |
9367701 | Merchan et al. | Jun 2016 | B2 |
9367968 | Giraud et al. | Jun 2016 | B2 |
9419737 | Fredriksson | Aug 2016 | B2 |
9432488 | Fredriksson | Aug 2016 | B2 |
9483881 | Comeau et al. | Nov 2016 | B2 |
9560071 | Ruvio et al. | Jan 2017 | B2 |
9779742 | Newsome, Jr. | Oct 2017 | B2 |
20020112469 | Kanazawa et al. | Aug 2002 | A1 |
20040006973 | Makki et al. | Jan 2004 | A1 |
20040044908 | Markham | Mar 2004 | A1 |
20040086185 | Sun | May 2004 | A1 |
20040144082 | Mianzo et al. | Jul 2004 | A1 |
20040199481 | Hartman et al. | Oct 2004 | A1 |
20040226287 | Edgar et al. | Nov 2004 | A1 |
20050171667 | Morita | Aug 2005 | A1 |
20050187643 | Sayyar-Rodsari et al. | Aug 2005 | A1 |
20050193739 | Brunnell et al. | Sep 2005 | A1 |
20050210868 | Funabashi | Sep 2005 | A1 |
20060047607 | Boyden et al. | Mar 2006 | A1 |
20060111881 | Jackson | May 2006 | A1 |
20060137347 | Stewart et al. | Jun 2006 | A1 |
20060168945 | Samad et al. | Aug 2006 | A1 |
20060185626 | Allen et al. | Aug 2006 | A1 |
20060212140 | Brackney | Sep 2006 | A1 |
20070144149 | Kolavennu et al. | Jun 2007 | A1 |
20070156259 | Baramov et al. | Jul 2007 | A1 |
20070240213 | Karam et al. | Oct 2007 | A1 |
20070261648 | Reckels et al. | Nov 2007 | A1 |
20070275471 | Coward | Nov 2007 | A1 |
20080010973 | Gimbres | Jan 2008 | A1 |
20080103747 | Macharia et al. | May 2008 | A1 |
20080132178 | Chatterjee et al. | Jun 2008 | A1 |
20080208778 | Sayyar-Rodsari et al. | Aug 2008 | A1 |
20080289605 | Ito | Nov 2008 | A1 |
20090041247 | Barany | Feb 2009 | A1 |
20090172416 | Bosch et al. | Jul 2009 | A1 |
20090312998 | Berckmans et al. | Dec 2009 | A1 |
20100122523 | Vosz | May 2010 | A1 |
20100126481 | Willi et al. | May 2010 | A1 |
20100300069 | Herrmann et al. | Dec 2010 | A1 |
20110056265 | Yacoub | Mar 2011 | A1 |
20110060424 | Havlena | Mar 2011 | A1 |
20110125295 | Bednasch et al. | May 2011 | A1 |
20110131017 | Cheng et al. | Jun 2011 | A1 |
20110161673 | Shin | Jun 2011 | A1 |
20110167025 | Danai et al. | Jul 2011 | A1 |
20110173315 | Aguren | Jul 2011 | A1 |
20110264353 | Atkinson et al. | Oct 2011 | A1 |
20110270505 | Chaturvedi et al. | Nov 2011 | A1 |
20120024089 | Couey et al. | Feb 2012 | A1 |
20120109620 | Gaikwad et al. | May 2012 | A1 |
20120174187 | Argon et al. | Jul 2012 | A1 |
20130024069 | Wang et al. | Jan 2013 | A1 |
20130067894 | Stewart et al. | Mar 2013 | A1 |
20130111878 | Pachner et al. | May 2013 | A1 |
20130111905 | Pekar et al. | May 2013 | A1 |
20130131954 | Yu et al. | May 2013 | A1 |
20130131956 | Thibault et al. | May 2013 | A1 |
20130158834 | Wagner et al. | Jun 2013 | A1 |
20130204403 | Zheng et al. | Aug 2013 | A1 |
20130242706 | Newsome, Jr. | Sep 2013 | A1 |
20130326232 | Lewis et al. | Dec 2013 | A1 |
20130326630 | Argon | Dec 2013 | A1 |
20130338900 | Ardanese et al. | Dec 2013 | A1 |
20140032189 | Hehle et al. | Jan 2014 | A1 |
20140034460 | Chou | Feb 2014 | A1 |
20140171856 | McLaughlin et al. | Jun 2014 | A1 |
20140258736 | Merchan et al. | Sep 2014 | A1 |
20140270163 | Merchan | Sep 2014 | A1 |
20140280636 | Fredriksson | Sep 2014 | A1 |
20140316683 | Whitney et al. | Oct 2014 | A1 |
20140318216 | Singh | Oct 2014 | A1 |
20140343713 | Ziegler et al. | Nov 2014 | A1 |
20140358254 | Chu et al. | Dec 2014 | A1 |
20150121071 | Schwarz et al. | Apr 2015 | A1 |
20150275783 | Wong et al. | Oct 2015 | A1 |
20150321642 | Schwepp et al. | Nov 2015 | A1 |
20150324576 | Quirant et al. | Nov 2015 | A1 |
20150334093 | Mueller | Nov 2015 | A1 |
20150354877 | Burns et al. | Dec 2015 | A1 |
20160003180 | McNulty et al. | Jan 2016 | A1 |
20160043832 | Ahn et al. | Feb 2016 | A1 |
20160108732 | Huang et al. | Apr 2016 | A1 |
20160127357 | Libuschka et al. | May 2016 | A1 |
20160216699 | Pekar et al. | Jul 2016 | A1 |
20160239593 | Pekar et al. | Aug 2016 | A1 |
20160259584 | Schlottmann et al. | Sep 2016 | A1 |
20160330204 | Baur et al. | Nov 2016 | A1 |
20160344705 | Stumpf et al. | Nov 2016 | A1 |
20160362838 | Badwe et al. | Dec 2016 | A1 |
20160365977 | Boutros et al. | Dec 2016 | A1 |
20170031332 | Santin | Feb 2017 | A1 |
20170048063 | Mueller | Feb 2017 | A1 |
20170093659 | Elend | Mar 2017 | A1 |
20170126679 | Fredriksson | May 2017 | A1 |
20170126701 | Glas et al. | May 2017 | A1 |
20170218860 | Pachner et al. | Aug 2017 | A1 |
