Auto-calibrating voltage regulator with dynamic set-point capability

Information

  • Patent Grant
  • 6566848
  • Patent Number
    6,566,848
  • Date Filed
    Tuesday, December 26, 2000
    23 years ago
  • Date Issued
    Tuesday, May 20, 2003
    21 years ago
Abstract
A voltage regulator is described which uses external resistors to set a load line and offset. During initial operation and also during normal operation the load line and offset are reset by placing, for instance, the microprocessor in a high active state, low active state and in a sleep mode. By dynamically changing the load line and offset voltage, minimum current is drawn thus extending battery life.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to the field of power supplies and voltage regulators for microprocessors and the like.




2. Prior Art and Related Art




Voltage regulators sometimes use external resistors to assure a predetermined load line and offset voltage. For instance, the set-points assure that at low activity during an active mode, Vcc approximates the maximum power supply voltage for the microprocessor, and at maximum current load the regulator provides the minimum acceptable Vcc to the microprocessor. The resistors also provide the offset potential that allow the correct voltage for sleep modes to compensate for leakage over the operating temperature range of the microprocessor.




These resistors are often selected based on the worse case part. As a practical matter, a voltage regulator for a given platform may be tuned to the highest frequency part that will be used in that platform. This reduces the efficiency since the load line and offset voltage are usually non-optimal for a given processor.




Whenever the load line is not optimal, more power than necessary is consumed. This is particularly important for microprocessor in mobile personal computers since it shortens battery life.




See U.S. Pat. No. 5,926,394 and co-pending application Ser. No. 09/148,033; filed Sep. 3, 1998; entitled, “Method and Apparatus for Reducing the Power Consumption of a Voltage Regulator” assigned to the assignee of the present invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagram illustrating load lines both for an active and inactive state of a microprocessor.





FIG. 2

is a block diagram of a voltage regulator and microprocessor illustrating external resistors and temperature monitoring.





FIG. 3

is a diagram illustrating load lines where the load lines have been adjusted based on the characteristics of a microprocessor.





FIG. 4

illustrates the steps for initially adjusting and recalibrating the load line and offset voltage.





FIG. 5

illustrates the steps for determining a load line and offset voltage.











DETAILED DESCRIPTION OF THE PRESENT INVENTION




A method for operating a voltage regulator is disclosed which dynamically adjusts the load line and offset voltage. In the following description, numerous specific details are set forth such in order to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art that the present invention may be practiced without these details. In other instances, well-known circuits, such as voltage regulator circuits, have not been set forth in detail in order not to unnecessarily obscure the present invention.




Referring to

FIG. 1

, typical load lines


18


and


19


for a microprocessor are illustrated. The dotted line


10


represents the lowest Vcc that the microprocessor should operate under and the line


11


shows the maximum Vcc for the microprocessor. During the microprocessor's active state, shown between the vertical lines


14


and


16


, load line


18


is followed by the voltage regulator. This load line begins slightly above line


10


and ends slightly below line


11


in order to provide some safety margin which takes into account the tolerances of the voltage regulator. At the high current end of line


18


, the microprocessor is operating at a very high rate. Such a rate may be forced for testing with a virus. At the low current end of line


18


, the microprocessor is operating at a low level of operation for instance, perhaps doing simple word processing.




Line


19


illustrates the load line for the inactive period, that is for instance, during a sleep mode. In this mode, generally the microprocessor clock is off and only leakage current needed to sustain states in registers is flowing. The minimum and maximum currents for load line


19


cover the leakage over the operating temperature range. At the high current end of the current (line


14


) high leakage occurs at a higher temperature. In contrast, at the other end of line


19


, lower current flows typically representing lower leakage at a lower temperature.




The voltage difference between the limits of the load lines


18


and


19


is the offset potential representing the drop in potential from the voltage regulator when the microprocessor enters sleep mode. As described in the above-referenced application, a signal may be applied to the voltage regulator to alert it to a transition from the inactive mode to the active mode to enable the regulator to provide the sudden step up in potential required when entering the active mode from the inactive mode.




In

FIG. 2

the voltage regulator


20


is illustrated which provides a potential Vcc on line


24


to the microprocessor


21


. A first resistor


25


allows the current to be measured by the potential between lines


26


and


27


. Other external resistors, such as resistors


28


,


29


and


30


allow for other parameters of the voltage regulators to be set such as the offset voltage.




