Automation systems can be used to control the operation of machines and other components in a systematic manner. Automation systems can include various automation domains such as factory automation, process automation, building automation, energy automation, and the like. Automation systems can also include equipment from multiple vendors. In some cases, equipment and machines within an automation system may use varying mechanisms associated with their respective ecosystems, such as varying runtime environments, protocols, and programming languages (e.g., vendor-specific programming languages). By way of example, automation functions are often platform specific and/or are implemented in a proprietary manner. Thus, generating an automation function that is interoperable with other automation functions can be cumbersome and time-consuming.
Automation systems typically interact with the physical world through sensors to retrieve and monitor the real world's state. Automation systems also typically interact with actuators to change and control the real world's state. In some cases, the digitalized state of physical entities is preserved in a digital twin, which can refer to a process image of the current state of a physical system. It is recognized herein, however, that standards are lacking concerning how to build and maintain digital twins. Thus, often each vendor of automation equipment establishes vendor or product specific interfaces and tools that enable automation functions to interact, via digital twins, with the real world. As a result, in some cases, system integrators and application engineers of automation systems have to deal with a vast variety of digital twins that may each provide a respective proprietary set of interfaces and tools.
Thus, it is further recognized herein that current digital twins lack capabilities and efficiencies. By way of example, shortcomings related to out-of-the-box interoperability and exchangeability among today's digital twins inhibit digitalization.
Embodiments of the invention address and overcome one or more of the described-herein shortcomings or technical problems by providing methods, systems, and apparatuses for automatically generating connectors that define semantics specific to particular ecosystems, and that enable interoperability between different ecosystems in automated industrial systems.
In an example aspect, a method can be performed in an industrial system that comprises a plurality of ecosystems that define respective physical assets and automation equipment configured to control the physical assets. The method can include receiving an interface file that defines an interface description language. Based on the interface file, a generator or modular connector printer can generate a first integration connector that is specific to a first ecosystem of the plurality of ecosystems. The first integration connector can be used to trigger an action, from the first ecosystem, performed at a second ecosystem of the plurality of ecosystems. As an example, the action can include retrieving information from the second ecosystem, by the first ecosystem. The information can define semantics associated with the first ecosystem. The information and the semantics can be displayed on a human machine interface of the first ecosystem. Alternatively, or additionally, the action can include one or physical assets of the second ecosystem performing a task defined by the first ecosystem. Further, based on the interface file, a second integration connector can be generated that is specific to the second ecosystem. The integration connector can be plugged to the second integration connector, such that the second integration connector is also used to trigger the action performed by the second ecosystem.
In an example, the first integration connector can run on a first machine, the second integration connector can also run on the first machine, such that the first integration connector is plugged directly to the second integration connector. In another example, at runtime, a first communication connector can be inserted between the first integration connecter and the second integration connector, such that communication between the first integration connector and the second integration connector hops over a machine that hosts the first communication connector. In yet another example, at runtime, a second communication connector can be inserted between the first communication connecter and the second integration connector, such that communication between the first and second integration connectors hops over multiple machines and ecosystems. The first integration connector can also be used to trigger another action, from the first ecosystem, performed at a third ecosystem of the plurality of ecosystems.
The action can be triggered using a third integration connector that is specific to the third ecosystem.
The foregoing and other aspects of the present invention are best understood from the following detailed description when read in connection with the accompanying drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments that are presently preferred, it being understood, however, that the invention is not limited to the specific instrumentalities disclosed. Included in the drawings are the following Figures:
Automation functions, automation equipment, and automation engineering systems and tools are often locked into vendor-specific ecosystems. For example, it is recognized herein that automation ecosystem vendors often focus on optimizing their own environment (e.g., hardware, software, runtime, engineering and development tools), such that there is often little support for integrating their environment with competitors or third party ecosystems.
