Auto-configurable transport stack

Information

  • Patent Grant
  • 9832291
  • Patent Number
    9,832,291
  • Date Filed
    Monday, January 12, 2015
    10 years ago
  • Date Issued
    Tuesday, November 28, 2017
    8 years ago
Abstract
A transport-framework system facilitates instantiating a custom transport stack. During operation, the system can obtain a stack requirement for a custom stack. The stack requirement can specify component attributes and a policy for one or more components to instantiate in the custom stack. The system can select a stack component that satisfies the stack requirement for the custom stack, and can instantiate the stack component in the custom stack. For example, the system can select a stack component by analyzing the stack requirement to determine a component requirement for a component that needs to be instantiated in the custom stack. The system determines, from a component repository, a set of matching components that satisfies the component requirement. If multiple matching components exist, the system selects a matching component which is most compatible with other components in the custom stack.
Description
BACKGROUND

Field


This disclosure is generally related to protocol stacks. More specifically, this disclosure is related to an auto-configurable transport stack which can automatically create and update a transport stack for an application based on a set of stack requirements.


Related Art


The ubiquitous nature of mobile computing devices and the Internet is making it possible for people to experience digital content from anywhere. People can use applications in their mobile computing devices to consume or interact with content from service providers across the Internet, such as to stream movies or music or to play games with others.


These advances in mobile computing are also increasing the quality of content that can be reproduced by these mobile devices and greatly increases the number of devices that can generate and capture digital content and share with others over the Internet. Nowadays, even small mobile devices such as smartphones can produce full high-definition video with high-quality color reproduction, and high-speed cellular and broadband networks make it possible for users to share this content with others over various Internet services, such as the YouTube (from Google, Inc.) and Facebook (from Facebook, Inc.) content-sharing services.


Many computer applications leverage these computer networks and Internet services to provide social features to its users, which greatly enhances the user experience. When an application wants to use the network, it does so by using one or more APIs that run on the computing device's operating system. These APIs provide a way for applications to send, receive, store, configure data or otherwise communicate with other computers across the network.


For example, an application first needs to instantiate a protocol stack that implements a network API before the application can use the API to send or receive data over the network. However, instantiating the API's protocol stack requires the application to explicitly instantiate and combine the protocol elements that implement the API's functionality that the application wishes to use. To make matters worse, if the protocols used by the computer network or a target server changes, the application will not be able to communicate with the target server, thereby hindering its use. The application's developer will need to rewrite and recompile the application using code that can construct the modified protocol stack for the new API.


SUMMARY

One embodiment provides a transport-framework system that facilitates instantiating a custom transport stack. During operation, the system can obtain a stack requirement for a custom stack. The stack requirement specifies at least component attributes for one or more components to instantiate in the custom stack. The system selects a stack component that satisfies the stack requirement for the custom stack, and instantiates the stack component in the custom stack. The system can select a stack component, for example, by analyzing the stack requirement to determine a component requirement for a component that needs to be instantiated in the custom stack. The system determines, from a component repository, a set of matching components that satisfies the component requirement. If multiple matching components exist, the system selects a matching component which is most compatible with other components in the custom stack.


In some embodiments, the transport framework operates under the information centric networking (ICN) architecture. In ICN, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an Interest that indicates the unique name, and can obtain the data independent from the data's storage location, network location, application, and means of transportation. Named-data network (NDN) or a content-centric network (CCN) are examples of ICN architecture; the following terms describe elements of an NDN or CCN architecture:


Content Object:


A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names:


A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document.


In some embodiments, the name can include an identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814 (entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013), which is hereby incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest:


A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN/NDN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


In some embodiments, the ICN system can include a content-centric networking (CCN) architecture. However, the methods disclosed herein are also applicable to other ICN architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175 (entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008), which is hereby incorporated by reference.


In some embodiments, while obtaining the stack requirement, the system can obtain the stack requirement from a transport library component, from a transport application programming interface (API) component, from a network packet, and/or from a component in the custom stack.


In some embodiments, the system can obtain the stack component from a local repository.


In some embodiments, the system can search for the stack component in a local repository. If the system determines that the stack component is not available in the local repository, the system can obtain the stack component from a remote repository.


In some embodiments, the remote repository includes a component cache, a component storage server, and/or a component marketplace.


In some embodiments, the system can determine whether an updated version of the stack component exists. If an updated version exists, the system can determine a stack in which the stack component is instantiated, and replaces the instantiation of the stack component with an instantiation of the updated version of the stack component.


In some variations to these embodiments, the system can analyze the updated version of the stack component to obtain a stack requirement. If the system determines that the stack requirement of the stack component has changed, the system can update the stack's implementation to satisfy the new stack requirement.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary environment which facilitates auto-configuring a stack in accordance with an embodiment.



FIG. 2 illustrates an exemplary transport framework in accordance with an embodiment.



FIG. 3 presents a flow chart illustrating a method for auto-configuring a stack for an application in accordance with an embodiment.



FIG. 4 presents a flow chart illustrating a method for updating a transport stack to satisfy a requirement from a remote device in accordance with an embodiment.



FIG. 5 presents a flow chart illustrating a method for updating one or more stacks upon receiving an updated version of a stack component in accordance with an embodiment.



FIG. 6 presents a flow chart illustrating a method for auto-configuring a stack to satisfy a set of transport requirements in accordance with an embodiment.



FIG. 7 illustrates an exemplary apparatus that facilitates auto-configuring a stack in accordance with an embodiment.



FIG. 8 illustrates an exemplary computer system that facilitates auto-configuring a stack in accordance with an embodiment.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview

Embodiments of the present invention provide a transport framework which solves the problem of auto-configuring a transport stack. For example, the transport framework can create transport stacks to suit the needs of various Application Programming Interfaces (APIs) used by applications to access a local resource, such as to communicate over a network. The transport framework provides a set of components that can be combined into a transport “stack” that achieves an API's functionality.


An API can use the transport framework by requesting the transport framework to create a transport stack that satisfies the API's stack requirements. The stack requirements can specify a set of attributes for one or more components that are to be instantiated in a stack, and can specify a policy under which the stack components are to operate. A very basic transport stack might include a component that interfaces with the API and a component that interfaces with the network. These stack components provide the ingress and egress pathways for the transport stack, and are hereinafter referred to as “connectors.” The API connector communicates with the local API, and the network connector communicates to other devices over the network.


Each of the components within a transport stack performs a specific function, and some components can implement a functionality that is more specific or more generic than other versions of the same component. Some components may take parameters at load time that define their behavior, and some components may be configured at run-time based on parameters that they receive from a local application or from a device over the network. For example, some components may adapt to changing operating environment conditions or network conditions over time. The transport framework provides a way for configuration messages and information to be sent between the components and the APIs, for example, to allow components within a stack to communicate with each other.


