The present invention is related to systems for security and, more specifically, to access to a secure network through verification using authentication credentials.
Most authentication tokens require user interface or user interaction. Existing authentication tokens require some user intervention, either to plug-in the token to a device or simply to generate the authentication value (by pressing a button, launching an application, etc.) and subsequently entering/reading this value for granting access to an application, resource or service. Also, once authenticated, a secure connection is created without continued monitoring. Thus, if the user walks away from the terminal or the computer, and does not close out the secure session, then others can access the system through the secure session. This is a common problem because the user does not want the hassle of having to re-authenticate every time the user has to leave the terminal and return later, especially if it is for a short period of time. Hence, the user will not shut down or terminate the session before walking away from the terminal. Additionally, system and method exist that require continuous monitoring to ensure that the user is still using the system and authorized to continue accessing the system.
Therefore, what is needed is a system and method for authentication of a user without user interaction and when the user is ready and proximate to the terminal, while reducing the demands on the authentication system and conserving/preserving battery life.
The disclosed invention is a system and method that allows for authentication of a user to a network using a token without user interaction and when the user is proximate to a device or terminal. The system reduces the demands on battery while minimizing system demands. The token interacts with the device and authenticates the user. The various aspects of the present invention capture a novel design for an authentication token that includes the following new set of properties that includes any one of the following:
Wireless communication;
Authentication Credential Generation Token; and
Limited or no human/user interaction.
A token is also referred to as Authentication Token Without Human Intervention (ATWHI) herein in accordance with various aspects of the present invention.
Drawings are intended to be illustrative, to those of skill in the art, of particular aspects of the invention and are not necessarily to scale, and each is not necessarily inclusive of all aspects.
In accordance with the teachings of the present invention, authentication is based on a hardware token including wireless (BT LE is the method of choice but NFC, WiFi direct, Plain vanilla Bluetooth, other wireless protocols are valid options) communication capability and enough logic to compute and communicate, through at least the wireless connection, an authentication credential or token that can be further consume by an application running on a device supporting wireless communication, and an application layer to take advantage of the computed authentication value.
Direct integration on mobile devices
Referring now to
In case the ATWHI option is selected, the field for entering the Secret will not be needed anymore. Upon VPN request or interrogation, the token will communicate automatically the authentication code or certificate that will replace the former supported token expected secret value—the value that user was entering manually after operating his token. In the case of the certificate, the VPN configuration will use ATWHI computed value as an authenticator rather than relying on the user certificate to compute a cryptogram.
Integration at the application level
In accordance with one aspect of the present invention, the integration is at the client software level:
In accordance with the present invention there is a combination of credentials from the user and the token and there is no human interaction required to operate the token (be it reading a value, entering a value, etc.) since the token will automatically communicate the computed value or the authentication certificate upon request from the application. In accordance with another aspect of the present invention, a setting can be defined where simply the authentication value computed by the token is required to grant access to a specific resource (say, storage) or application, service.
In accordance with another aspect of the present invention, the caching of password is protected by adding the ATWHI and potentially performs a local verification before unlocking the password. This requires verification on the device versus or in addition to verification on the server or authentication authority. In accordance with the present invention both implementations encompassing the two layers of security:
In accordance with the teachings of the present invention as in the foregoing example, the ATWHI would generate 2 authentication codes. Thus, there is a local verification as well as a remote verification.
In accordance with another aspect of the present invention, a daemon application can be included that is constantly running on the device. The device will ping automatically within a certain time window the ATWHI to confirm the presence (notion of proof of presence) or proximity of the token. This aspect of the present invention would use the VPN as a use case:
Client Software—Network Daemon
Server Software—started on VPN connect
Another aspect of the present invention is that the daemon running on the device could serve different applications. For example various authentication codes could be computed and communicated on a need-to-know basis. The daemon becomes the center of authentication for the device, interrogating the ATWHI and injecting the authentication codes when needed.
ATWHI block diagram
Referring now to
In accordance with another aspect of the present invention and referring now to
In accordance with one aspect of the present invention, if there is reliance upon the PUF technology to generate an authentication credential, then
Referring again to
The token 200 includes a communication (serial) interface 216 to the BT module 202 (or other wireless protocols), enough logic to interact with the PUF and manage the computation of authentication codes (and possibly key generation and further usage of the key material by the AES/encryption block) and their communication to the outside world through the Verayo Chip interface and the BT module 202 for wireless communication.
In accordance with another aspect of the present invention, the system monitors for the token 200 using performance enhanced features to preserve battery life. When the system performs continuous authentication, this generates a high degree of security because of continuing to authenticate the presence of the token as long as the user has access to the secure resource without user intervention. In order to reduce the demands on the system and preserve power, the token 200 uses the unique capability of a PUF based authentication scheme to tolerate missing data. The PUF based scheme has the ability to reliably authenticate on a very small amount of data. The use of smaller data saves on bandwidth. Saving bandwidth results in saved power as the demand on the system is reduced.
In accordance with the various aspects of the present invention and as shown in
Referring now to
ATWHI and HID (or similar) Combo Token
Another aspect of the present invention is a combination of the ATWHI functionality and an access card, such as a HID access card, within the same token. The resulting token will enable a user to:
The two parts will be independent and use different method of communications. The novelty lies in the combination of the Authentication Token without Human Intervention (ATWHI) and the Access Card into a single token that can be seen as a universal enterprise token to enable IT to manage all access to logical (applications, services, storage, etc.) and physical (doors, locks, etc.) resources.
PUF is an acronym for Physical(ly) Unclonable Function. The first word, physical, implies that a PUF is something tangible, as opposed to, say, a mathematical formula or computer algorithm. It is therefore a physical object, a machine, an instance of usually complex elements.