Referring to
Each ecosystem can include physical assets that can be controlled by automation equipment configured to control the respective physical assets. Such automation equipment can include one or more programmable logic controllers (PLCs) 101. By way of example, the gantry station can include a gantry PLC 101a, the transport station can include a transport PLC 101b, and the robot station 114 can include a robot PLC 101c. The PLCs, and thus the automation equipment, may be specific to one or more physical assets in the respective ecosystem. The automation system 100 can be configured to perform various automation functions.
Still referring to
To further illustrate technical problems related to current approaches,
Thus, still referring to the example system 200 of FIG, 1, in order to integrate automation functions in the different ecosystems, connectors, which can be referred to as glue code, can be developed. It is recognized herein, however, that these connectors are typically suited for point-to-point integration so as to define monolithic connectors that enable interoperability of only two ecosystems. Thus, in some cases, new connectors are developed each time an additional ecosystem is integrated within the system 200. Further, it is recognized herein that such connectors are often generic and therefore difficult to use because, for example, they do not carry semantics about the respective domain. By way of example, an generic connector might support read/write/subscribe topics, but not read/write/subscribe topics for a specific operation, such as a change in oil pressure or the like. Similarly, by way of further example, generic connectors might not support interface-oriented access (e.g., Request/Reply pattern) or topic-oriented access (publish/subscribe pattern) to another ecosystem.
Referring now to
Referring also to
The abstraction layer 110 can abstract various functional characteristics, which can define automation functions, from the automation equipment. The automation functions can be soft-wired together, such that the abstraction layer 110 can serve as an intermediary between various development environments and various automation equipment. Thus, the automation system 100, in particular the abstraction layer 110, can provide functionality corresponding to a physical component, for instance the automation equipment and/or physical assets. In doing so, developers can operate in one or more development environments, for instance a development environment of their choice, to use various automation functions, via the abstraction layer 110, and the automation functions can be performed by the automation equipment and physical assets. In particular, the abstraction layer 110 can enable automation functions from different domains to interoperate with one another. The development environments may define one or more languages or platforms, such as Java, C, Matlab, Python, Siemens Totally Integrated Automation (TIA) Portal, or the like. Thus, various development environments can utilize various automation equipment from various domains, via the abstraction layer 110.
Referring also to
In another example, the product ecosystem 108 defines a WinCC consumer of one or more automation functions. Further, in the example, the production ecosystem 102 can include a Beckhoff PLC 101a and the production ecosystem 104 can include a SIMATIC PLC 101b that each provide the same interface/topic as each other. The product ecosystem 108 can use the integration connector 306a to access the production ecosystem 102 or the production ecosystem 104. Thus, the consumer can use the same integration connector to access PCLs in different ecosystems, and the code on the consumer (e.g., within the WinCC application) can be agnostic of the particular ecosystem that provides an interface or topic. In various examples, the integration connector 306c can be used by the production ecosystem 104 regardless of whether an interface or topic is invoked by the product ecosystem 108 or the production ecosystem 106. Similarly, an integration connector 306d can be generated that is specific to the ecosystem 106. Thus, code on the provider side (e.g., SIMATIC PLC) can be agnostic of the ecosystem that uses an interface or topic. The system 400 can also include one or more communication connectors 304, for instance an HTTP communication connector 406 or an S7-DOS communication connector 408, which can be combined to map, for example, from the product ecosystem 108 to the production ecosystem 104. Alternatively, or additionally, the S7-DOS communication connector 408 can connect the integration connector 306a of the product ecosystem 108 with the integration connector 306b of the first production ecosystem 102.