20170235698 | van der Maas | Aug 2017 | A1 |
20170300713 | Fan et al. | Oct 2017 | A1 |
20170306871 | Fuxman et al. | Oct 2017 | A1 |
20180115575 | Hartkopp | Apr 2018 | A1 |
20180181743 | Hofman | Jun 2018 | A1 |
20180336338 | Hofman | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
102063561 | May 2011 | CN |
102331350 | Jan 2012 | CN |
19628796 | Oct 1997 | DE |
10219382 | Nov 2002 | DE |
102009016509 | Oct 2010 | DE |
102011103346 | Aug 2012 | DE |
0301527 | Feb 1989 | EP |
0877309 | Jun 2000 | EP |
1134368 | Sep 2001 | EP |
1180583 | Feb 2002 | EP |
1221544 | Jul 2002 | EP |
1225490 | Jul 2002 | EP |
1245811 | Oct 2002 | EP |
1273337 | Jan 2003 | EP |
0950803 | Sep 2003 | EP |
1420153 | May 2004 | EP |
1447727 | Aug 2004 | EP |
1498791 | Jan 2005 | EP |
1425642 | Nov 2005 | EP |
1686251 | Aug 2006 | EP |
1399784 | Oct 2007 | EP |
2107439 | Oct 2009 | EP |
2146258 | Jan 2010 | EP |
1794339 | Jul 2011 | EP |
1529941 | Nov 2011 | EP |
2543845 | Jan 2013 | EP |
2551480 | Jan 2013 | EP |
2589779 | May 2013 | EP |
2617975 | Jul 2013 | EP |
2267559 | Jan 2014 | EP |
2919079 | Sep 2015 | EP |
59190433 | Oct 1984 | JP |
2010282618 | Dec 2010 | JP |
0144629 | Jun 2001 | WO |
0169056 | Sep 2001 | WO |
0232552 | Apr 2002 | WO |
02097540 | Dec 2002 | WO |
02101208 | Dec 2002 | WO |
03023538 | Mar 2003 | WO |
03048533 | Jun 2003 | WO |
03065135 | Aug 2003 | WO |
03078816 | Sep 2003 | WO |
03102394 | Dec 2003 | WO |
2004027230 | Apr 2004 | WO |
2006021437 | Mar 2006 | WO |
2007078907 | Jul 2007 | WO |
2008033800 | Mar 2008 | WO |
2008115911 | Sep 2008 | WO |
2012076838 | Jun 2012 | WO |
2013119665 | Aug 2013 | WO |
2014165439 | Oct 2014 | WO |
2016053194 | Apr 2016 | WO |
WO-2017013622 | Jan 2017 | WO |
Entry |
---|
Litichever, Gil et al. U.S. Appl. No. 62/195,419 (Specification). Available at least Jan. 26, 2017. (Year: 2017). |
Extended European Search Report for EP Application No. 17151521.6, dated Oct. 23, 2017. |
Extended European Search Report for EP Application No. 17163452.0, dated Sep. 26, 2017. |
Greenberg, “Hackers Cut a Corvette's Brakes Via a Common Car Gadget,” downloaded from https://www.wired.com2015/08/hackers-cut-corvettes-brakes-v..., 14 pages, Aug. 11, 2015, printed Dec. 11, 2017. |
http://www.blackpoolcommunications.com/products/alarm-immo...., “OBD Security OBD Port Protection—Alarms & Immobilizers . . . ,” 1 page, printed Jun. 5, 2017. |
http://www.cnbc.com/2016/09/20/chinese-company-hacks-tesla-car-remotely.html, “Chinese Company Hacks Tesla Car Remotely,” 3 pages, Sep. 20, 2016. |
ISO, “ISO Document No. 13185-2:2015(E),” 3 pages, 2015. |
Ding, “Characterising Combustion in Diesel Engines, Using Parameterised Finite Stage Cylinder Process Models,” 281 pages, Dec. 21, 2011. |
Docquier et al., “Combustion Control and Sensors: a Review,” Progress in Energy and Combustion Science, vol. 28, pp. 107-150, 2002. |
Dunbar, “Model Predictive Control: Extension to Coordinated Multi-Vehicle Formations and Real-Time Implementation,” CDS Technical Report 01-016, 64 pages, Dec. 7, 2001. |
Egnell, “Combustion Diagnostics by Means of Multizone Heat Release Analysis and NO Calculation,” SAE Technical Paper Series 981424, International Spring Fuels and Lubricants Meeting and Exposition, 22 pages, May 4-6, 1998. |
Ericson, “NOx Modelling of a Complete Diesel Engine/SCR System,” Licentiate Thesis, 57 pages, 2007. |
Finesso et al., “Estimation of the Engine-Out NO2/NOx Ration in a Euro VI Diesel Engine,” SAE International 2013-01-0317, 15 pages, Apr. 8, 2013. |
Fleming, “Overview of Automotive Sensors,” IEEE Sensors Journal, vol. 1, No. 4, pp. 296-308, Dec. 2001. |
Ford Motor Company, “2012 My OBD System Operation Summary for 6.7L Diesel Engines,” 149 pages, Apr. 21, 2011. |
Formentin et al., “NOx Estimation in Diesel Engines Via In-Cylinder Pressure Measurement,” IEEE Transactions on aontrol Systems Technology, vol. 22, No. 1, pp. 396-403, Jan. 2014. |
Galindo, “An On-Engine Method for Dynamic Characterisation of NOx Concentration Sensors,” Experimental Thermal and Fluid Science, vol. 35, pp. 470-476, 2011. |
Gamma Technologies, “Exhaust Aftertreatment with GT-Suite,” 2 pages, Jul. 17, 2014. |
GM “Advanced Diesel Technology and Emissions,” powertrain technologies—engines, 2 pages, prior to Feb. 2, 2005. |
