The invention relates to an auto-injector for administering a dose of a liquid medicament.
Administering an injection is a process which presents a number of risks and challenges for users and healthcare professionals, both mental and physical.
Injection devices (i.e. devices capable of delivering medicaments from a medication container) typically fall into two categories—manual devices and auto-injectors.
In a manual device—the user must provide the mechanical energy to drive the fluid through the needle. This is typically done by some form of button/plunger that has to be continuously pressed by the user during the injection. There are numerous disadvantages to the user from this approach. If the user stops pressing the button/plunger then the injection will also stop. This means that the user can deliver an underdose if the device is not used properly (i.e. the plunger is not fully pressed to its end position). Injection forces may be too high for the user, in particular if the patient is elderly or has dexterity problems.
The extension of the button/plunger may be too great. Thus it can be inconvenient for the user to reach a fully extended button. The combination of injection force and button extension can cause trembling/shaking of the hand which in turn increases discomfort as the inserted needle moves.
Auto-injector devices aim to make self-administration of injected therapies easier for patients. Current therapies delivered by means of self-administered injections include drugs for diabetes (both insulin and newer GLP-1 class drugs), migraine, hormone therapies, anticoagulants etc.
Auto-injectors are devices which completely or partially replace activities involved in parenteral drug delivery from standard syringes. These activities may include removal of a protective syringe cap, insertion of a needle into a patient's skin, injection of the medicament, removal of the needle, shielding of the needle and preventing reuse of the device. This overcomes many of the disadvantages of manual devices. Injection forces/button extension, hand-shaking and the likelihood of delivering an incomplete dose are reduced. Triggering may be performed by numerous means, for example a trigger button or the action of the needle reaching its injection depth. In some devices the energy to deliver the fluid is provided by a spring.
US 2002/0095120 A1 discloses an automatic injection device which automatically injects a pre-measured quantity of fluid medicine when a tension spring is released. The tension spring moves an ampoule and the injection needle from a storage position to a deployed position when it is released. The content of the ampoule is thereafter expelled by the tension spring forcing a piston forward inside the ampoule. After the fluid medicine has been injected, torsion stored in the tension spring is released and the injection needle is automatically retracted back to its original storage position.
It is an object of the present invention to provide an improved auto-injector.
The object is achieved by an auto-injector according to claim 1.
Preferred embodiments of the invention are given in the dependent claims.
In the context of this specification, the terms distal and proximal are defined from the point of view of a person receiving an injection. Consequently, a proximal direction refers to a direction pointing towards the body of a patient receiving the injection and a proximal end defines an end of an element that is directed towards the body of the patient. Respectively, the distal end of an element or the distal direction is directed away from the body of the patient receiving the injection and opposite to the proximal end or proximal direction.
An auto-injector for administering a dose of a liquid medicament comprises
According to the invention the drive means bears against a thrust collar arranged to be releasably coupled to the plunger through a ramped engagement so as to rotate the thrust collar on translation in the proximal direction, wherein guiding means are provided for guiding the thrust collar during at least a part of its axial translation when inserting the needle and displacing the medicament to prevent a rotation of the thrust collar, wherein the thrust collar is arranged to rotate out of engagement to the plunger on removal of the auto-injector from the injection site.
The ramped engagement between the thrust collar and the plunger may comprise a first tongue and a first recess engageable in a manner to rotate the thrust collar on translation in the proximal direction. At least one longitudinal gap may be provided as the guiding means for guiding a first or second protrusion of the thrust collar to prevent a rotation of the thrust collar. A circumferential gap may be arranged to allow the thrust collar to rotate out of engagement to the plunger on removal of the auto-injector from the injection site.