The second word is unclonable. To be truly unclonable, this PUF object/machine must be impossible for people (and their machines, such as computers) to duplicate (copy, clone, repeat). This also means that every PUF is unique—there is exactly up to one instance of each PUF in the whole universe.
The function part of the name annotates a PUF property to transform an input variable (or a collection of such variables), into an output variable (or a collection thereof), similar to a conventional mathematical function:
R=PUF(C)
Unlike a mathematical function, the Physical Unclonable Function is by definition not possible to replace, decompose, express or define by deterministic, mathematical symbols.
There is a particular reason the variables in the above formula are labeled R and C. The input one is called Challenge while the output of the PUF is called Response. In accordance with the various aspects of the present invention, the Response is also used to derive, or form in part or whole, authentication credentials. The PUF functionality is limited to its uniqueness, otherwise, the values of R and C can be just about anything that lay within operational range of each particular implementation of a PUF. But since every PUF is different and unpredictable, so are its responses. Still, while random across a population of PUFs, each instance of a PUF is consistent with itself, i.e. it produces the same (or, to be precise, nearly same) response every time a particular challenge is given. On the other hand, each PUF produces a different (or, to be precise, quite likely different) response for a particular challenge. Thus, the most important PUF property is that, for every otherwise identically created PUF instance, each gives a different/unique Challenge/Response Pair (CRP).
The CRPs of a well-designed PUF satisfy these criteria:
It is to be understood that this invention is not limited to particular embodiments or aspects described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Lock/Unlock
In accordance with another aspect of the present invention, the ATWHI could be used to lock/unlock a terminal or access device. For example, the ATWHI is in the user's pocket and a smart communication device or personal communication device can be used (e.g. smart phone or tablet) to access the ATWHI and unlock the access device to allow access to the system. If the smart communication device is not present, then the terminal or access device remains locked.
In accordance with another aspect of the present invention, a Personal Identification Number (PIN— can be combined with having the ATWHI in your pocket or near/at the user's desk and proximate enough so that the terminal or access device can get an authentication code from the token, either directly or through the smart communication device. If the system requires continued authentication or verification, then the user would not need to enter a PIN every time. Having the ATWHI nearby allows for the authentication authority to request a response by sending a challenge. The token or ATWHI would send the response as the authenticating credential.
In accordance with another aspect of the present invention, the access terminal or access device's screen saver can be locked and unlocked. The screen saver would be unlocked if the ATWHI is nearby. Accordingly, the user would not need to enter a password every time the screen saver needs to be unlocked.
In accordance with another aspect of the present invention, the user would need to enter a password or a PIN in addition to having the ATWHI or token nearby/present.
In accordance with another aspect of the present invention, the system can allow the user to unlock the screen saver with either an ATWHI being nearby or entering a password or PIN.
Local Verification
Referring now to
Similarly and in accordance with another aspect of the present invention, the local response to the specific challenge 1012 is recomputed by a software verification module and compared to the response 1010 computed and sent by the token 1006. In both cases, if there is a match, the token 1006 is authenticated and the device 1002 can grant access, unlock, etc. depending on the application and use case.
As shown in
In accordance with the teachings of the present invention, F can be the following:
Referring now to
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof.
Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
In accordance with the teaching of the present invention and certain embodiments, a computer device is an article of manufacture. Examples of an article of manufacture include: an electronic component residing on a mother board, a server, a mainframe computer, a mobile telephone, a multimedia-enabled smartphone, a tablet computer, a personal digital assistant, a personal computer, a laptop, a set-top box, an MP3 player, an email enabled device, a web enabled device, or other special purpose computer each having one or more processors (e.g., a Central Processing Unit, a Graphical Processing Unit, or a microprocessor) that is configured to execute a computer readable program code (e.g., an algorithm, hardware, firmware, and/or software) to receive data, transmit data, store data, or perform methods.
The article of manufacture (e.g., computing device) includes a non-transitory computer readable medium having a series of instructions, such as computer readable program steps encoded therein. In certain embodiments, the non-transitory computer readable medium includes one or more data repositories.
In certain embodiments and in accordance with any aspect of the present invention, computer readable program code is encoded in a non-transitory computer readable medium of the computing device. The processor, in turn, executes the computer readable program code to create or amend an existing computer-aided design using a tool. In other embodiments, the creation or amendment of the computer-aided design is implemented as a web-based software application in which portions of the data related to the computer-aided design or the tool or the computer readable program code are received or transmitted to a computing device of a host.
A controller is meant to represent a control element for the invention, which manages local processes within the battery and communicates these or the results of these to an external control system. The controller can be implemented in a variety of ways:
In certain embodiments based on the various aspects of the present invention, reference is made to communication between two electronic components. In certain embodiments, the communication fabric contains either or both wired or wireless connections for the transmission of signals including electrical connections, magnetic connections, or a combination thereof.
In certain embodiments, the system includes a hardware-based module (e.g., a digital signal processor (DSP), a field programmable gate array (FPGA)) and/or a software-based module (e.g., a module of computer code, a set of processor-readable instructions that are executed at a processor). In some embodiments, one or more of the functions associated with the system 100 is performed, for example, by different modules and/or combined into one or more modules locally executable on one or more computing devices.
Accordingly, the preceding merely illustrates the various aspects and principles of the present invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
This application claims priority to the filing date of U.S. Provisional Patent Application Ser. No. 61/830,635 filed on Jun. 3, 2013 (Titled AUTHENTICATION TOKEN; Attorney Docket No. VER-018PRV), and this application is a continuation-in-part of U.S. Non-Provisional Application Ser. No. 13/855,704 filed on Apr. 2, 2013 (Titled AUTHENTICATION TOKEN; Attorney Docket No. VER-010US), the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61830635 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13855704 | Apr 2013 | US |
Child | 14294831 | US |