With continuing reference to
in some cases, the gantry station 112, robot station 114, and transport station 116 can each be provided from different equipment vendors, which can create interoperability issues addressed herein, among other challenges. By way of example, the product ecosystem 102 can include automation equipment, for instance a product controller 118, that is associated with a product that is assembled or manufactured by the industrial automation system 100. By way of example, the product controller 118 can be PC-based, and can be programmed by a first programming language, such as WinCC for example. The product controller 118 can perform various activities during the lifecycle of a given product. For example, during a design state, a desired state of a given product can be established within the product controller 118. The desired state may refer to the overall condition of a product or machine during or after production. The desired state may indicate various information such as, for example, absolute position information, position information relative to other physical assets, temperature limitation, stress level limitations, or the like. The desired state may be determined from inputs to the product controller 118 such as, for example and without limitation, a Bill of Process (BOP), Bill of Materials (BOM), properties of the materials, and 3D models (e.g., CAD models) or other physical models of the product.
In some cases, aspects of the product may be manually defined based on user input. Referring also to
Referring to
Still referring generally to
Thus, as described herein, in an example aspect, a method can be performed in an industrial system that comprises a plurality of ecosystems that define respective physical assets and automation equipment configured to control the physical assets. The method can include receiving an interface file that defines an interface description language. Based on the interface file, a generator or modular connector printer can generate a first integration connector that is specific to a first ecosystem of the plurality of ecosystems. The first integration connector can be used to trigger an action, from the first ecosystem, performed at a second ecosystem of the plurality of ecosystems. As an example, the action can include retrieving information from the second ecosystem, by the first ecosystem. The information can define semantics associated with the first ecosystem. The information and the semantics can be displayed on a human machine interface of the first ecosystem. Alternatively, or additionally, the action can include one or physical assets of the second ecosystem performing a task defined by the first ecosystem. Further, based on the interface file, a second integration connector can be generated that is specific to the second ecosystem. The integration connector can be plugged to the second integration connector, such that the second integration connector is also used to trigger the action performed by the second ecosystem.
As further described herein, in an example, the first integration connector can run on a first machine, the second integration connector can also run on the first machine, such that the first integration connector is plugged directly to the second integration connector. In another example, at runtime, a first communication connector can be inserted between the first integration connecter and the second integration connector, such that communication between the first integration connector and the second integration connector hops over a machine that hosts the first communication connector. In yet another example, at runtime, a second communication connector can be inserted between the first communication connecter and the second integration connector, such that communication between the first and second integration connectors hops over multiple machines and ecosystems. The first integration connector can also be used to trigger another action, from the first ecosystem, performed at a third ecosystem of the plurality of ecosystems. The action can be triggered using a third integration connector that is specific to the third ecosystem.
The processors 520 may include one or more central processing units (CPUs), graphical processing units (GPUs), or any other processor known in the art. More generally, a processor as described herein is a device for executing machine-readable instructions stored on a computer readable medium, for performing tasks and may comprise any one or combination of, hardware and firmware. A processor may also comprise memory storing machine-readable instructions executable for performing tasks. A processor acts upon information by manipulating, analyzing, modifying, converting or transmitting information for use by an executable procedure or an information device, and/or by routing the information to an output device. A processor may use or comprise the capabilities of a computer, controller or microprocessor, for example, and be conditioned using executable instructions to perform special purpose functions not performed by a general purpose computer. A processor may include any type of suitable processing unit including, but not limited to, a central processing unit, a microprocessor, a Reduced Instruction Set Computer (RISC) microprocessor, a Complex Instruction Set Computer (CISC) microprocessor, a microcontroller, an Application Specific Integrated Circuit (ASIC), a Field-Programmable Gate Array (FPGA), a System-on-a-Chip (SoC), a digital signal processor (DSP), and so forth. Further, the processor(s) 520 may have any suitable microarchitecture design that includes any number of constituent components such as, for example, registers, multiplexers, arithmetic logic units, cache controllers for controlling read/write operations to cache memory, branch predictors, or the like. The microarchitecture design of the processor may be capable of supporting any of a variety of instruction sets. A processor may be coupled (electrically and/or as comprising executable components) with any other processor enabling interaction and/or communication there-between. A user interface processor or generator is a known element comprising electronic circuitry or software or a combination of both for generating display images or portions thereof. A user interface comprises one or more display images enabling user interaction with a processor or other device.
