1. Field of the Invention
The invention relates to a method and apparatus for enriching an engine. More particularly, the invention relates to automatically and variably enriching an all terrain vehicle engine with fuel and/or air as appropriate for different engine temperatures.
2. Description of Related Art
Vehicles, such as all terrain vehicles, conventionally include an engine such as an internal combustion engine in order to enable them to move under their own power. It is sometimes useful to provide additional fuel and/or air to an engine when it is running below its normal operating temperature. This may be true particularly, though not exclusively, when the engine is being started. The process of adding additional fuel and/or air is referred to herein as “enrichment”, and a device for providing enrichment is referred to herein as an “enrichener”.
As the term is used herein, an “all terrain vehicle” or “ATV” is defined as a motorized vehicle suitable for travel on surfaces other than paved roads or highways (though not necessarily unsuitable for travel on highways or paved roads). ATVs travel on low-pressure tires, typically four in number, and generally have a seat designed to be straddled by an operator. The seat may be designed to support one or more additional passengers in addition to the operator, and/or there may be one or more additional seats. Typically, passengers are seated in-line behind the operator. ATVs generally use handlebars for steering control.
Unless otherwise indicated, the term “vehicle” when used herein refers specifically to an all terrain vehicle.
Instances wherein enrichment may be desirable include, for example, occasions when the vehicle's engine is started while cold. Typically, the normal operating temperature of such engines is significantly higher than the ambient temperature. When the engine is below this temperature, it may be helpful to provide the engine with additional fuel and air until such time as the engine temperature approaches its normal operating range. Once the engine reaches its operating temperature, enriching can be discontinued. Engine enrichment may be advantageous in other circumstances, as well.
It is known to manually enrich a vehicle engine. For example, a manual enrichener may be provided with a hand control, which when activated by the vehicle's operator sends additional fuel and air to the engine.
However, the manual nature of such an arrangement has several drawbacks. For example, the vehicle operator must activate the enrichener each time it is needed. If the operator does not activate a manual enrichener, no extra fuel or air will be provided. In addition, if the operator fails to deactivate a manual enrichener, or activates it when it is not needed, the engine may be supplied with unnecessarily large amounts of fuel and/or air. This may be wasteful of fuel, may make the vehicle's engine run differently than intended, etc.
A conventional manual enrichener does not in itself provide feedback to the operator as to when it should be activated. Thus, unless some feedback mechanism is provided for the operator, there may be no convenient way for the operator to tell whether enrichment is appropriate. For example, although as noted enrichment may be desirable when starting a cold engine, it may not be desirable when starting an engine that is already warm, i.e. one that was used recently and has not fully cooled down. Even assuming the vehicle operator has kept careful track of the time since the vehicle was last operated, the rate of engine cooling can depend on many factors, such as ambient temperature, wind, etc., so in many circumstances it may not be readily apparent whether the engine has cooled enough that enrichment is appropriate.
In addition, at times it may be desirable to activate the enrichener at less than full output, that is, to add fuel and air, but not at the maximum rate possible for the enrichener. For example, if the engine is started at a temperature below its operating range, but above ambient temperature, it may be preferable to enrich the engine only slightly. Similarly, it may be desirable to vary the level of engine enrichment over time, i.e. reducing it as the engine warms.
However, for a manual enrichener, any judgment of whether to enrich the engine and to what degree must be made consciously by the operator, and likewise any adjustments to the enrichment require the operator's attention.
Attempts have been made to produce an automatic enrichener. It is possible to produce an electronic enrichener that includes an engine temperature sensor, a control processor, an adjustable enrichment valve, and an actuator for adjusting the enrichment. However, such conventional devices typically are complex and expensive to manufacture and install, and have not proven entirely satisfactory.
It is the purpose of the claimed invention to overcome these difficulties, thereby providing an improved arrangement for automatically controlling engine enrichment.