An application can communicate over the network by issuing a “call” to the API, which causes the API to construct a message. This message will flow through the appropriate transport stack, visiting various components as the message makes its way to the network. Each component uses load-time and/or run-time configuration information to perform specific actions on the message, which can include modifying the message, terminating/deleting the message, and/or creating new messages.


In some embodiments, the transport framework can include a transport-framework agent which dynamically configures and/or reconfigures software stacks (e.g., at runtime) to accommodate changes in a local operating environment, changes in a network environment, or even changes within the transport framework. For example, the transport framework can include a repository comprising a set of available stack “components.” Whenever a running application issues a call to a TCP/IP API component, the transport framework agent (hereinafter referred to simply as the “transport framework”) can forward the call to a stack which has been instantiated for TCP/IP messages. If such a stack does not exist, the transport framework can instantiate a custom stack by combining a set of stack components in a way that satisfies the stack requirements in the application's API call.


Moreover, if the running application issues a call to the transport framework that requires new stack components to be instantiated, the transport framework can automatically download the required components at runtime, and instantiates the required components in the application's stack. The transport framework can also automatically download and instantiate any components it needs to use to process a packet received over the network (e.g., via the local forwarder).


In some embodiments, each component version may have an associated unique identifier that identifies the component and its version (e.g., a unique name and version number, or a globally unique alphanumeric identifier). Also, each component version may have an associated set of component attributes that identify a set of functionality implemented by the component, a set of component characteristics, and a set of roles which the component can serve. These component attributes can correspond to generic attribute classifications and/or specific attribute classifications. For example, a component can be associated with the generic “video encode” or “video decode” function attributes specifying that the component can encode or decode video streams, and can include specific function attributes for each codec that it supports. The transport framework can select a component to satisfy a stack requirement by selecting a component whose component attributes satisfy the component attributes of the stack requirement.


For example, a component associated with the generic “security” functionality features can also have an association with other specific features such as encryption, decryption, authentication, data signing, signature verification, trust assessment, filtering, etc. A component associated with the generic “data-processing” functionality feature can also have an association with other specific features such as encoding, decoding, encapsulating, decapsulating, transcoding, compression, extraction (decompression), etc. A component associated with the generic “storage” functionality feature can also have an association with other specific features such as data storage, data retrieval from storage, deduplication, segmentation, versioning, etc.


A component associated with the generic “data-transfer” functionality feature can also have an association with other specific features such as flow control, in-order delivery, retransmissions, packet rewriting, etc. A component associated with the generic “external services” functionality feature can also have an association with other specific features such as external-service discovery, external-service access, data search, data indexing, component search, etc.


Moreover, each component can include a policy, as well as stack requirements for other components that need to be instantiated in its stack. Some stack requirements can specify one or more components that need to be instantiated in the same stack when the local component is instantiated. Other stack requirements can specify one or more other components that need to be instantiated on-the-fly under certain network conditions (e.g., when the stack receives a compressed packet).


It may possible that a newer version of a stack component may become available after the component has been instantiated in a stack. When a new version of a component becomes available, the transport framework can download the updated version of the component, and replaces any instantiation of the old component version with an instantiation of the new component version. If an instance of the new component version includes an updated stack requirement, the transport framework can process the new component's stack requirements to download and instantiate any other required components that have not yet been instantiated in the component's stack.



FIG. 1 illustrates an exemplary environment 100 which facilitates auto-configuring a stack in accordance with an embodiment. Computing environment 100 can include a computer network 102, such as a content centric network (CCN). Environment 100 can also include a client 104, a local computing device 104 and a remote computing device 114 whose internal transport stacks can exchange network packets with each other over network 102.


In the traditional IP architecture, forwarder 112 is an IP-based forwarder that looks at a packet's header to determine the source and the destination for the packet, and forwards the packet to the destination. The stack performs TCP/UDP, and an application interacts with the stack via a socket. In contrast, device 104 of the present invention doesn't use a conventional “stack.” Rather, device 104 implements a “transport framework” 106 which can dynamically configure a custom stack to satisfy an application's custom “environment execution context.”


Device 104 can include any computing device coupled to network 102, such as a smartphone 104.1, a tablet computer 104.2, and/or a server or personal computer 104.m. Specifically, device 104 can include a transport framework 106 which can automatically create and/or update a custom stack for a local application or the local operating environment (e.g., without intervention of a local user 116, the local operating environment, and/or any applications running on device 104). Device 104 can also include a forwarder 112 (e.g., a network interface card, or a router in a local area network), which can transfer packets between custom stacks of transport framework 106 and network 102. The custom stack can be to and/or from forwarder 112 or any application running on device 104, and the stack's components can include any available components that can be organized in any order to satisfy the application's requirements.


In some embodiments, transport framework 106 can include a set of stack-configuring agents that can dynamically configure a stack on-demand. For example, transport framework 106 can include a set of transport library/API components 108 that implement functions accessible via a library and/or an API. An application can access a library or an API implemented by transport framework 106 by issuing a call to transport framework 106. Transport framework then maps the library or API call to a corresponding library/API component of components 108 that implements this specific function, and forwards the library or API call to this library/API component.


The library/API component then configures or instantiates a custom stack that can perform the application's library/API call. For example, the library/API component can issue a request to transport framework 106, with a request describing the functionality of the custom stack. This functionality description can be high-level, such as to specify a pre-defined behavior or operation that is to be performed on data packets. Transport framework 106 then realizes this behavior or operation by organizing the necessary components into a custom stack (e.g., in stack components 110) in an order that achieves the desired behavior or operation.


Alternatively, the functionality description can be low-level, such as to specify the specific stack components that are to be used, and can specify an order in which the stack components are to be arranged. Moreover, the functionality description can also be specific or generic with respect to the individual components, for example, to request a specific “flow controller” (e.g., a TCP flow controller) or to request any “flow controller.” As another example, a specific component description may specify an encryption component that implements a specific encryption algorithm, whereas a general component description or may specify that any available “encryption” component may be used.


In some embodiments, a stack in device 104 can interact with a stack in device 114, for example, to implement an end-to-end solution. Also, an application can require a different environment execution context from a stack, which transport framework 106 configures the stack to satisfy. For example, an application running on device 104 can require a stack to deliver packets in-order to a stack on device 114, to perform re-transmissions of dropped or lost packets, to verify received packets, etc.


In some embodiments, transport framework 106 can create a custom stack comprising application-specific components, such as a flow controller component, an “encoding” and/or “decoding” component, and any other component that packages data into network packets and/or processes network packets for the application. The flow controller can control the number of packets that reach the forwarder, or that are received by the forwarder for the application, in which order, the number of outstanding Interests, etc. The “encoding” component can transform the application's data (e.g., from the application's own data structure) into a “wire” format (e.g., a network packet) that forwarder 112 can use to directly transmit over network 102.