As will be seen, in one embodiment of the present invention, temperature monitoring occurs by the temperature monitor


32


which monitors system (ambient) temperature with the sensor


32


and the microprocessor (die) temperature with the sensor


34


. These temperatures are used by the voltage regulator, in one embodiment, and hence are coupled to the voltage regulator by line


35


.




Typically the load lines of

FIG. 1

are set by the external resistors. As taught by the present invention these load lines are initially adjusted and may be recalibrated during operation.




Referring briefly now to

FIG. 4

, step


50


illustrates the providing of an initial load line and offset voltage adjustment based on the characteristics of the particular microprocessor being used. This may occur for instance, when the microprocessor is first booted up in a particular platform and may occur only once, although it can occur each time the microprocessor is reset. Step


50


provides the data for adjusting the load line and offset voltage by, in effect, adding to or reducing the resistance of the external resistors. The data for providing these adjustments may be stored and used each time the microprocessor is reset as shown by step


51


.




Step


52


, on the other hand, illustrates recalibrating the load line and offset to compensate for the system temperature on a routine basis once the microprocessor is operating. The results of this recalibration is typically not stored, but rather are recomputed with some regularity. For example, each time the microprocessor enters a sleep mode, a software program may cause the microprocessor to go into a high active state and a low active state. During both these states the current is measured and load line recalibrated. Additionally at this time the leakage current is also measured so that load line


19


can be recalibrated.




Referring now to

FIG. 5

, assume that the voltage regulator of

FIG. 2

has preset load lines


18


and


19


which are determined by the external resistors. As shown by step


60


, the microprocessor current is measured for one or more modes of operation. Steps


61


and


62


describe one manner in which this may be done. When the microprocessor is first started, the leakage current may be determined as shown by step


61


. Since reset has just occurred, it can be assumed that the microprocessor is at its lowest temperature and thus the current for step


61


represents the lowest current for the load line


19


. This is shown as point A on load line


19


of FIG.


3


.




Now as shown by step


62


, the microprocessor is caused to run at its highest activity state, for instance by receiving a specially designed “virus” routine. This operation, in one embodiment, occurs until the microprocessor reaches its maximum operating temperature (e.g. 100° C.) as determined by the sensor


34


. When the temperature monitor


32


senses this temperature, the current through the resistor


25


is measured. This current represents the high current for the load line


18


and is shown, by way of example, as point B on load line


18


.




Now as shown by step


64


, point C of load line


19


can be determined. Since the microprocessor is at its maximum temperature, the maximum leakage current can be determined.




With set-points A, B and C a new load line and offset voltage can be readily determined which, in effect, adjusts the load lines


18


and


19


of FIG.


1


. These values can be stored and provide new load lines


40


and


41


illustrated of FIG.


3


. As shown, the new load line


40


has less maximum current; also the new load line


41


allows for a larger offset voltage. This helps reduce the overall power consumed by the microprocessor and thus allow for extended battery life.




As shown by step


65


, these values are stored and may be used each time the microprocessor is reset. Typically as shown by step


66


, the load line is adjusted by the regulator during a sleep mode to prevent any transients from occurring or the load line can be set upon reset.




While in the above example, points A, B and C were determined, other points can be determined and used for adjusting and recalibrating the load line. For instance, upon the initial operation of the microprocessor as mentioned above, its temperature is presumably as low as it will be for a given ambient condition. At this time, the microprocessor may be put into an active mode but with low activity and for instance, a point D of

FIG. 1

determined. Other combinations of active and inactive states can be used to determine set-points for the load lines and offset voltage.




During normal operation the load lines can be recalibrated as mentioned, for instance, each time microprocessor enters the sleep mode. When this occurs, it may not be desirable to determine point B of load line


18


(FIG.


1


). Rather, point D may be determined since this does not require the high active rate associated with point B. Point D may be used to determine the offset voltage for the then current operating temperature. If the recalibration occurs relatively frequently, for instance within the thermal time constant of the microprocessor, the operating currents can be determined as temperature varies. Additionally, a temperature reading from the sensor


33


may be used in conjunction with data representing the line


41


of

FIG. 3

to reposition the offset voltage and for the matter to redetermining line


40


based on stored recalibration data for different operating temperatures. This can be done for either or both the ambient temperature and die temperature.