An exemplary embodiment of an auto-enrichener in accordance with the principles of the present invention includes an enriching conduit for carrying fuel and air to an engine. A valve is disposed in the conduit, and is adjustable between at least an open configuration and a closed configuration. In the open configuration, passage of fuel and air through the conduit is enabled, while in the closed configuration passage of fuel and air through the conduit is not enabled.
The auto-enrichener also includes a thermal expansion element in communication with the valve. The thermal expansion element expands with increasing temperature and contracts with decreasing temperature. The thermal expansion element actuates the valve such that when the thermal expansion element is at a first temperature the valve is in the open configuration, and when the thermal expansion element is at a second temperature greater than the first temperature the valve is in the closed configuration.
A heater is arranged in thermal communication with the thermal expansion element.
The thermal expansion element may have a liquid portion disposed within a flexible solid portion, wherein the liquid portion expands with increasing temperature and contracts with decreasing temperature. The liquid portion may include silicone, and the flexible solid portion may include wax.
The heater may be an electric heater. The heater may be arranged in communication with the engine such that the heater heats the thermal expansion element when the engine is running, and the heater does not heat the thermal expansion element when the engine is not running.
The valve may include a valve plug movably engaged with the thermal expansion element, such that the thermal expansion element actuates the plug in order to actuate the valve between the open and closed positions. The valve may include a valve rod engaged with the valve plug and the thermal expansion element, such that when the thermal expansion element expands the rod and the plug are translated toward a closed position wherein passage of fuel and air through the conduit is not enabled so when valve is in the closed configuration, and when the thermal expansion element contracts the rod and the plug are translated toward an open position wherein passage of fuel and air through the conduit is enabled when the valve is in the open position.
In addition to being adjustable between the open and closed configurations, the valve may be adjustable to and from at least one intermediate configuration. In the intermediate configuration, passage of fuel and air through the conduit is enabled, but the rate of passage of fuel and air through the conduit when is less than the rate of passage of fuel and air through the conduit when the valve is in the open configuration. In such an arrangement, when the thermal expansion element is at a third temperature greater than the first temperature but less than the second temperature, the valve is in the intermediate configuration.
An auto-enrichener in accordance with the principles of the present invention may be incorporated into a vehicle, such as an all terrain vehicle.
A method for controlling engine enrichment in accordance with the principles of the present invention includes providing an enriching conduit for carrying fuel and air to an engine, and providing a valve disposed in the conduit. The valve is adjustable between at least an open configuration and a closed configuration, wherein in the open configuration passage of fuel and air through the conduit is enabled, and in the closed configuration passage of fuel and air through the conduit is not enabled.
The method includes providing a thermal expansion element in communication with the valve. The thermal expansion element expands with increasing temperature and contracts with decreasing temperature, such that the thermal expansion element actuates the valve. When the thermal expansion element is at a first temperature the valve is in the open configuration, and when the thermal expansion element is at a second temperature greater than the first temperature the valve is in, or at least is beginning to move towards, the closed configuration.
The method also includes providing a heater in thermal communication with the thermal expansion element.
The method further includes heating the thermal expansion element with the heater when the engine is running, and not heating the thermal expansion element when the engine is not running. Thus, while the vehicle is running the valve is actuated toward the closed configuration, and while the vehicle is not running the valve is actuated toward the open configuration.
The thermal expansion element may have a liquid portion disposed within a flexible solid portion, wherein the liquid portion expands with increasing temperature and contracts with decreasing temperature. The liquid portion may include silicone, and the flexible solid portion may include wax.
The heater may be an electric heater. The heater may be arranged in communication with the engine such that the heater heats the thermal expansion element when the engine is running, and the heater does not heat the thermal expansion element when the engine is not running.
The valve may include a valve plug movably engaged with the thermal expansion element, such that the thermal expansion element actuates the plug in order to actuate the valve between the open and closed positions. The valve may include a valve rod engaged with the valve plug and the thermal expansion element, such that when the thermal expansion element expands the rod and the plug are translated toward a closed position wherein passage of fuel and air through the conduit is not enabled when the valve is in the closed configuration, and when the thermal expansion element contracts the rod and the plug are translated toward an open position wherein passage of fuel and air through the conduit is enabled when the valve is in the open position.