Transport framework 106 can also create a custom stack that processes Internet Protocol (IP) packets for the local application. Unlike traditional TCP/IP, transport framework 106 can create the custom stack to include a “security” related component. This security component can be used to sign data, to perform verification on a signature for a piece of data, for encrypting or decrypting data, etc.



FIG. 2 illustrates an exemplary transport framework 200 in accordance with an embodiment. An application can dynamically configure transport framework 200 to satisfy the application's “environment execution context.” The transport framework is internally made up of components that can be combined to form a custom “stack” (e.g., the stack is “composable”). Specifically, transport framework 200 includes transport library/API components 202 that interface with an application or operating environment, and includes a set of stack components 204 that can be combined into a set of stacks (e.g., stacks 210, 220, and 230) that implement a functionality desired by the application.


In some embodiments, library/API components 202 may be implemented using components of transport framework 200, and each of library/API components 202 can correspond to a feature available to local applications and the operating environment (e.g., a function). This allows transport framework 200 to automatically and dynamically update the set of libraries and API features that are available for applications and the operating environment. Moreover, a library/API component can itself include a policy and a set of stack requirements. Transport framework 200 uses the component's policy and stack requirements to instantiate a stack that realizes the functionality of the library/API component.


The stacks in transport framework 200 can interface with a forwarder 206, which behaves as a multiplexer/demultiplexer to forward packets to and/or from a stack, an application, or a network interface. Forwarder 206 can use a set of rules specifying which packets can go in each direction. Also, forwarder 206 doesn't need to modify packets; rather, forwarder 206 controls how packets flow in and out of the stacks of transport framework 200. For example, forwarder 206 can forward packets from one interface to another interface, from one application to another application, from an application to an interface, or from an interface to an application. In some embodiments, forwarder 206 can include a logical interface, a physical interface, or a router in a local area network.


In some embodiments, an application or operating environment can interface with library/API components 202, but does not interface directly with stacks of transport framework 200 (e.g., stack components 204 forming stacks 210, 220, and 230). Also, a stack can reside between library/API components 202 and forwarder 206. The stack's components do the custom work for an application for which the stack was instantiated.


The stack can be to/from forwarder 206 or any application, and the stack's components can include any available components that can be organized in any order. For example, one set of components 212-218 can be organized into a stack 210 that processes a flow of packets from the application to forwarder 206, another set of components 222-228 can be organized into a stack 220 that processes another flow of packets from the forwarder to the application.


In some embodiments, a set of components 232-238 can be organized into a full-duplex stack 230 that can process packets between the application and the forwarder in either direction (not shown). Moreover, components can also be organized into an inter-application stack that processes a flow of packets between applications, or into a “relay” stack that processes a flow of packets on behalf of the forwarder (e.g., security or firewall related operations).


In some embodiments, the components can originate from outside transport framework 200. For example, a library/API component can provide to transport framework 200 a component which the library/API component needs to instantiate in a stack. Alternatively, if the library/API component requests to use a stack which includes a component missing in transport framework 200, it is possible for transport framework 200 to request this component from a remote system. Transport framework 200 can import a component from another service, from a remote computer, from a transport framework on a remote computer, etc.


In some embodiments, transport framework 200 can access a component from a local component repository, and instantiates the component in each stack that needs to use the component. If a component is not available in the local component repository, transport framework 200 can access the component from a remote system (e.g., a server that hosts a component repository), and/or can purchase the component from a component marketplace. The component marketplace can include a store for purchasing transport framework components, running on a remote system.


Hence, transport framework 200 can start with a component repository that includes a fundamental set of stack components. These fundamental set of components can be limited to library/API components 202 that implement a set of fundamental library or API features. Then, over time, as the user installs applications that require certain transport stacks or additional features from the operating environment, transport framework 200 can download and install additional components which are relevant to the user's applications. This effectively customizes transport framework 200 to the user's desired functionality, and to the types of applications which the user runs.


Transport framework 200 does not need to pre-install any stack components which the user's applications do not need. Also, neither the user nor his applications need to explicitly install any necessary stack components themselves. Hence, transport framework 200 automatically (e.g., without user or application intervention) retrieves and installs the components it needs.


In some embodiments, transport framework 200 can uphold a “policy” which dictates whether and/or how transport framework 200 can purchase components. This policy can specify which types of paid components can be purchased on behalf of the user, a certain purchase limit for the user, and/or a process for purchasing these components. For example, this policy can require an application or the operating system to obtain approval from the user for purchasing (or downloading) a component prior to purchasing (or downloading) the component on behalf of the user. On the other hand, if the user has granted a local application or a remote service permission to install any free (and/or any for-fee components), transport framework 200 may proceed to install these types of components when requested by the application and/or the remote service.


Auto-Configuring a Stack for a Local User or Application


In some embodiments, transport framework 200 can automatically (e.g., without user or application intervention) configure a stack based on transport requirements from a local application or a remote transport framework. Also, transport framework 200 can load components depending on requirements from an operating environment, such as from the computer's operating system. If a stack exists that satisfies the transport requirements, transport framework 200 can use this existing stack. However, if such a stack does not exist at the time, transport framework 200 automatically instantiates the stack (and stack components) that can satisfy the transport requirements.


For example, an application may request a stack that achieves “reliable delivery,” and transport framework 200 can query the local component repository, a remote component repository, or a component marketplace to obtain a component which achieves the application's requirement of delivering packets reliably. Once transport framework 200 obtains the necessary components, transport framework 200 automatically instantiates a custom stack for the application that includes the required component.


In some embodiments, transport framework 200 may customize which components are loaded based on the user associated with the running application. For example, when a system administrator is logged onto the computer, transport framework 200 may load a version of a flow-control component that logs traffic statistics for the system administrator. This allows the system administrator to inspect an application's traffic, behavior, or performance. On the other hand, when an ordinary user is logged into the computer, transport framework 200 may load a simple flow controller that achieves the application's basic requirements.


As a further example, if the user is not a system administrator, transport framework 200 may load additional components that it would not load for a system administrator, such as a component that monitors or manages (e.g., limits or restricts) the user's traffic, behavior, or resource requirements. Transport framework 200 may load components that restrict the user's traffic to within a predetermined quota (e.g., a bandwidth quota), and/or that implement a firewall (e.g., to control the types of network traffic or content that the user can access).