Goodwin, “Researchers Hack a Corvette's Brakes Via Insurance Black Box,” Downloaded from http://www.cnet.com/roadshow/news/researchers-hack-a-corvettes-brakes-via-insurance-black-box/, 2 pages, Aug. 2015. |
Greenberg, “Hackers Remotely Kill a Jeep on the Highway—With Me in It,” Downloaded from http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/, 24 pages, Jul. 21, 2015. |
Guardiola et al., “A Bias Correction Method for Fast Fuel-to-Air Ratio Estimation in Diesel Engines,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 227, No. 8, pp. 1099-1111, 2013. |
Guardiola et al., “A Computationally Efficient Kalman Filter Based Estimator for Updating Look-Up Tables Applied to NOx Estimation in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1455-1468. |
Guerreiro et al., “Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft,” Proceedings of the European Control Conference, Budapest, Hungary, 6 pages, Aug. 2009. |
Guzzella et al., “Introduction to Modeling and Control of Internal Combustion Engine Systems,” 303 pages, 2004. |
Guzzella, et al., “Control of Diesel Engines,” IEEE Control Systems Magazine, pp. 53-71, Oct. 1998. |
Hahlin, “Single Cylinder ICE Exhaust Optimization,” Master's Thesis, retrieved from https://pure.ltu.se/portal/files/44015424/LTU-EX-2013-43970821.pdf, 50 pages, Feb. 1, 2014. |
Hammacher Schlemmer, “The Windshield Heads Up Display,” Catalog, p. 47, prior to Apr. 26, 2016. |
Havelena, “Componentized Architecture for Advanced Process Management,” Honeywell International, 42 pages, 2004. |
Heywood, “Pollutant Formation and Control,” Internal Combustion Engine Fundamentals, pp. 567-667, 1988. |
Hiranuma, et al., “Development of DPF System for Commercial Vehicle—Basic Characteristic and Active Regeneration Performance,” SAE Paper No. 2003-01-3182, Mar. 2003. |
Hirsch et al., “Dynamic Engine Emission Models,” Automotive Model Predictive Control, Chapter 5, 18 pages, LNCIS 402, 2012. |
Hirsch et al., “Grey-Box Control Oriented Emissions Models,” The International Federation of Automatic Control (IFAC), Proceedings of the 17th World Congress, pp. 8514-8519, Jul. 6-11, 2008. |
Hockerdal, “EKF-based Adaptation of Look-Up Tables with an Air Mass-Flow Sensor Application,” Control Engineering Practice, vol. 19, 12 pages, 2011. |
Honeywell, “Profit Optimizer a Distributed Quadratic Program (DQP) Concepts Reference,” 48 pages, prior to Feb. 2, 2005. |
http://nexceris.com/news/nextech-materials/, “NEXTECH Materials is Now NEXCERIS,” 7 pages, printed Oct. 4, 2016. |
http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, “Heavy-Duty OBD Regulations and Rulemaking,” 8 pages, printed Oct. 4, 2016. |
http://www.not2fast.wryday.com/turbo/glossary/turbo_glossary.shtml, “Not2Fast: Turbo Glossary,” 22 pages, printed Oct. 1, 2004. |
http://www.tai-cwv.com/sb1106.0.html, “Technical Overview—Advanced Control Solutions,” 6 pages, printed Sep. 9, 2004. |
https://www.dieselnet.com/standards/us/obd.php, “Emission Standards: USA: On-Board Diagnostics,” 6 pages, printed Oct. 3, 2016. |
https://www.en.wikipedia.org/wiki/Public-key_cryptography, “Public-Key Cryptography,” 14 pages, printed Feb. 26, 2016. |
Ishida et al., “An Analysis of the Added Water Effect on NO Formation in D.I. Diesel Engines,” SAE Technical Paper Series 941691, International Off-Highway and Power-Plant Congress and Exposition, 13 pages, Sep. 12-14, 1994. |
Ishida et al., “Prediction of NOx Reduction Rate Due to Port Water Injection in a DI Diesel Engine,” SAE Technical Paper Series 972961, International Fall Fuels and Lubricants Meeting and Exposition, 13 pages, Oct. 13-16, 1997. |
Jensen, “The 13 Monitors of an OBD System,” http://www.oemoffhighway.com/article/1 0855512/the-13-monito..., 3 pages, printed Oct. 3, 2016. |
Johansen et al., “Hardware Architecture Design for Explicit Model Predictive Control,” Proceedings of ACC, 6 pages, 2006. |
Johansen et al., “Hardware Synthesis of Explicit Model Predictive Controllers,” IEEE Transactions on Control Systems Technology, vol. 15, No. 1, Jan. 2007. |
Jonsson, “Fuel Optimized Predictive Following in Low Speed Conditions,” Master's Thesis, 46 pages, Jun. 28, 2003. |
Kelly, et al., “Reducing Soot Emissions from Diesel Engines Using One Atmosphere Uniform Glow Discharge Plasma,” SAE Paper No. 2003-01-1183, Mar. 2003. |
Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Journal, vol. 3, ISSN 2032-6653, 11 pages, May 2009. |
Khair et al., “Emission Formation in Diesel Engines,” Downloaded from https://www.dieselnet.com/tech/diesel_emiform.php, 33 pages, printed Oct. 14, 2016. |
Kihas et al., “Chapter 14, Diesel Engine SCR Systems: Modeling Measurements and Control,” Catalytic Reduction Technology (book), Part 1, Chapter 14, prior to Jan. 29, 2016. |
Kolmanovsky et al., “Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines”, 18th IFIP Conf. System Modeling and Optimization, pp. 436-445, Jul. 1997. |
Krause et al., “Effect of Inlet Air Humidity and Temperature on Diesel Exhaust Emissions,” SAE International Automotive Engineering Congress, 8 pages, Jan. 8-12, 1973. |
Kulhavy et al. “Emerging Technologies for Enterprise Optimization in the Process Industries,” Honeywell, 12 pages, Dec. 2000. |
Lavoie et al., “Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines,” Combustion Science and Technology, vol. 1, pp. 313-326, 1970. |
Locker, et al., “Diesel Particulate Filter Operational Characterization,” Corning Incorporated, 10 pages, prior to Feb. 2, 2005. |
Lu, “Challenging Control Problems and Engineering Technologies in Enterprise Optimization,” Honeywell Hi-Spec Solutions, 30 pages, Jun. 4-6, 2001. |
“Aftertreatment Modeling of RCCI Engine During Transient Operation,” University of Wisconsin—Engine Research Center, 1 page, May 31, 2014. |
“Chapter 14: Pollutant Formation,” Fluent Manual, Release 15.0, Chapter 14, pp. 313-345, prior to Jan. 29, 2016. |
“Chapter 21, Modeling Pollutant Formation,” Fluent Manual, Release 12.0, Chapter 21, pp. 21-1-21-54, Jan. 30, 2009. |
“J1979 E/E Diagnostic Test Modules,” Proposed Regulation, Vehicle E.E. System Diagnostic Standards Committee, 1 page, Sep. 28, 2010. |
“MicroZed Zynq Evaluation and Development and System on Module, Hardware User Guide,” Avnet Electronics Marketing, Version 1.6, Jan. 22, 2015. |
“Model Predictive Control Toolbox Release Notes,” The Mathworks, 24 pages, Oct. 2008. |
“Model Predictive Control,” Wikipedia, pp. 1-5, Jan. 22, 2009. http://en.wikipedia.org/w/index.php/title=Special:Book&bookcmd=download&collecton_id=641cd1b5da77cc22&writer=rl&return_to=Model predictive control, retrieved Nov. 20, 2012. |
“MPC Implementation Methods for the Optimization of the Response of Control Valves to Reduce Variability,” Advanced Application Note 002, Rev. A, 10 pages, 2007. |
“SCR, 400-csi Coated Catalyst,” Leading NOx Control Technologies Status Summary, 1 page prior to Feb. 2, 2005. |
Actron, “Elite AutoScanner Kit—Enhanced OBD I & II Scan Tool, OBD 1300,” Downloaded from https://actron.com/content/elite-autoscanner-kit-enhanced-obd-i-and-obd-ii-scan-tool?utm_..., 5 pages, printed Sep. 27, 2016. |
Advanced Petroleum-Based Fuels-Diesel Emissions Control (APBF-DEC) Project, “Quarterly Update,” No. 7, 6 pages, Fall 2002. |
Allanson, et al., “Optimizing the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter System,” SAE Paper No. 2002-01-0428, 8 pages, Mar. 2002. |
Amstuz, et al., “EGO Sensor Based Robust Output Control of EGR in Diesel Engines,” IEEE TCST, vol. 3, No. 1, 12 pages, Mar. 1995. |
Andersson et al., “A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE International 2006-01-3329, 10 pages, 2006. |
Andersson et al., “A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion,” SAE Technical Paper Series 2006-01-0195, 2006 SAE World Congress, 13 pages, Apr. 3-6, 2006. |
Arregle et al., “On Board NOx Prediction in Diesel Engines: A Physical Approach,” Automotive Model Predictive Control, Models Methods and Applications, Chapter 2, 14 pages, 2010. |
Asprion, “Optimal Control of Diesel Engines,” PHD Thesis, Diss ETH No. 21593, 436 pages, 2013. |
Assanis et al., “A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine,” ASME, Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 450-457, Apr. 2003. |
Axehill et al., “A Dual Gradiant Projection Quadratic Programming Algorithm Tailored for Model Predictive Control,” Proceedings of the 47th IEEE Conference on Decision and Control, Cancun Mexico, pp. 3057-3064, Dec. 9-11, 2008. |