The system bus 521 may include at least one of a system bus, a memory bus, an address bus, or a message bus, and may permit exchange of information (e.g., data (including computer-executable code), signaling, etc.) between various components of the computer system 510. The system bus 521 may include, without limitation, a memory bus or a memory controller, a peripheral bus, an accelerated graphics port, and so forth. The system bus 521 may be associated with any suitable bus architecture including, without limitation, an Industry Standard Architecture (ISA), a Micro Channel Architecture (MCA), an Enhanced ISA (EISA), a Video Electronics Standards Association (VESA) architecture, an Accelerated Graphics Port (AGP) architecture, a Peripheral Component Interconnects (PCI) architecture, a PCI-Express architecture, a Personal Computer Memory Card International Association (PCMCIA) architecture, a Universal Serial Bus (USB) architecture, and so forth.
Continuing with reference to
The operating system 534 may be loaded into the memory 530 and may provide an interface between other application software executing on the computer system 510 and hardware resources of the computer system 510. More specifically, the operating system 534 may include a set of computer-executable instructions for managing hardware resources of the computer system 510 and for providing common services to other application programs (e.g., managing memory allocation among various application programs). In certain example embodiments, the operating system 534 may control execution of one or more of the program modules depicted as being stored in the data storage 540. The operating system 534 may include any operating system now known or which may be developed in the future including, but not limited to, any server operating system, any mainframe operating system, or any other proprietary or non-proprietary operating system.
The computer system 510 may also include a disk/media controller 543 coupled to the system bus 521 to control one or more storage devices for storing information and instructions, such as a magnetic hard disk 541 and/or a removable media drive 542 (e.g., floppy disk drive, compact disc drive, tape drive, flash drive, and/or solid state drive). Storage devices 540 may be added to the computer system 510 using an appropriate device interface (e.g., a small computer system interface (SCSI), integrated device electronics (IDE), Universal Serial Bus (USB), or FireWire), Storage devices 541, 542 may be external to the computer system 510.
The computer system 510 may also include a field device interface 565 coupled to the system bus 521 to control a field device 566, such as a device used in a production line. The computer system 510 may include a user input interface or GUI 561, which may comprise one or more input devices, such as a keyboard, touchscreen, tablet and/or a pointing device, for interacting with a computer user and providing information to the processors 520.
The computer system 510 may perform a portion or all of the processing steps of embodiments of the invention in response to the processors 520 executing one or more sequences of one or more instructions contained in a memory, such as the system memory 530. Such instructions may be read into the system memory 530 from another computer readable medium of storage 540, such as the magnetic hard disk 541 or the removable media drive 542. The magnetic hard disk 541 and/or removable media drive 542 may contain one or more data stores and data files used by embodiments of the present disclosure. The data store 540 may include, but are not limited to, databases (e.g., relational, object-oriented, etc.), file systems, flat files, distributed data stores in which data is stored on more than one node of a computer network, peer-to-peer network data stores, or the like. The data stores may store various types of data such as, for example, skill data, sensor data, or any other data generated in accordance with the embodiments of the disclosure. Data store contents and data files may be encrypted to improve security. The processors 520 may also be employed in a multi-processing arrangement to execute the one or more sequences of instructions contained in system memory 530. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions. Thus, embodiments are not limited to any specific combination of hardware circuitry and software.
As stated above, the computer system 510 may include at least one computer readable medium or memory for holding instructions programmed according to embodiments of the invention and for containing data structures, tables, records, or other data described herein. The term “computer readable medium” as used herein refers to any medium that participates in providing instructions to the processors 520 for execution. A computer readable medium may take many forms including, but not limited to, non-transitory, non-volatile media, volatile media, and transmission media. Non-limiting examples of non-volatile media include optical disks, solid state drives, magnetic disks, and magneto-optical disks, such as magnetic hard disk 541 or removable media drive 542. Non-limiting examples of volatile media include dynamic memory, such as system memory 530. Non-limiting examples of transmission media include coaxial cables, copper wire, and fiber optics, including the wires that make up the system bus 521. Transmission media may also take the form of acoustic or light waves, such as those generated during radio wave and infrared data communications.