FIG. 3 presents a flow chart illustrating a method 300 for auto-configuring a stack for an application in accordance with an embodiment. Specifically, the system can receive a call from an application via a transport library or API (operation 302). In some embodiments, the library or API is implemented via a set of transport components, such that each component implements a function accessible via the library or API. The system can add additional functionality to the library or API by instantiating additional components that implement this functionality. After receiving the function call, the system can identify a stack component associated with the function call (operation 304), and forwards the function call to this stack component (operation 306).


In some embodiments, the stack component for the library or API function call can include a set of transport requirements which specify a description for a stack necessary for performing the given operation. The transport requirement can include a policy, a set of components, and an ordering in which the set of components need to be arranged into a stack. Hence, the system determines whether the library or API's stack component specifies a set of transport requirements (operation 308). If so, the system generates or updates a transport stack to satisfy the set of transport requirements (operation 310).


Auto-Configuring a Stack for a Remote System or Service


The transport framework can load certain components, or offer certain components, based on the identity of the sender or the receiver (e.g., a local application or an application on a remote computer). For example, a remote video-streaming service may pre-process its data using a custom compression and/or encryption algorithm before transfer, and may host a custom transport component that can decompress and/or decrypt the service's packets for the client application. Hence, while the local computer is initiating a session with the remote video-streaming service, the remote service may offer this custom component to the client application as a requirement to initialize the streaming session. If the client computer rejects the custom component (e.g., due to the current user's limited permissions), the remote video-streaming service may reject the request to set up the streaming session. On the other hand, if the client computer's transport framework accepts the video-streaming service's custom component and loads this component in a stack, the remote video-streaming service may proceed to stream the compressed and/or encrypted stream to the client application.


Thus, a local application can communicate with the remote service without knowing the remote service's transport requirements, and without the application having to specify the remote service's transport requirements to the local transport framework. This allows the remote service to change its transport requirements at any time without requiring the user to install an updated version of the application. If the remote service changes its transport requirements, the remote service informs the local transport framework of these transport requirements. If the local transport framework is missing a necessary component for a new or updated transport requirement, the local transport framework may obtain this component from the remote service (e.g., if the remote service has offered the custom component), or may request the component from a predetermined component repository or marketplace.



FIG. 4 presents a flow chart illustrating a method 400 for processing an incoming packet in a transport stack in accordance with an embodiment. During operation, the system can receive a packet from a network interface (operation 402), and identifies a transport stack which is to process the packet (operation 404). The system can also determine whether the packet includes a set of transport requirements (operation 406). If so, the system updates the transport stack to satisfy the set of transport requirements (operation 408).


Auto-Updating Stack Components


In some embodiments, a developer of a stack component can update the stack component to add new features, to correct security issues, or to correct implementation errors. When a new version of a stack component becomes available, the transport framework can download the updated version of the component, and replaces any instantiation of the old component version in a stack with an instantiation of the new component version.



FIG. 5 presents a flow chart illustrating a method 500 for updating one or more stacks to include an updated version of a stack component in accordance with an embodiment. During operation, the system can obtain an updated version of a stack component (operation 502). For example, the transport framework can include a local content repository of available components, and the system can periodically query a remote component repository or marketplace for updates to the local components. If an update exists for a component, the system proceeds to download the updated version of the component, and stores the updated version in the local content repository.


If the system receives an updated version of a component, the system selects a stack in which the stack component is instantiated (operation 504), and replaces the instantiation of the component in the stack with an instantiation of the updated version of the stack component (operation 506). It's possible for the new component version to include an updated stack requirement, which the transport framework can process to download and instantiate any other required components that have not yet been instantiated in the current stack. The system determines whether the updated stack component includes an updated set of transport requirements (operation 508). If so, the system updates the stack to satisfy the component's updated transport requirements (operation 510).


The system then determines whether the component is instantiated in other stacks (operation 512). If so, the system can return to operation 504 to select another stack to update based on the updated version of the stack component.


Satisfying Transport Requirements



FIG. 6 presents a flow chart illustrating a method 600 for auto-configuring a stack to satisfy a set of transport requirements in accordance with an embodiment. During operation, the system obtains one or more transport requirements to be satisfied by a custom stack of the transport framework (operation 602). These transport requirements can originate from an application, an operating environment, from a remote device, or from a stack component. The system can process the set of transport requirements by selecting a requirement to satisfy (operation 604).


The system can determine whether component violates the selected requirement (operation 606), and if so, proceeds to remove the component from the stack (operation 608). The system can also determine whether a component in a predetermined component repository can be used to satisfy the requirement (operation 610). If so, the system obtains the stack component from the repository (operation 612), and instantiates the component in the custom stack (operation 614).


Once the system has satisfied the transport requirement, the system can determine whether there exists other transport requirement that need to be satisfied (operation 616). If so, the system returns to operation 604 to satisfy another transport requirement.


Auto-Configuring a Stack for CCN Objects


When operating in a Content Centric Network (CCN), the transport framework may load a component based on an Interest's name or name prefix, and/or based on a Content Object's name or name prefix. If the transport framework receives an Interest for a given name prefix, the transport framework can determine how to construct a stack for processing the Interest based on the Interest's name or name prefix. Similarly, the transport framework can use a Content Object's name or name prefix to determine how to construct a stack for processing the Content Object. For example, if a local application is disseminating an Interest to a video-streaming service's name prefix (e.g., a name prefix “/netflix” for the video streaming service from Netflix, Inc. of Los Gatos, Calif.), the transport framework may query a transport-configuration database to determine which transport components need to be instantiated for the name prefix. The transport framework can also query the transport-configuration database to determine from where these components can be downloaded (if they are not available locally), and how these components need to be combined to implement a custom stack for the name prefix.


In some embodiments, when a local application disseminates an Interest for a certain name prefix, the network (e.g., a gateway server from the Internet Service Provider (ISP), or a content server associated with the name prefix) may return a control packet which configures how the computer can receive packets from this name prefix. For example, the transport framework may receive a control packet which specifies a maximum rate at which the forwarder can disseminate Interests for this name prefix. The transport framework may forward this control packet to a flow controller component for the application's data-transmission stack (e.g., for transmitting Interests), which allows the flow controller to configure its settings to abide by the ISP's flow control requirements. Hence, the transport framework can auto-configure a stack according to external requirements received from the computer network, such as from a network provider or from a content producer.


Auto-Configuring a Stack for Network Elements in a Path


In existing systems, a remote entity may at most specify an encoding or encryption scheme that was used to generate a data stream. However, this requires that the local application to already have a pre-installed decoder or decryption component that corresponds to the stream's encoding or encryption scheme. If the local application does not have this component pre-installed, the application would not be able to process the stream from the remote entity.