In another embodiment, where the load line


40


of

FIG. 3

is computed regularly, point B can be determined by bringing the microprocessor to a high active state momentarily (a few microseconds) and then to a low active state for a few microseconds to determine point D of line


40


. These points are all that is needed for this load line since recalibration occurs within the thermal time constant of the microprocessor. The high activity rate for point B can use a software program other than the virus mentioned above which causes the microprocessor to draw high current. When this is done most interrupts are disabled to assure high current draw during the few microseconds required to determine this point.




Thus, a voltage regulator has been described which adjusts and recalibrates a load line and offset voltage both upon initialization and during operation.



Claims
  • 1. A method for operating a voltage regulator for a microprocessor comprising:causing the microprocessor to enter two different levels of activity; measuring a current for each of the levels; and setting a load line of the voltage regulator based on the currents.
  • 2. The method defined by claim 1 wherein a current measurement is made during an inactive period and used to set an offset voltage.
  • 3. The method defined by claim 1 wherein during one of the levels of activity the microprocessor is operated such that it reaches approximately its maximum operating temperature.
  • 4. The method defined by claim 1 wherein the step of causing the microprocessor to enter two different levels of activity is regularly repeated.
  • 5. The method defined by claim 3 wherein the regularity of causing the microprocessor to enter two different levels of activity is less than a thermal time constant of the microprocessor.
  • 6. The method defined by claim 1 wherein the regularity of causing the microprocessor to enter two different levels of activity occurs under software control.
  • 7. The method defined by claim 5 wherein the regularity of causing the microprocessor to enter two different levels of activity occurs under software control.
  • 8. The method defined by claim 6 wherein at least one of the levels of activity occurs with some interrupts disabled.
  • 9. The method defined by claim 7 wherein the at least one of the levels of activity occurs with some interrupts disabled.
  • 10. The method defined by claim 1 wherein one of the levels of activity is a sleep mode.
  • 11. The method defined by claim 9 wherein one of the levels of activity is a deep sleep mode.
  • 12. The method defined by claim 1 including: monitoring the temperature of the microprocessor; and adjusting the load line based on the microprocessor temperature.
  • 13. The method defined by claim 1 including: monitoring the ambient temperature; and adjusting the load line based on the ambient temperature.
  • 14. The method defined by claim 1 wherein the voltage regulator receives a signal to assist in transitioning from a low power state to a higher power state.
  • 15. A method for operating a voltage regulator for a microprocessor comprising:causing the microprocessor to operate at a high level of operation and a low level of operation; measuring a current flow for the high level of operation and low level of operation; and setting an offset voltage based on the current flows.
  • 16. The method defined by claim 15 wherein the slope of a load line is set based on the current flows.
  • 17. The method defined by claim 16 wherein the step of operating the microprocessor at a high level of operation and a low level of operation is regularly repeated.
  • 18. The method defined by claim 16 wherein the regularity of the repeated high level and low level of operation is less than the thermal time constant of the microprocessor.
  • 19. The method defined by claim 14 wherein at the high level of operation the microprocessor is allowed to operate at its maximum operating temperature.
  • 20. A method for operating a voltage regulator for a microprocessor comprising;periodically causing the microprocessor to operate at a high level of operation and at a low level of operation; and measuring a current flow for the high level of operation and the low level of operation; setting a slope for a load line and an offset for a load line based on the measured current flows.
  • 21. The method defined by claim 18 wherein the high level and low level of operation occur under software control.
  • 22. The method defined by claim 19 wherein the high level and low level of operations occur with at least some interrupts disabled.
  • 23. The method defined by claim 21 wherein the high level and low level operations occur for relatively short periods of time sufficient in length to allow the current flows to be measured.
  • 24. A system comprising:a microprocessor to enter two different levels of activity; and a unit to measure the current for each of the levels, and set a load line of the voltage regulator based on the currents.
  • 25. The system defined by claim 24 wherein a current measurement is made during an inactive period and used to set an offset voltage.
  • 26. The system defined by claim 24 wherein during one of the levels of activity the microprocessor is operated such that it reaches approximately its maximum operating temperature.