Computer readable medium instructions for carrying out operations of the present disclosure may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present disclosure.
Aspects of the present disclosure are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the disclosure. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, may be implemented by computer readable medium instructions.
The computing environment 600 may further include the computer system 510 operating in a networked environment using logical connections to one or more remote computers, such as remote computing device 580. The network interface 570 may enable communication, for example, with other remote devices 580 or systems and/or the storage devices 541, .542 via the network 571. Remote computing device 580 may be a personal computer (laptop or desktop), a mobile device, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to computer system 510. When used in a networking environment, computer system 510 may include modem 672 for establishing communications over a network 571, such as the Internet. Modern 672 may be connected to system bus 521 via user network interface 570, or via another appropriate mechanism.
Network 571 may be any network or system generally known in the art, including the Internet, an intranet, a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a direct connection or series of connections, a cellular telephone network, or any other network or medium capable of facilitating communication between computer system 510 and other computers (e.g., remote computing device 580). The network 571 may be wired, wireless or a combination thereof. Wired connections may be implemented using Ethernet. Universal Serial Bus (USB), RJ-6, or any other wired connection generally known in the art. Wireless connections may be implemented using WiMAX, and Bluetooth, infrared, cellular networks, satellite or any other wireless connection methodology generally known in the art. Additionally, several networks may work alone or in communication with each other to facilitate communication in the network 571.
It should be appreciated that the program modules, applications, computer-executable instructions, code, or the like depicted in
It should further be appreciated that the computer system 510 may include alternate and/or additional hardware, software, or firmware components beyond those described or depicted without departing from the scope of the disclosure. More particularly, it should be appreciated that software, firmware, or hardware components depicted as forming part of the computer system 510 are merely illustrative and that some components may not be present or additional components may be provided in various embodiments. While various illustrative program modules have been depicted and described as software modules stored in system memory 530, it should be appreciated that functionality described as being supported by the program modules may be enabled by any combination of hardware, software, and/or firmware. It should further be appreciated that each of the above-mentioned modules may, in various embodiments, represent a logical partitioning of supported functionality. This logical partitioning is depicted for ease of explanation of the functionality and may not be representative of the structure of software, hardware, and/or firmware for implementing the functionality. Accordingly, it should be appreciated that functionality described as being provided by a particular module may, in various embodiments, be provided at least in part by one or more other modules. Further, one or more depicted modules may not be present in certain embodiments, while in other embodiments, additional modules not depicted may be present and may support at least a portion of the described functionality and/or additional functionality. Moreover, while certain modules may be depicted and described as sub-modules of another module, in certain embodiments, such modules may be provided as independent modules or as sub-modules of other modules.
Although specific embodiments of the disclosure have been described, one of ordinary skill in the art will recognize that numerous other modifications and alternative embodiments are within the scope of the disclosure. For example, any of the functionality and/or processing capabilities described with respect to a particular device or component may be performed by any other device or component. Further, while various illustrative implementations and architectures have been described in accordance with embodiments of the disclosure, one of ordinary skill in the art will appreciate that numerous other modifications to the illustrative implementations and architectures described herein are also within the scope of this disclosure. In addition, it should be appreciated that any operation, element, component, data, or the like described herein as being based on another operation, element, component, data, or the like can be additionally based on one or more other operations, elements, components, data, or the like. Accordingly, the phrase “based on,” or variants thereof, should be interpreted as “based at least in part on.”
Although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the disclosure is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as illustrative forms of implementing the embodiments. Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments could include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/913,372 filed on Oct. 10, 2019, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/055015 | 10/9/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62913372 | Oct 2019 | US |