In addition to being adjustable between the open and closed configurations, the valve may be adjustable to and from at least one intermediate configuration. In the intermediate configuration, passage of fuel and air through the conduit is enabled, but the rate of passage of fuel and air through the conduit when is less than the rate of passage of fuel and air through the conduit when the valve is in the open configuration. In such an arrangement, when the thermal expansion element is at a third temperature greater than the first temperature but less than the second temperature, the valve is in the intermediate configuration.
Like reference numbers generally indicate corresponding elements in the figures.
As may be seen from
When the auto-enrichener 12 is in operation, additional air and fuel passes from the air/fuel supply 16 to the engine 14 via the auto-enrichener 12. When the auto-enrichener 12 is not in operation, no additional air and fuel passes from the air/fuel supply 16 to the engine 14 via the auto-enrichener 12. However, it is emphasized that the operation or lack of operation of the auto-enrichener 12 at a particular time does not necessarily affect the normal transmission of air and fuel to the engine 14. Thus, even if the auto-enrichener 12 is not in operation, air and fuel may reach the engine 14 from the air/fuel supply 16 by other routes.
Depending on the particular embodiment of the vehicle 10, a variety of engines 14 may be suitable. Suitable engines include, but are not limited to, two-stroke and four-stroke engines. Suitable engines are known per se, and are not described further herein.
Likewise, a variety of air/fuel supplies 16 may be suitable. Suitable air/fuel supplies include, but are not limited to, carburetors and fuel injectors. Suitable air/fuel supplies are known per se, and are not described further herein.
The auto-enrichener 12 includes an enriching conduit 20, arranged to carry air and fuel to the engine 14.
A valve 22 is disposed in the conduit 20 so as to control the flow of fuel and air through the conduit 20. In the exemplary arrangement illustrated, the valve 22 is so positioned as to divide the conduit 20 into first and second sections 20A and 20B. However, this is exemplary only. Either or both the valve 22 and the conduit 20 may be configured and arranged so that there are more than two conduit sections or fewer than two sections.
The valve 22 is adjustable between at least an open configuration, wherein the passage of air and fuel into the engine 14 is enabled, and a closed configuration, wherein the passage of air and fuel into the engine 14 is not enabled.
As illustrated in
As shown in
In addition, as shown in
However, such an arrangement for the valve 22 is exemplary only. Other valves 22 having other arrangements may be equally suitable.
As shown in
The thermal expansion element 28 is in communication with the valve 22. The communication therebetween is such that as the temperature of the thermal expansion element 28 increases, and the size of the thermal expansion element 28 likewise increases, the valve 22 is urged towards the closed configuration. Furthermore, as the temperature of the thermal expansion element 28 decreases, and the size of the thermal expansion element 28 likewise decreases, the valve 22 is urged towards the open configuration.
Depending on the particular structure and composition of the valve 22 and the thermal expansion element 28, there will be some first temperature such that when the valve 22 is at or below the first temperature the valve 22 is in the open configuration. Likewise, there will be some second temperature such that when the valve 22 is at or above the first temperature the valve 22 is in the closed configuration. For a thermal expansion element 28 having a positive coefficient of thermal expansion, the second temperature will be greater than the first temperature.
As shown in
Conversely, when the thermal expansion element 28 decreases in size, i.e. as it cools, it draws in the oil 34, which in turn draws in the rod 26. This then causes the valve plug 24 to translate towards the open position, placing the valve 22 into the open configuration in which it allows the flow 18 of air and fuel therethrough to the engine 14.
In certain embodiments, the valve plug 24 may be biased toward the open position, for example by an elastic member such as a spring, by negative pressure in the oil, etc. In such an arrangement, the valve plug 24 would tend to remain in and/or move toward the open position unless it is driven towards the closed position as the thermal expansion element 28 is heated. However, such an arrangement is exemplary only.