In some embodiments, network elements in a path between the local transport framework and a remote transport framework may require the local transport framework to install a component. For example, a forwarder of the local computer or of the remote computer may require the local transport framework to install a component, such as a security-related component or a flow-control component. As another example, a router of the local network or an ISP, or a gateway of the ISP may send a packet to the local transport framework which specifies a stack configuration for the current application, or for any application. This stack configuration may specify a component to instantiate for a stack, and may specify an ordering in the stack for this component. The local transport framework may access a policy (e.g., for the local user, for the application, or for the operating environment) to determine whether the transport framework is allowed to instantiate the component in a stack for the user, the application, or the operating environment. The transport framework can install the component automatically, without an intervention from the user, the application, or the operating environment.


This external entity may enforce this requirement, and may refuse to process packets from the local transport framework if the packet is not formatted properly (e.g., signed) by the required component. The local transport framework can access this required component from a local content repository, or from a content repository or content marketplace hosted on a remote server. In some embodiments, the local transport framework may obtain the required component from the entity which imposed the requirement for this component.


Auto-Configuring a Stack for a Detected Network Service


In some embodiments, the transport framework may detect that there's a service on the network available to the transport framework (or may be informed about the service by a node along the network, such as a router). For example, one of these services may be a cache that caches packets or data which have been received by the local device or other network devices (e.g., a peer device on the same network). The local transport framework can access the caching service to access data requested by an application or the operating environment, without requiring the application or operating environment to specify that the transport framework can access the data from this specific cache. In fact, the local applications and/or operating environment do not need to be aware of the available services; the transport framework an automatically configure itself to use a service on behalf of the local applications and operating environment upon detecting the service.


For example, upon detecting a service, the transport framework may determine which stack requirements are associated with the available service. It is possible that the system may have instantiated a component that satisfies these stack requirements, but that does not make use of the available service. Hence, upon detecting a compatible stack requirement, the transport framework may instantiate a version of the required component that can make use of the available service.


In some embodiments, the transport framework may load components based on features supported by the network elements along the local network. For example, a next-hop neighbor may request the packets it receives to be compressed. In response of detecting this feature of the next-hop neighbor (or of another node in the network), the transport framework can load a compression component that compressed data prior to generating the packets that are to be transmitted over the network wire.


In some embodiments, a stack requirement may specify a component blacklist or parameter blacklist. The component blacklist may specify one or more components that the transport framework is forbidden to load. Similarly, the parameter blacklist can specify one or more parameters that a certain component is forbidden to use. A forbidden parameter may be specific to a certain component or type of component (e.g., a bandwidth cap for a flow controller), or may be general and applicable to all instantiated components.


Auto-Configuring a Stack at Boot Time


In some embodiments, when a computing device boots, a transport framework of the computing device configures a stack for the local operating environment (e.g., the operating system). The transport framework can receive parameters from a router of the local network which configures how the transport framework creates a stack for the operating environment. These configuration parameters can include a set of components that need to be instantiated in the stack, and can include a description of how these components are ordered in the stack, policies that these components need to follow, and/or parameters for one or more of these components. The configuration parameters can also include other configuration information, such as CCN network information for the local interface (e.g., a CCN name prefix for the local interface), an Internet Protocol (IP) address for the local interface or service, a gateway IP address, etc.



FIG. 7 illustrates an exemplary apparatus 700 that facilitates auto-configuring a stack in accordance with an embodiment. Apparatus 700 can comprise a plurality of modules which may communicate with one another via a wired or wireless communication channel. Apparatus 700 may be realized using one or more integrated circuits, and may include fewer or more modules than those shown in FIG. 7. Further, apparatus 700 may be integrated in a computer system, or realized as a separate device which is capable of communicating with other computer systems and/or devices. Specifically, apparatus 700 can comprise a communication module 702, a stack-interfacing module 704, a stack-updating module 706, a component-selecting module 708, a component-obtaining module 710, and a component-updating module 712.


In some embodiments, communication module 702 can send and/or receive data packets to/from other network nodes across a computer network, such as a content centric network. Stack-interfacing module 704 can process API calls from an application using a corresponding transport stack, and can process a network packet received over a computer network using a corresponding transport stack. Stack-updating module 706 can create and/or update a transport stack based on stack requirements received from an application, a data packet, or a stack component.


Component-selecting module 708 can select a stack component that satisfies a stack requirement, for example, from a local component repository, a remote component repository, or a component marketplace. Component-obtaining module 710 can obtain a component from the local repository, the remote repository, the component marketplace, or a network packet from a remote network device. Component-updating module 712 can detect when a newer version of a component becomes available, and updates the component in a stack with the newer version of the component.



FIG. 8 illustrates an exemplary computer system 802 that facilitates auto-configuring a stack in accordance with an embodiment. Computer system 802 includes a processor 804, a memory 806, and a storage device 808. Memory 806 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 802 can be coupled to a display device 810, a keyboard 812, and a pointing device 814. Storage device 808 can store operating system 816, transport system 818, and data 832.


Transport system 818 can include instructions, which when executed by computer system 802, can cause computer system 802 to perform methods and/or processes described in this disclosure. Specifically, transport system 818 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 820). Further, transport system 818 can include instructions for processing API calls from an application using a corresponding transport stack, and processing a network packet received over a computer network using a corresponding transport stack (stack-interfacing module 822). Transport system 818 can also include instructions for creating and/or updating a transport stack based on stack requirements received from an application, a data packet, or a stack component (stack-updating module 824).


Transport system 818 can include instructions for selecting a stack component that satisfies a stack requirement, for example, from a local component repository, a remote component repository, or a component marketplace (component-selecting module 826). Further, transport system 818 can include instructions for obtaining a component from the local repository, the remote repository, the component marketplace, or a network packet from a remote network device (component-obtaining module 828). Transport system 818 can also include instructions for detecting when a newer version of a component becomes available, and updating the component in a stack with the newer version of the component (component-updating module 830).