A crucial step in delivering medicaments with auto-injectors is the decoupling of the plunger from the drive means at the appropriate point in time. If the plunger is decoupled early, the dose of the medicament might not be completely expelled. Consequently, the medicament is partially wasted during the injection. However, such an early release might be necessary to ensure that the plunger is decoupled at the end of an injection stroke, so that in particular functions that ensure needle safety are reliably carried out. The injection mechanism of the auto-injector is designed in a manner that allows for a complete emptying of the syringe barrel containing the dose of the medicament before the plunger is decoupled from the drive means without compromising needle safety. According to the invention, the plunger is releasably coupled to a thrust collar. The coupling between the thrust collar and plunger is released upon rotation. The rotation between the thrust collar relative to the plunger may be caused by the first tongue engaging the first recess. No radial space is taken up for the release mechanism of the plunger and the thrust collar, so that the auto-injector may be designed in a particularly compact manner. Furthermore, the auto-injector comprises only a few parts and may thus be cost-efficiently produced.
At least one longitudinal gap may be provided that accommodates a first or second protrusion formed to the thrust collar. The first or second protrusion travels along the at least one gap when the thrust collar coupled to the plunger is driven proximally by the drive means, whereby a rotation of the thrust collar is prevented until the stopper, which is pushed proximally by the plunger to expel the dose of the medicament, reaches the proximal end of the syringe barrel and the first and/or second protrusion reaches the circumferential gap. The circumferential gap allows the thrust collar to rotate, whereby the thrust collar is decoupled from the plunger when the dose of medication has been completely injected and the auto-injector is removed from the injection site.
According to one possible embodiment of the invention, the thrust collar is releasably mounted to a coupling shroud rotationally fixed to the housing and firmly attached to the plunger. The coupling between the plunger and the thrust collar is released by disconnecting the thrust collar from the coupling shroud by rotating the thrust collar relative to coupling shroud.
According to another possible embodiment of the invention, the needle shroud is biased in the proximal direction towards an initial advanced position and slidable from the advanced position in a distal direction to a retracted position. In particular, the needle shroud may be slid to the retracted position by placing the auto-injector onto the skin of the patient receiving the injection and pressing the needle shroud against the skin of the patient. The needle shroud in the retracted position activates the delivery mechanism of the auto-injector delivering the medicament to the patient by releasing the drive means. The needle shroud is slidable from the retracted position in the proximal direction beyond the advanced position to the safe position, wherein the needle shroud surrounds the injection needle of the pre-filled syringe and protrudes beyond the needle tip in the proximal direction sufficient to prevent accidental needle stick injuries after the injection has been carried out.
Preferably, the needle shroud is arranged to prevent rotation of the thrust collar and thus release of the connection between the coupling shroud and the thrust collar until the dose of the medicament has been completely expelled and the auto-injector is withdrawn from the injection site. The auto-injector provides a reliable mechanism that covers the injection needle to avoid accidental needle stick injuries after the injection without wasting any medicament initially contained in the pre-filled syringe.
In one possible embodiment of the invention, the needle shroud incorporates a u-shaped indentation for receiving the second protrusion of the thrust collar in the retracted position. The second protrusion is retained in the u-shaped indentation to rotationally affix the thrust collar after full delivery of the medicament and until the needle shroud leaves the retracted position, which may in particular be achieved by removing the auto-injector from the injection site after the dose of the medicament has been injected. Thus, the needle shroud with the u-shaped indentation prevents the release of the connection between the thrust collar and the coupling shroud until the stopper has bottomed out and the injection is completed. The needle shroud is arranged to open the circumferential gap on translation into the advanced position for allowing the thrust collar to rotate out of engagement to the plunger. The auto-injector is suitable to be used for administering relative expensive medicaments as it is designed to completely empty the syringe barrel containing the dose of the medicament.
According to another possible embodiment of the invention, the needle shroud is releasably mounted to the housing by a clip preventing travel in the proximal direction beyond the advanced position. The thrust collar is disconnected from the coupling shroud at the end of the injection stroke delivering the medication. Upon the release, the thrust collar is driven proximally by the drive means to engage and deflect the clip to release the needle shroud. The needle shroud is then allowed to be moved in the proximal direction to the safe position, wherein the injection needle is covered to prevent accidental needle stick injuries.
According to another embodiment of the invention, a syringe retainer is arranged for mounting the syringe within the housing, wherein a retaining element is attached to the syringe retainer. The retaining element releasably couples the plunger to the syringe retainer. A force exerted upon the plunger by the drive means is thus directed via the retaining element to the syringe retainer, so that the syringe retainer carrying the pre-filled syringe may be moved in the proximal direction to insert the injection needle into the skin of the patient, whereby a displacement of the plunger relative to the syringe barrel containing the dose of the medicament is avoided. This prevents a premature expelling of the medicament before the injection needle penetrates the skin of the patient. Thus, unpleasant wet injections are avoided.