Furthermore, this overall arrangement also is exemplary only. Other arrangements may be equally suitable. In particular, auto-enricheners 12 including but not limited to those that do not use oil 34, for example arrangements wherein the thermal expansion element 28 actuates the valve 22 directly, may be suitable.
As may also be seen from
For example, as illustrated the heater 36 is an electric resistance heater, and is connected by wires 38 to the engine 14. When the engine 14 runs, electrical power is directed to the heater 36 via the wires 38. As shown, the wires 38 connect to the engine 14 itself, and draw current from the electrical system of the engine 14. However, such an arrangement is exemplary only. Other arrangements may be equally suitable. In particular, arrangements wherein the heater 36 is not an electrical heater may be equally suitable. In such arrangements, heat may be derived from other sources, such as the ambient heat of the engine 14 itself.
Regardless of the source of the heat, as the heater 36 heats the thermal expansion element 28, the thermal expansion element 28 expands, and the valve 22 is urged towards the closed configuration wherein a flow 18 of additional air and fuel is not delivered to the engine 14 therethrough. By contrast, when the heater 36 does not heat the thermal expansion element 28, the thermal expansion element 28 cools and contracts, and the valve 22 is urged towards the open configuration wherein a flow 18 of additional air and fuel is delivered to the engine 14 therethrough.
Because the heater 36 is activated when the engine 14 runs, the auto-enrichener 12 is self-controlling, and does not require activation or adjustment by the operator of the vehicle 10.
For example, when the engine 14 is cold, as when the vehicle has not been used for some period of time, the thermal expansion element 28 likewise will be cold. Consequently, the auto-enrichener 12 will deliver additional air and fuel to the engine 14 if it is started under such conditions, as may be desirable when the engine 14 is cold.
By contrast, when the engine 14 is hot, as when the vehicle has been used recently, the thermal expansion element 28 likewise will be hot. Consequently, the auto-enrichener 12 will not deliver additional air and fuel to the engine 14 if it is started under such conditions, as may be desirable when the engine 14 is hot.
Thus, because the relative temperature of the thermal expansion element 28 mimics that of the engine 14, the auto-enrichener 12 delivers or does not deliver additional air and fuel to the engine 14 as appropriate for the engine conditions.
It is noted that the temperature of the engine 14 itself is not necessarily being measured, nor is it necessary for the temperature of the engine 14 to even be known in order for the auto-enrichener 12 to operate. Furthermore, it is not necessary for the temperature of the thermal expansion element 28 to be equal to the temperature of the engine 14, or even to be approximately similar, though for some embodiments this may be the case.
It is only the relative temperatures that must correspond. That is, when the engine 14 is cold, the thermal expansion element 28 must be cold, and when the engine 14 is hot, the thermal expansion element 28 must be hot. More particularly, when the engine 14 is cold, the thermal expansion element 28 must be at some first temperature such that the valve 22 is in the open configuration, and when the engine 14 is cold, the thermal expansion element 28 must be at some second temperature such that the valve 22 is in the closed configuration.
Turning to
The intermediate size for the thermal expansion element 28 is achieved when the thermal expansion element 28 is at some third temperature intermediate to the first and second temperatures. As may be seen, in such an instance a flow 18 of additional air and fuel through the valve 22 and thus to the engine 14 via the auto-enrichener 12 is still enabled. However, a comparison of
The intermediate configuration is achieved when the thermal expansion element 28 is warmer than in the open configuration, but cooler than in the closed configuration. This condition is obtained when the heater 36 has been operating in the past, but has not operated recently enough that the thermal expansion element 28 is still fully expanded, did not operate for a long enough period that the thermal expansion element 28 is fully expanded, etc.
It is noted that operation in the intermediate configuration may be transient. That is, the valve 22 will not necessarily stop at or hold steady in the intermediate configuration. Rather, as the temperature of the thermal expansion element 28 continues to increase, the valve 22 may continue to move towards the closed position. Thus, although the valve 22 may be in the intermediate configuration at some point or for some period of time, this should not be taken to imply that the valve 22 will remain fixed in the intermediate configuration.