Axehill et al., “A Dual Gradient Projection Quadratic Programming Algorithm Tailored for Mixed Integer Predictive Control,” Technical Report from Linkopings Universitet, Report No. Li-Th-ISY-R-2833, 58 pages, Jan. 31, 2008. |
Baffi et al., “Non-Linear Model Based Predictive Control Through Dynamic Non-Linear Partial Least Squares,” Trans IChemE, vol. 80, Part A, pp. 75-86, Jan. 2002. |
Bako et al., “A Recursive Identification Algorithm for Switched Linear/Affine Models,” Nonlinear Analysis: Hybrid Systems, vol. 5, pp. 242-253, 2011. |
Barba et al., “A Phenomenological Combustion Model for Heat Release Rate Prediction in High-Speed DI Diesel Engines with Common Rail Injection,” SAE Technical Paper Series 2000-01-2933, International Fall Fuels and Lubricants Meeting Exposition, 15 pages, Oct. 16-19, 2000. |
Bemporad et al., “Model Predictive Control Toolbox 3, User's Guide,” Matlab Mathworks, 282 pages, 2008. |
Bemporad et al., “The Explicit Linear Quadratic Regulator for Constrained Systems,” Automatica, 38, pp. 3-20, 2002. |
Bemporad, “Model Predictive Control Based on Linear Programming—The Explicit Solution,” IEEE Transactions on Automatic Control, vol. 47, No. 12, pp. 1974-1984, Dec. 2002. |
Bemporad, “Model Predictive Control Design: New Trends and Tools,” Proceedings of the 45th IEEE Conference on Decision & Control, pp. 6678-6683, Dec. 13-15, 2006. |
Bemporad, et al., “Explicit Model Predictive Control,” 1 page, prior to Feb. 2, 2005. |
Bertsekas, “On the Goldstein-Levitin-Polyak Gradient Projection Method,” IEEE Transactions on Automatic Control, vol. AC-21, No. 2, pp. 174-184, Apr. 1976. |
Bertsekas, “Projected Newton Methods for Optimization Problems with Simple Constraints*,” SIAM J. Control and Optimization, vol. 20, No. 2, pp. 221-246, Mar. 1982. |
Blanco-Rodriguez, “Modelling and Observation of Exhaust Gas Concentrations for Diesel Engine Control,” Phd Dissertation, 242 pages, Sep. 2013. |
Blue Streak Electronics Inc., “Ford Modules,” 1 page, May 12, 2010. |
Borrelli et al., “An MPC/Hybrid System Approach to Traction Control,” IEEE Transactions on Control Systems Technology, vol. 14, No. 3, pp. 541-553, May 2006. |
Borrelli, “Constrained Optimal Control of Linear and Hybrid Systems,” Lecture Notes in Control and Information Sciences, vol. 290, 2003. |
Borrelli, “Discrete Time Constrained Optimal Control,” A Dissertation Submitted to the Swiss Federal Institute of Technology (ETH) Zurich, Diss. ETH No. 14666, 232 pages, Oct. 9, 2002. |
Bourn et al., “Advanced Compressor Engine Controls to Enhance Operation, Reliability and Integrity,” Southwest Research Institute, DOE Award No. DE-FC26-03NT41859, SwRI Project No. 03.10198, 60 pages, Mar. 2004. |
Catalytica Energy Systems, “Innovative NOx Reduction Solutions for Diesel Engines,” 13 pages, 3rd Quarter, 2003. |
Charalampidis et al., “Computationally Efficient Kalman Filtering for a Class of Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 56, No. 3, pp. 483-491, Mar. 2011. |
Chatterjee, et al. “Catalytic Emission Control for Heavy Duty Diesel Engines,” JM, 46 pages, prior to Feb. 2, 2005. |
Chew, “Sensor Validation Scheme with Virtual NOx Sensing for Heavy Duty Diesel Engines,” Master's Thesis, 144 pages, 2007. |
European Search Report for EP Application No. 11167549.2 dated Nov. 27, 2012. |
European Search Report for EP Application No. 12191156.4-1603 dated Feb. 9, 2015. |
European Search Report for EP Application No. EP 10175270.7-2302419 dated Jan. 16, 2013. |
European Search Report for EP Application No. EP 15152957.5-1807 dated Feb. 10, 2015. |
Extended European Search Report for EP Application No. 15155295.7-1606, dated Aug. 4, 2015. |
Extended European Search Report for EP Application No. 15179435.1, dated Apr. 1, 2016. |
De Oliveira, “Constraint Handling and Stability Properties of Model Predictive Control,” Carnegie Institute of Technology, Department of Chemical Engineering, Paper 197, 64 pages, Jan. 1, 1993. |
De Schutter et al., “Model Predictive Control for Max-Min-Plus-Scaling Systems,” Proceedings of the 2001 American Control Conference, Arlington, VA, pp. 319-324, Jun. 2001. |
Delphi, Delphi Diesel NOx Trap (DNT), 3 pages, Feb. 2004. |
Diehl et al., “Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation,” Int. Workshop on Assessment and Future Directions of NMPC, 24 pages, Pavia, Italy, Sep. 5-9, 2008. |