  • 27. The system defined by claim 24 wherein the microprocessor entering two different levels of activity is regularly repeated.
  • 28. The system defined by claim 26 wherein the regularity of causing the microprocessor to enter two different levels of activity is less than a thermal time constant of the microprocessor.
  • 29. The system defined by claim 24 wherein the regularity of causing the microprocessor to enter two different levels of activity occurs under software control.
  • 30. The system defined by claim 28 wherein the regularity of causing the microprocessor to enter two different levels of activity occurs under software control.
  • 31. The system defined by claim 29 wherein at least one of the levels of activity occurs with some interrupts disabled.
  • 32. The system defined by claim 30 wherein the at least one of the levels of activity occurs with some interrupts disabled.
  • 33. The system defined by claim 29 wherein one of the levels of activity is a sleep mode.
  • 34. The system defined by claim 3wherein one of the levels of activity is a deep sleep mode.
  • 35. The system defined by claim 29, wherein the unit monitors the temperature of the microprocessor, and adjust the load line based on the microprocessor temperature.
  • 36. The system defined by claim 29 wherein the unit monitors the ambient temperature, and adjust the load line based on the ambient temperature.
  • 37. The system defined by claim 29 wherein the microprocessor receives a signal to assist in transitioning from a low power state to a higher power state.
  • 38. A machine readable medium having stored thereon a set of instructions to perform a method comprising:causing the microprocessor to enter two different levels of activity; measuring the current for each of the levels; and setting a load line of the voltage regulator based on the currents.
  • 39. The machine readable medium defined by claim 37 wherein a current measurement is made during an inactive period and used to set an offset voltage.
  • 40. The machine readable medium defined by claim 37 wherein during one of the levels of activity the microprocessor is operated such that it reaches approximately its maximum operating temperature.
  • 41. The machine readable medium defined by claim 37 wherein the step of causing the microprocessor to enter two different levels of activity is regularly repeated.
  • 42. The machine readable medium defined by claim 39 wherein the regularity of causing the microprocessor to enter two different levels of activity is less than a thermal time constant of the microprocessor.
  • 43. The machine readable medium defined by claim 37 wherein the regularity of causing the microprocessor to enter two different levels of activity occurs under software control.
  • 44. The machine readable medium defined by claim 41 wherein the regularity of causing the microprocessor to enter two different levels of activity occurs under software control.
  • 45. The machine readable medium defined by claim 42 wherein at least one of the levels of activity occurs with some interrupts disabled.
  • 46. The machine readable medium defined by claim 43 wherein the at least one of the levels of activity occurs with some interrupts disable.
  • 47. The machine readable medium defined by claim 37 wherein one of the levels of activity is a sleep mode.
  • 48. The machine readable medium defined by claim 45 wherein one of the levels of activity is a sleep mode.
  • 49. The machine readable medium defined by claim 37 including:monitor the temperature of the processor; and adjusting the load line based on the microprocessor temperature.
  • 50. The machine readable medium defined by claim 37 including:monitoring the ambient temperature; and adjusting the load line based on the ambient temperature.
  • 51. The machine readable medium defined by claim 37 wherein the voltage regulator receives a signal to assist in transitioning from a low power state to a higher power state.
US Referenced Citations (12)
Number Name Date Kind
3532960 Webb Oct 1970 A
4419619 Jindrick et al. Dec 1983 A
5408067 Crouse Apr 1995 A
5498882 Houston Mar 1996 A
5559368 Hu et al. Sep 1996 A
5670070 Clark et al. Sep 1997 A
5675480 Stanford Oct 1997 A
5753955 Fechner May 1998 A
5942781 Burr et al. Aug 1999 A
6031261 Kang Feb 2000 A
6249027 Burr Jun 2001 B1
6293471 Stettin et al. Sep 2001 B1
Non-Patent Literature Citations (4)
Entry
Assaderaghi, F., Sinitsky, D., Parke, S., Bokor, J., Ko, P. and Hu, C., “A Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra-Low Voltage Operation”, Department of Electrical Engineering and Computer Science, 1994 IEEE, pp. 33.1.1-33.1.4, University of California at Berkeley, Berkeley, California 94720. No date.
Wann, C., Assaderaghi, F., Dennard, R., Hu, C., Shahidi, G. and Taur, Y., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, 1996 IEEE, pp. 5.3.1-5.3.4, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, University of California at Berkeley, Berkeley California 94750. No date.
Kuehne, C., et al., “SOI MOSFET with Buried Body Strap by Wafer Bonding” IEEE Transaction on Electronic Devices, vol. 45, No. 5, May 1998, 8 pages.
Kuehne, S., et al., “Deep Sub-Micron SOI Mosfet With Buried Body Strap” IEEE International SOI conference, Oct. 1996, 2 pages.