It is also noted that the valve 22 may begin in the intermediate position when the engine 14 is started. For example, if the engine 14 has been operated in the past, but has been inactive for some period of time since then, the thermal expansion element 28 may have cooled sufficiently for the valve 22 to be in the intermediate configuration when the engine 14 is again started. Of course, if the period of inactivity is sufficiently long, and/or local temperatures are sufficiently low, the valve 22 might be in the open configuration when the engine 14 is started. Likewise, if the engine 14 is restarted after a relatively short time, the valve 22 might be in the closed configuration when the engine 14 is restarted.
Thus, although the valve 22 typically will tend to move towards the closed configuration as the engine operates 14, the valve 22 may be in substantially any configuration when the engine 14 is started.
Because the heater 36 operates when the engine 14 operates, the intermediate configuration thus occurs when the engine 14 is warmer than at a typical ambient temperature, but cooler than its normal operating temperature.
Thus, when the engine 14 is in such a condition, if the engine 14 is made to operate the engine 14 will be enriched, but not to the degree it would be enriched if it were started cold with the auto-enrichener 12 in the open configuration.
Therefore, again because the relative temperature of the thermal expansion element 28 mimics that of the engine 14, the auto-enrichener 12 delivers or does not deliver variable amounts of additional air and fuel to the engine 14 as appropriate for the engine conditions.
Depending on the embodiment, it may be advantageous to arrange for the auto-enrichener 12 to be continuously variable, such that the amount of additional fuel and air delivered to the engine 14 therethrough is also continuously variable depending on the temperature of the engine 14. The arrangement illustrated in
However, this is exemplary only. In other arrangements, the auto-enrichener 12 to be discretely variable, such that only a few different amounts of additional fuel and air are delivered to the engine 14 therethrough depending on the temperature of the engine 14.
The particular structure and composition of the thermal expansion element 28 may vary from embodiment to embodiment. As illustrated in
As shown therein, the thermal expansion element 28 includes a liquid portion 30 disposed within a flexible solid portion 32. The liquid portion 30 has a high coefficient of thermal expansion, and thus expands and contracts to a large degree with changing temperature, as may be seen by a comparison of
For such a thermal expansion element 28, a variety of liquids and flexible solids may be suitable. For example, suitable liquids for the liquid portion 30 include, but are not limited to, liquid silicones. Alternatively, the liquid portion may include wax, and/or may include a mixture of wax and silicone, including but not limited to mixtures such as suspensions or emulsions of otherwise immiscible waxes and/or silicones. Suitable solids for the flexible solid portion 32 include, but are not limited to, wax. Similarly, the flexible solid portion may include wax, but alternatively may include a mixture of wax and silicone. It is to be understood that suitability of solids and liquids will depend at least in part on their particular physical properties, i.e. their relative melting and boiling points, the coefficients of thermal expansion, their relative tendency to react with one another, etc.
In the arrangement illustrated in
However, while the liquid portion 30 is contiguous in
Despite this difference in structure, the overall performance of the thermal expansion element 28 in
Thus, even given a particular material or combination of materials, the thermal expansion element 28 may vary considerably from embodiment to embodiment. Furthermore, both the structures and the compositions illustrated in
The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
Number | Name | Date | Kind |
---|---|---|---|
1958818 | Goudard | May 1934 | A |
2093218 | Thieulin et al. | Sep 1937 | A |
2156132 | Thieulin | Apr 1939 | A |
3739760 | Charron | Jun 1973 | A |
3877448 | Schmid | Apr 1975 | A |
3934571 | Mennesson | Jan 1976 | A |
Number | Date | Country |
---|---|---|
58-183849 | Oct 1983 | JP |
Number | Date | Country | |
---|---|---|---|
20050087173 A1 | Apr 2005 | US |