Maciejowski, “Predictive Control with Constraints,” Prentice Hall, Pearson Education Limited, 4 pages, 2002. |
Manchur et al., “Time Resolution Effects on Accuracy of Real-Time NOx Emissions Measurements,” SAE Technical Paper Series 2005-01-0674, 2005 SAE World Congress, 19 pages, Apr. 11-14, 2005. |
Mariethoz et al., “Sensorless Explicit Model Predictive Control of the DC-DC Buck Converter with Inductor Current Limitation,” IEEE Applied Power Electronics Conference and Exposition, pp. 1710-1715, 2008. |
Marjanovic, “Towards a Simplified Infinite Horizon Model Predictive Controller,” 6 pages, Proceedings of the 5th Asian Control Conference, 6 pages, Jul. 20-23, 2004. |
Mehta, “The Application of Model Predictive Control to Active Automotive Suspensions,” 56 pages, May 17, 1996. |
Mohammadpour et al., “A Survey on Diagnostics Methods for Automotive Engines,” 2011 American Control Conference, pp. 985-990, Jun. 29-Jul. 1, 2011. |
Moore, “Living with Cooled-EGR Engines,” Prevention Illustrated, 3 pages, Oct. 3, 2004. |
Moos, “Catalysts as Sensors —A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment,” http://www.mdpi.com/1424-8220/10/7/6773htm, 10 pages, Jul. 13, 2010. |
Murayama et al., “Speed Control of Vehicles with Variable Valve Lift Engine by Nonlinear MPC,” ICROS-SICE International Joint Conference, pp. 4128-4133, 2009. |
National Renewable Energy Laboratory (NREL), “Diesel Emissions Control—Sulfur Effects Project (DECSE) Summary of Reports,” U.S. Department of Energy, 19 pages, Feb. 2002. |
Olsen, “Analysis and Simulation of the Rate of Heat Release (ROHR) in Diesel Engines,” MSc-Assignment, 105 pages, Jun. 2013. |
Ortner et al., “MPC for a Diesel Engine Air Path Using an Explicit Approach for Constraint Systems,” Proceedings of the 2006 IEEE Conference on Control Applications, Munich Germany, pp. 2760-2765, Oct. 4-6, 2006. |
Ortner et al., “Predictive Control of a Diesel Engine Air Path,” IEEE Transactions on Control Systems Technology, vol. 15, No. 3, pp. 449-456, May 2007. |
Pannocchia et al., “Combined Design of Disturbance Model and Observer for Offset-Free Model Predictive Control,” IEEE Transactions on Automatic Control, vol. 52, No. 6, 6 pages, 2007. |
Patrinos et al., “A Global Piecewise Smooth Newton Method for Fast Large-Scale Model Predictive Control,” Tech Report TR2010-02, National Technical University of Athens, 23 pages, 2010. |
Payri et al., “Diesel NOx Modeling with a Reduction Mechanism for the Initial NOx Coming from EGR or Re-Entrained Burned Gases,” 2008 World Congress, SAE Technical Paper Series 2008-01-1188, 13 pages, Apr. 14-17, 2008. |
Payri et al., “Methodology for Design and Calibration of a Drift Compensation Method for Fuel-to-Air Ratio,” SAE International 2012-01-0717, 13 pages, Apr. 16, 2012. |
Pipho et al.' “NO2 Formation in a Diesel Engine,” SAE Technical Paper Series 910231, International Congress and Exposition, 15 pages, Feb. 25-Mar. 1, 1991. |
Qin et al., “A Survey of Industrial Model Predictive Control Technology,” Control Engineering Practice, 11, pp. 733-764, 2003. |
Querel et al., “Control of an SCR System Using a Virtual NOx Sensor,” 7th IFAC Symposium on Advances in Automotive Control, The International Federation of Automotive Control, pp. 9-14, Sep. 4-7, 2013. |
Rajamani, “Data-based Techniques to Improve State Estimation in Model Predictive Control,” Ph.D. Dissertation, 257 pages, 2007. |
Rawlings, “Tutorial Overview of Model Predictive Control,” IEEE Control Systems Magazine, pp. 38-52, Jun. 2000. |
Ricardo Software, “Powertrain Design at Your Fingertips,” retrieved from http://www.ricardo.com/PageFiles/864/WaveFlyerA4_4PP.pdf, 2 pages, downloaded Jul. 27, 2015. |
Salvat, et al., “Passenger Car Serial Application of a Particulate Filter System on a Common Rail Direct Injection Engine,” SAE Paper No. 2000-01-0473, 14 pages, Feb. 2000. |
Santin et al., “Combined Gradient/Newton Projection Semi-Explicit QP Solver for Problems with Bound Constraints,” 2 pages, prior to Jan. 29, 2016. |
Schauffele et al., “Automotive Software Engineering Principles, Processes, Methods, and Tools,” SAE International, 10 pages, 2005. |
Schilling et al., “A Real-Time Model for the Prediction of the NOx Emissions in DI Diesel Engines,” Proceedings of the 2006 IEEE International Conference on Control Applications, pp. 2042-2047, Oct. 4-7, 2006. |