Data 832 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 832 can store at least a stack-component repository, a transport framework, and a description for a set of transport stacks.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A computer-implemented method, comprising: receiving an interest of a Content Object in an Information Centric Networking architecture;obtaining a stack requirement for a stack, wherein the stack requirement specifies at least a functionality for a stack component, and the stack requirement is obtained from a transport library component, a transport application programming interface (API) component, a network packet, or a component in the stack;selecting the stack component, based on the functionality and at least a name prefix of the interest or the Content Object; andinstantiating the stack component in the stack.
  • 2. The method of claim 1, wherein the selecting involves: determining, from the stack requirement, a component requirement;determining, from a component repository, a set of components that satisfies the component requirement; andselecting, from the set of components, the stack component, which is compatible with other components in the stack.
  • 3. The method of claim 1, further comprising: obtaining the stack component from a local repository.
  • 4. The method of claim 1, further comprising: searching for the stack component in a local repository; andresponsive to determining that the stack component is not available in the local repository, obtaining the stack component from a remote repository.
  • 5. The method of claim 4, wherein the remote repository includes one or more of: a component cache;a component storage server; anda component marketplace.
  • 6. The method of claim 1, further comprising: determining that an updated version of the stack component exists;determining a stack in which the stack component is instantiated; andreplacing an instantiation of the stack component with an instantiation of the updated version of the stack component.
  • 7. The method of claim 6, further comprising: analyzing the updated version of the stack component to obtain a stack requirement; andresponsive to determining that the stack requirement of the stack component has changed, updating the stack's implementation to satisfy a new stack requirement.
  • 8. The method of claim 1, wherein the functionality is a video encoding, a video decoding, security, a flow controller, restricting traffic to within a bandwidth quota, or implementing a firewall.
  • 9. The method of claim 1, wherein the functionality is an encoding, a decoding, an encapsulating, a decapsulating, a transcoding, a compression, a decompression, data storage, a data retrieval from storage, a deduplication, a segmentation, a versioning, a flow control, an in-order delivery, a retransmission, a packet rewriting, an external-service discovery, an external-service access, a data search, a data indexing, or a component search.
  • 10. The method of claim 1, wherein the stack component is selected, based on a name of the interest or the Content Object.
  • 11. A non-transitory computer-readable storage medium storing instructions that, when executed by a computer, cause the computer to perform a method, the method comprising: receiving an interest of a Content Object in an Information Centric Networking architecture;obtaining a stack requirement for a stack, wherein the stack requirement specifies at least a functionality for a stack component, and the stack requirement is obtained from a transport library component, a transport application programming interface (API) component, a network packet, or a component in the stack;selecting the stack component, based on the functionality and at least a name prefix of the interest or the Content Object; andinstantiating the stack component in the stack.
  • 12. The storage medium of claim 11, wherein the selecting involves: determining, from the stack requirement, a component requirement;determining, from a component repository, a set of components that satisfies the component requirement; andselecting, from the set of components, the stack component, which is compatible with other components in the stack.
  • 13. The storage medium of claim 11, wherein the method further comprises: obtaining the stack component from a local repository.
  • 14. The storage medium of claim 11, wherein the method further comprises: searching for the stack component in a local repository; andresponsive to determining that the stack component is not available in the local repository, obtaining the stack component from a remote repository.
  • 15. The storage medium of claim 11, wherein the method further comprises: determining that an updated version of the stack component exists;determining a stack in which the stack component is instantiated; andreplacing an instantiation of the stack component with an instantiation of the updated version of the stack component.
  • 16. The storage medium of claim 15, wherein the method further comprises: analyzing the updated version of the stack component to obtain a stack requirement; andresponsive to determining that the stack requirement of the stack component has changed, updating the stack's implementation to satisfy a new stack requirement.
  • 17. The storage medium of claim 11, wherein the stack component is selected, based on a name of the interest or the Content Object.
  • 18. An apparatus, comprising: a communication module to receive an interest of a Content Object in an Information Centric Networking architecture;a stack-updating module to obtain a stack requirement for a stack, wherein the stack requirement specifies at least a functionality for a stack component, and the stack requirement is obtained from a transport library component, a transport application programming interface (API) component, a network packet, or a component in the stack; anda stack-selecting module to select the stack component, based on the functionality and at least a name prefix of the interest or the Content Object;wherein the stack-updating module is further configured to instantiate the stack component in the stack.
  • 19. The apparatus of claim 18, wherein the stack-selecting module is further configured to: determine, from the stack requirement, a component requirement;determine, from a component repository, a set of components that satisfies the component requirement; andselect, from the set of components, the stack component, which is compatible with other components in the stack.
  • 20. The apparatus of claim 18, further comprising: a stack-obtaining module to obtain the stack component from a local repository.
  • 21. The apparatus of claim 20, wherein the stack-obtaining module is further configured to: search for the stack component in a local repository; andresponsive to determining that the stack component is not available in the local repository, obtain the stack component from a remote repository.
  • 22. The apparatus of claim 18, further comprising: a component-updating module to: determine that an updated version of the stack component exists;determine a stack in which the stack component is instantiated; andreplace an instantiation of the stack component with an instantiation of the updated version of the stack component.
  • 23. The apparatus of claim 22, wherein the component-updating module is further configured to: analyze the updated version of the stack component to obtain a stack requirement; andresponsive to determining that the stack requirement of the stack component has changed, update the stack's implementation to satisfy a new stack requirement.
  • 24. The apparatus of claim 18, wherein the stack component is selected, based on a name of the interest or the Content Object.
US Referenced Citations (585)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9280610 Gruber Mar 2016 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Peterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123536 Johnson May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100322249 Thathapudi Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140122587 Petker et al. May 2014 A1