Schilling, “Model-Based Detection and Isolation of Faults in the Air and Fuel Paths of Common-Rail DI Diesel Engines Equipped with a Lambda and a Nitrogen Oxides Sensor,” Doctor of Sciences Dissertation, 210 pages, 2008. |
Shahzad et al., “Preconditioners for Inexact Interior Point Methods for Predictive Control,” 2010 American Control Conference, pp. 5714-5719, Jun. 30-Jul. 2010. |
Shamma, et al. “Approximate Set-Valued Observers for Nonlinear Systems,” IEEE Transactions on Automatic Control, vol. 42, No. 5, May 1997. |
Signer et al., “European Programme on Emissions, Fuels and Engine Technologies (EPEFE)—Heavy Duty Diesel Study,” International Spring Fuels and Lubricants Meeting, SAE 961074, May 6-8, 1996. |
Soltis, “Current Status of NOx Sensor Development,” Workshop on Sensor Needs and Requirements for PEM Fuel Cell Systems and Direct-Injection Engines, 9 pages, Jan. 25-26, 2000. |
Stefanopoulou, et al., “Control of Variable Geometry Turbocharged Diesel Engines for Reduced Emissions,” IEEE Transactions on Control Systems Technology, vol. 8, No. 4, pp. 733-745, Jul. 2000. |
Stewart et al., “A Model Predictive Control Framework for Industrial Turbodiesel Engine Control,” Proceedings of the 47th IEEE Conference on Decision and Control, 8 pages, 2008. |
Stewart et al., “A Modular Model Predictive Controller for Turbodiesel Problems,” First Workshop on Automotive Model Predictive Control, Schloss Muhldorf, Feldkirchen, Johannes Kepler University, Linz, 3 pages, 2009. |
Storset et al., “Air Charge Estimation for Turbocharged Diesel Engines,” vol. 1 Proceedings of the American Control Conference, 8 pages, Jun. 28-30, 2000. |
Stradling et al., “The Influene of Fuel Properties and Injection Timing on the Exhaust Emissions and Fuel Consumption of an Iveco Heavy-Duty Diesel Engine,” International Spring Fuels and Lubricants Meeting, SAE 971635, May 5-8, 1997. |
Takacs et al., “Newton-Raphson Based Efficient Model Predictive Control Applied on Active Vibrating Structures,” Proceeding of the European Control Conference 2009, Budapest, Hungary, pp. 2845-2850, Aug. 23-26, 2009. |
The MathWorks, “Model-Based Calibration Toolbox 2.1 Calibrate complex powertrain systems,” 4 pages, prior to Feb. 2, 2005. |
The MathWorks, “Model-Based Calibration Toolbox 2.1.2,” 2 pages, prior to Feb. 2, 2005. |
Theiss, “Advanced Reciprocating Engine System (ARES) Activities at the Oak Ridge National Lab (ORNL), Oak Ridge National Laboratory,” U.S. Department of Energy, 13 pages, Apr. 14, 2004. |
Tondel et al., “An Algorithm for Multi-Parametric Quadratic Programming and Explicit MPC Solutions,” Automatica, 39, pp. 489-497, 2003. |
Traver et al., “A Neural Network-Based Virtual NOx Sensor for Diesel Engines,” 7 pages, prior to Jan. 29, 2016. |
Tschanz et al., “Cascaded Multivariable Control of the Combustion in Diesel Engines,” The International Federation of Automatic Control (IFAC), 2012 Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 25-32, Oct. 23-25, 2012. |
Tschanz et al., “Control of Diesel Engines Using NOx-Emission Feedback,” International Journal of Engine Research, vol. 14, No. 1, pp. 45-56, 2013. |
Tschanz et al., “Feedback Control of Particulate Matter and Nitrogen Oxide Emissions in Diesel Engines,” Control Engineering Practice, vol. 21, pp. 1809-1820, 2013. |
Turner, “Automotive Sensors, Sensor Technology Series,” Momentum Press, Unable to Obtain the Entire Book, a Copy of the Front and Back Covers and Table of Contents are Provided, 2009. |
Van Basshuysen et al., “Lexikon Motorentechnik,” (Dictionary of Automotive Technology) published by Vieweg Verlag, Wiesbaden 039936, p. 518, 2004. (English Translation). |
Van Den Boom et al., “MPC for Max-Plus-Linear Systems: Closed-Loop Behavior and Tuning,” Proceedings of the 2001 American Control Conference, Arlington, Va, pp. 325-330, Jun. 2001. |
Van Heiden et al., “Optimization of Urea SCR deNOx Systems for HD Diesel Engines,” SAE International 2004-01-0154, 13 pages, 2004. |
Van Keulen et al., “Predictive Cruise Control in Hybrid Electric Vehicles,” World Electric Vehicle Journal vol. 3, ISSN 2032-6653, pp. 1-11, 2009. |
VDO, “UniNOx-Sensor Specification,” Continental Trading GmbH, 2 pages, Aug. 2007. |