20140129690 Jaisinghani May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140237095 Bevilacqua-Linn Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 LeScouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150349961 Mosko Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160171184 Solis Jun 2016 A1
Foreign Referenced Citations (29)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
2012077073 Jun 2012 WO
2013123410 Aug 2013 WO
2015084327 Jun 2015 WO
Non-Patent Literature Citations (159)
Entry
Xie et al. “Collaborative Forwarding and Caching in Content Centric Networks”, Networking 2012.
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Tiancheng Zhuang et al. “Managing Ad Hoc Networks of Smartphones”, International Journal of Information and Education Technology, Oct. 1, 2013.
Amadeo et al. “Design and Analysis of a Transport-Level Solution for Content-Centric VANETs”, University “Mediterranea” of Reggio Calabria, Jun. 15, 2013.
Marc Mosko “CCNx 1.0 Protocol Introduction” Apr. 2, 2014 [Retrieved from the Internet Jun. 8, 2016] http://www.ccnx.org/pubs/hhg/1.1%20CCNx%201.0%20Protocol%20Introduction.pdf *paragraphs [01.3], [002], [02.1], [0003].
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]-[006], [0011], [0013]* * figures 1,2*.
Marc Mosko et al “All-In-One Streams for Content Centric Networks”, May 24, 2015, retrieved from the Internet: http://www.ccnx.org/pubs/AllinOne.pdf [downloaded Jun. 9, 2016] *the whole document*.
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* * Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*.
Priya Mahadevan et al. “CCN-KRS”, Proceedings of the 1st International Conference on Information-Centric Networking, Inc. '14, Sep. 24, 2014.
Flavio Roberto Santos Et al. “Funnel: Choking Polluters in BitTorrent File Sharing Communities”, IEEE Transactions on Network and Service Management, IEEE vol. 8, No. 4, Dec. 1, 2011.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*.
Sun et al.: “Content-Based Route Lookup Using CAMs”, Global Communications Conference, IEEE, Dec. 3, 2012 *The Whole Document*.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, 1 Jun. 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
“CCNx,” http://ccnx.org/. downloaded Mar. 11, 2015.
“Content Delivery Network”, Wikipedia, Dec. 10, 2011, http://en.wikipedia.org/w/index.php?title=Content—delivery—network&oldid=465077460.
“Digital Signature” archived on Aug. 31, 2009 at http://web.archive.org/web/20090831170721/http://en.wikipedia.org/wiki/Digital—signature.
“Introducing JSON,” http://www.json.org/. downloaded Mar. 11, 2015.
“Microsoft PlayReady,” http://www.microsoft.com/playready/.downloaded Mar. 11, 2015.
“Pursuing a pub/sub internet (PURSUIT),” http://www.fp7-pursuit.ew/PursuitWeb/. downloaded Mar. 11, 2015.
“The FP7 4WARD project,” http://www.4ward-project.eu/. downloaded Mar. 11, 2015.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
Detti, Andrea, et al. “CONET: a content centric inter-networking architecture.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
Afanasyev, Alexander, et al. “Interest flooding attack and countermeasures in Named Data Networking.” IFIP Networking Conference, 2013. IEEE, 2013.
Ao-Jan Su, David R. Choffnes, Aleksandar Kuzmanovic, and Fabian E. Bustamante. Drafting Behind Akamai: Inferring Network Conditions Based on CDN Redirections. IEEE/ ACM Transactions on Networking {Feb. 2009).
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Brambley, Michael, A novel, low-cost, reduced-sensor approach for providing smart remote monitoring and diagnostics for packaged air conditioners and heat pumps. Pacific Northwest National Laboratory, 2009.
C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. Advances in Cryptology—ASIACRYPT 2002. Springer Berlin Heidelberg (2002).
C.A. Wood and E. Uzun, “Flexible end-to-end content security in CCN,” in Proc. IEEE CCNC 2014, Las Vegas, CA, USA, Jan. 2014.
Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. ‘A routing scheme for content-based networking.’ INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies. vol. 2. IEEE, 2004.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Compagno, Alberto, et al. “Poseidon: Mitigating interest flooding DDoS attacks in named data networking.” Local Computer Networks (LCN), 2013 IEEE 38th Conference on. IEEE, 2013.
Conner, William, et al. “A trust management framework for service-oriented environments.” Proceedings of the 18th international conference on World wide web. ACM, 2009.
Content Centric Networking Project (CCN) [online], http://ccnx.org/releases/latest/doc/technical/, Downloaded Mar. 9, 2015.
Content Mediator Architecture for Content-aware Networks (COMET) Project [online], http://www.comet-project.org/, Downloaded Mar. 9, 2015.
D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing. Advances in Cryptology—CRYPTO 2001, vol. 2139, Springer Berlin Heidelberg (2001).
D.K. Smetters, P. Golle, and J.D. Thornton, “CCNx access control specifications,” PARC, Tech. Rep., Jul. 2010.
Dabirmoghaddam. Ali, Maziar Mirzazad Barijough, and J. J. Garcia-Luna-Aceves. ‘Understanding optimal caching and opportunistic caching at the edge of information-centric networks.’ Proceedings of the 1st international conference on Information-centric networking. ACM, 2014.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A—J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
E. Rescorla and N. Modadugu, “Datagram transport layer security,” IETF RFC 4347, Apr. 2006.
E.W. Dijkstra, W. Feijen, and A.J.M. Van Gasteren, “Derivation of a Termination Detection Algorithm for Distributed Computations,” Information Processing Letter, vol. 16, No. 5, 1983.
Fayazbakhsh. S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. (Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4 pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
G. Xylomenos et al., “A Survey of Information-centric Networking Research,” IEEE Communication Surveys and Tutorials, Jul. 2013.
Garcia, Humberto E., Wen-Chiao Lin, and Semyon M. Meerkov. “A resilient condition assessment monitoring system.” Resilient Control Systems (ISRCS), 2012 5th International Symposium on. IEEE, 2012.
Garcia-Luna-Aceves, Jose J. ‘A unified approach to loop-free routing using distance vectors or link states.’ ACM SIGCOMM Computer Communication Review. vol. 19. No. 4. ACM, 1989.
Garcia-Luna-Aceves, Jose J. ‘Name-Based Content Routing in Information Centric Networks Using Distance Information’ Proc ACM ICN 2014, Sep. 2014.
Ghali, Cesar, GeneTsudik, and Ersin Uzun. “Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking.” Proceedings of NDSS Workshop on Security of Emerging Networking Technologies (SENT). 2014.
Ghodsi, Ali, et al. “Information-centric networking: seeing the forest for the trees.” Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 2011.
Ghodsi, Ali, et al. “Naming in content-oriented architectures.” Proceedings of the ACM SIGCOMM workshop on Information-centric networking. ACM, 2011.
Gupta, Anjali, Barbara Liskov, and Rodrigo Rodrigues. “Efficient Routing for Peer-to-Peer Overlays.” NSDI. vol. 4. 2004.
Heckerman, David, John S. Breese, and Koos Rommelse. “Decision-Theoretic Troubleshooting.” Communications of the ACM. 1995.
Heinemeier, Kristin, et al. “Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field.” ASHRAE Transactions 118.Part 2 (2012).
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
Intanagonwiwat, Chalermek, Ramesh Govindan, and Deborah Estrin. ‘Directed diffusion: a scalable and robust communication paradigm for sensor networks.’ Proceedings of the 6th annual international conference on Mobile computing and networking. ACM, 2000.
J. Au Masson and D. Bernstein, “SipHash: a fast short-input PRF”, Sep. 18, 2012.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