Vereschaga et al., “Piecewise Affine Modeling of NOx Emission Produced by a Diesel Engine,” 2013 European Control Conference (ECC), pp. 2000-2005, Jul. 17-19, 2013. |
Wahlstrom et al., “Modelling Diesel Engines with a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics,” (Original Publication) Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, vol. 225, No. 7, 28 pages, 2011. |
Wang et al., “Fast Model Predictive Control Using Online Optimization,” Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, pp. 6974-6979, Jul. 6-11, 2008. |
Wang et al., “PSO-Based Model Predictive Control for Nonlinear Processes,” Advances in Natural Computation, Lecture Notes in Computer Science, vol. 3611/2005, 8 pages, 2005. |
Wang et al., “Sensing Exhaust NO2 Emissions Using the Mixed Potential Principal,” SAE 2014-01-1487, 7 pages, Apr. 1, 2014. |
Wilhelmsson et al., “A Fast Physical NOx Model Implemented on an Embedded System,” Proceedings of the IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, pp. 207-215, Nov. 30-Dec. 2, 2009. |
Wilhemsson et al., “A Physical Two-Zone NOx Model Intended for Embedded Implementation,” SAE 2009-01-1509, 11 pages, 2009. |
Winkler et al., “Incorporating Physical Knowledge About the Formation of Nitric Oxides into Evolutionary System Identification,” Proceedings of the 20th European Modeling and Simulation Symposium (EMSS), 6 pages, 2008. |
Winkler et al., “On-Line Modeling Based On Genetic Programming,” 12 pages, International Journal on Intelligent Systems Technologies and Applications 2, 2007. |
Winkler et al., “Using Genetic Programming in Nonlinear Model Identification,” 99 pages, prior to Jan. 29, 2016. |
Winkler et al., “Virtual Sensors for Emissions of a Diesel Engine Produced by Evolutionary System Identification,” LNCS, vol. 5717, 8 pages, 2009. |
Wong, “CARB Heavy-Duty OBD Update,” California Air Resources Board, SAE OBD TOPTEC, Downloaded from http://www.arb.ca.gov/msprog/obdprog/hdobdreg.htm, 72 pages, Sep. 15, 2005. |
Wright, “Applying New Optimization Algorithms to Model Predictive Control,” 5th International Conference on Chemical Process Control, 10 pages, 1997. |
Yao et al., “The Use of Tunnel Concentration Profile Data to Determine the Ratio of NO2/NOx Directly Emitted from Vehicles,” HAL Archives, 19 pages, 2005. |
Zaman, “Lincoln Motor Company: Case study 2015 Lincoln MKC,” Automotive Electronic Design Fundamentals, Chapter 6, 2015. |
Zavala et al., “The Advance-Step NMPC Controller: Optimality, Stability, and Robustness,” Automatica, vol. 45, pp. 86-93, 2009. |
Zeilinger et al., “Real-Time MPC—Stability Through Robust MPC Design,” Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, pp. 3980-3986, Dec. 16-18, 2009. |
Zeldovich, “The Oxidation of Nitrogen in Combustion and Explosions,” ACTA Physiochimica U.R.S.S., vol. XX1, No. 4, 53 pages, 1946. |
Zelenka, et al., “An Active Regeneration as a Key Element for Safe Particulate Trap Use,” SAE Paper No. 2001-0103199, 13 pages, Feb. 2001. |
Zhu, “Constrained Nonlinear Model Predictive Control for Vehicle Regulation,” Dissertation, Graduate School of the Ohio State University, 125 pages, 2008. |
Zhuiykov et al., “Development of Zirconia-Based Potentiometric NOx Sensors for Automotive and Energy Industries in the Early 21st Century: What Are the Prospects for Sensors?”, Sensors and Actuators B, vol. 121, pp. 639-651, 2007. |
Desantes et al., “Development of NOx Fast Estimate Using NOx Sensor,” EAEC 2011 Congress, 2011. Unable to Obtain a Copy of This Reference. |
Andersson et al., “Fast Physical NOx Prediction in Diesel Engines, The Diesel Engine: The Low CO2 and Emissions Reduction Challenge,” Conference Proceedings, Lyon, 2006. Unable to Obtain a Copy of This Reference. |
Winkler, “Evolutionary System Identification—Modern Approaches and Practical Applications,” Kepler Universitat Linz, Reihe C: Technik and Naturwissenschaften, Universitatsverlag Rudolf Trauner, 2009. Unable to Obtain a Copy of This Reference. |
Smith, “Demonstration of a Fast Response On-Board NOx Sensor for Heavy-Duty Diesel Vehicles,” Technical report, Southwest Research Institute Engine and Vehicle Research Division SwRI Project No. 03-02256 Contract No. 98-302, 2000. Unable to Obtain a Copy of This Reference. |
Number | Date | Country | |
---|---|---|---|
20190116045 A1 | Apr 2019 | US |