J. Shao and Z. Cao. CCA-Secure Proxy Re-Encryption without Pairings. Public Key Cryptography. Springer Lecture Notes in Computer ScienceVolume 5443 (2009).
V. Jacobson et al., ‘Networking Named Content,’ Proc. IEEE CoNEXT '09, Dec. 2009.
Jacobson, Van et al. ‘VoCCN: Voice Over Content-Centric Networks.’ Dec. 1, 2009. ACM ReArch'09.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
Ji, Kun, et al. “Prognostics enabled resilient control for model-based building automation systems.” Proceedings of the 12th Conference of International Building Performance Simulation Association. 2011.
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
L. Wang et al., ‘OSPFN: An OSPF Based Routing Protocol for Named Data Networking,’ Technical Report NDN-0003, 2012.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Li, Wenjia, Anupam Joshi, and Tim Finin. “Coping with node misbehaviors in ad hoc networks: A multi-dimensional trust management approach.” Mobile Data Management (MDM), 2010 Eleventh International Conference on. IEEE, 2010.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Blaze, G. Bleumer, and M. Strauss, ‘Divertible protocols and atomic prosy cryptography,’ in Proc. EUROCRYPT 1998, Espoo, Finland, May-Jun. 1998, pp. 127-144.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Nystrom, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal information exchange syntax v. 1.1,” IETF RFC 7292, K. Moriarty, Ed., Jul 2014.
M. Parsa and J.J. Garcia-Luna-Aceves, “A Protocol for Scalable Loop-free Multicast Routing.” IEEE JSAC, Apr. 1997.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Mahadevan, Priya, et al. “Orbis: rescaling degree correlations to generate annotated internet topologies.” ACM SIGCOMM Computer Communication Review. vol. 37. No. 4. ACM, 2007.
Mahadevan, Priya, et al. “Systematic topology analysis and generation using degree correlations.” ACM SIGCOMM Computer Communication Review. vol. 36. No. 4. ACM, 2006.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Matteo Varvello et al., “Caesar: A Content Router for High Speed Forwarding”, ICN 2012, Second Edition on Information-Centric Networking, New York, Aug. 2012.
McWilliams, Jennifer A., and Iain S. Walker. “Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems.” Lawrence Berkeley National Laboratory (2005).
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Mobility First Project [online], http://mobilityfirst.winlab.rutgers.edu/, Downloaded Mar. 9, 2015.
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
NDN Project [online], http://www.named-data.net/, Downloaded Mar. 9, 2015.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
P. Mahadevan, E.Uzun, S. Sevilla, and J. Gaircia-Luna-Aceves, “CCN-krs: A key resolution service for con,” in Proceedings of the 1st International Conference on Information-centric Networking, Ser. INC 14 New York, NY, USA: ACM, 2014, pp. 97-106. [Online]. Available: http://doi.acm.org/10.1145/2660129.2660154.
R. H. Deng, J. Weng, S. Liu, and K. Chen. Chosen-Ciphertext Secure Proxy Re-Encryption without Pairings. CANS. Spring Lecture Notes in Computer Science vol. 5339 (2008).
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
S. Chow, J. Weng, Y. Yang, and R. Deng. Efficient Unidirectional Proxy Re-Encryption. Progress in Cryptology—AFRICACRYPT 2010. Springer Berlin Heidelberg (2010).
S. Deering, “Multicast Routing in Internetworks and Extended LANs,” Proc. ACM SIGCOMM '88, Aug. 1988.
S. Deering et al., “The PIM architecture for wide-area multicast routing,” IEEE/ACM Trans, on Networking, vol. 4, No. 2, Apr. 1996.
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
S.J. Lee, M. Gerla, and C. Chiang, “On-demand Multicast Routing Protocol in Multihop Wireless Mobile Networks,” Mobile Networks and Applications, vol. 7, No. 6, 2002.
Sandvine, Global Internet Phenomena Report—Spring 2012. Located online at http://www.sandvine.com/downloads/ documents/Phenomenal H 2012/Sandvine Global Internet Phenomena Report 1H 2012.pdf.
Scalable and Adaptive Internet Solutions (SAIL) Project [online], http://sail-project.eu/ Downloaded Mar. 9, 2015.
Schein, Jeffrey, and Steven T. Bushby. A Simulation Study of a Hierarchical, Rule-Based Method for System-Level Fault Detection and Diagnostics in HVAC Systems. US Department of Commerce,[Technology Administration], National Institute of Standards and Technology, 2005.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
Solis, Ignacio, and J. J. Garcia-Luna-Aceves. ‘Robust content dissemination in disrupted environments.’ proceedings of the third ACM workshop on Challenged networks. ACM, 2008.
Sun, Ying, and Daniel S. Weld. “A framework for model-based repair.” AAAI. 1993.
T. Ballardie, P. Francis, and J. Crowcroft, “Core Based Trees (CBT),” Proc. ACM SIGCOMM '88, Aug. 1988.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
The Despotify Project (2012). Available online at http://despotify.sourceforge.net/.
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang. Vivisecting Youtube:An Active Measurement Study. In INFOCOM12 Mini-conference (2012).
Verma, Vandi, Joquin Fernandez, and Reid Simmons. “Probabilistic models for monitoring and fault diagnosis.” The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in Human Environments. Ed. Raja Chatila. Oct. 2002.
Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery. In the Proceedings of IEEE INFOCOM 2012 (2012).
Vutukury, Srinivas, and J. J. Garcia-Luna-Aceves. A simple approximation to minimum-delay routing. vol. 29. No. 4. ACM, 1999.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Waldvogel, Marcel “Fast Longest Prefix Matching: Algorithms, Analysis, and Applications”, A dissertation submitted to the Swiss Federal Institute of Technology Zurich, 2002.
Walker, Iain S. Best practices guide for residential HVAC Retrofits. No. LBNL-53592. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2003.
Wang, Jiangzhe et al.,“DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Zhang, et al., “Named Data Networking (NDN) Project”, http://www.parc.com/publication/2709/named-data-networking-ndn-project.html, Oct. 2010, NDN-0001, PARC Tech Report.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73.
Soh et al., “Efficient Prefix Updates for IP Router Using Lexicographic Ordering and Updateable Address Set”, Jan. 2008, IEEE Transactions on Computers, vol. 57, No. 1.
Beben et al., “Content Aware Network based on Virtual Infrastructure”, 2012 13th ACIS International Conference on Software Engineering.
D. Trossen and G. Parisis, “Designing and realizing and information-centric Internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Garcia-Luna-Aceves et al., “Automatic Routing Using Multiple Prefix Labels”, 2012, IEEE, Ad Hoc and Sensor Networking Symposium.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
Ishiyama, “On the Effectiveness of Diffusive Content Caching in Content-Centric Networking”, Nov. 5, 2012, IEEE, Information and Telecommunication Technologies (APSITT), 2012 9th Asia-Pacific Symposium.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
J. Lotspiech, S. Nusser, and F. Pestoni. Anonymous Trust: Digital Rights Management using Broadcast Encryption. Proceedings of the IEEE 92.6 (2004).
Kaya et al., “A Low Power Lookup Technique for Multi-Hashing Network Applications”, 2006 IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures, Mar. 2006.
S. Kamara and K. Lauter. Cryptographic Cloud Storage. Financial Cryptography and Data Security. Springer Berlin Heidelberg (2010).
RTMP (2009). Available online at http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/rtmp/ pdf/rtmp specification 1.0.pdf.
Hoque et al., “NLSR: Named-data Link State Routing Protocol”, Aug. 12, 2013, ICN'13.
Nadeem Javaid, “Analysis and design of quality link metrics for routing protocols in Wireless Networks”, PhD Thesis Defense, Dec. 15, 2010, Universete Paris-Est.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Related Publications (1)
Number Date Country
20160205226 A1 Jul 2016 US