The retaining element may comprise at least one first catch that latches to a notch formed into the plunger to releasably couple the plunger to the syringe retainer. The first catch is released by a radial deflection and thus operates independently of the angular orientation of the coupling shroud and the thrust collar.
Preferably, the first catch is arranged to abut against an inner sleeve of the housing to prevent the decoupling of the plunger and the syringe retainer. An aperture is formed into the inner sleeve that allows for a radial outward deflection of the first catch to decouple the syringe retainer from the plunger. The aperture is located in a position that ensures that the decoupling takes place when the syringe retainer is in a proximal position and the injection needle protrudes from the proximal end of the auto-injection by a length that corresponds to a desired injection depth. The aperture is formed into the inner sleeve and is shielded by an outer casing of the housing. This prevents a user trying to re-use the auto-injector after an injection has been completed, by tampering with the first catch retained in the aperture. The auto-injector is designed as a single use device to minimize the risk of infections that are transmitted by needle stick injuries with used injection needles.
According to another possible embodiment of the invention, the coupling shroud comprises a flat first lateral wall that abuts against a corresponding flat second lateral wall of the inner sleeve to prevent a rotation of the coupling shroud relative to the housing. The interaction of the first and second lateral walls comprises a simple and effective means to ensure that the coupling shroud is rotationally affixed to the housing. This in turn ensures that the thrust collar may be reliably disconnected by a rotation about a relative small angle with respect to the coupling shroud.
According to yet another possible embodiment of the invention, a biasing means biases the needle shroud in the proximal direction. The biasing means and the drive means are fitted into each other to optimally use available space within the housing. This allows for a particular compact design of the auto-injector.
The biasing means is arranged as a compression spring having a diameter that differs from the diameter of the drive means in a manner that allows the drive means and the biasing means to expand independently from each other without interfering. The two nested compression springs provide a simple arrangement to efficiently use the space available within the housing of the auto-injectors and are inexpensive to produce.
According to yet another possible embodiment of the invention, the drive means is arranged as a single compression spring. The mechanism of the auto-injector is arranged in a manner that a plurality of functions is executed by the single drive means. The injection needle is inserted into the skin of the patient, the plunger is translated to expel the medicament and the needle shroud is moved proximally to provide needle safety after the injection is completed by the action of the spring means. Conventional auto-injectors usually comprise a plurality of spring means to accomplish these tasks. The auto-injector according to the invention comprises only few parts and is particularly inexpensive to mass-produce. Consequently, the auto-injector is particularly suited as a single-use device that may be disposed after an injection has been carried out.
In another possible embodiment of the invention, a rotating collar is arranged within the housing and axially fixed to the housing of the auto-injector. The rotating collar engages the needle shroud in a manner that forces the rotating collar to rotate within the housing when the needle shroud is axially displaced from the advanced position into the safe position. The rotating collar creates friction to slow down the proximal movement of the needle shroud that rests on the skin of the patient during the injection. The rotating collar acts as a dampening element that alleviates the pressure exerted upon the skin of the patient by the needle shroud. Thus, the risk of injuries is reduced and, in particular, bruises may be avoided. Furthermore, the modulus of resilience of the single drive means driving the needle shroud may be chosen to be sufficiently large without having to worry about potential injury risks. Thus, the modulus of resilience of the drive means is adapted to reliably provide an energy supply for executing a plurality of actions comprising, among others, the advancing and releasing of the needle shroud, the displacement of the stopper to expel the medicament and the decoupling of the plunger and the coupling shroud.
Preferably, the rotating collar comprises a pin that engages a track formed into the needle shroud. The track comprises a straight first section for guiding the pin between the retracted position and the advanced position and a second section oriented at an angle with respect to the first section for guiding the pin between the advanced position and the safe position. The pin travels along the track when the needle shroud is axially displaced. When the pin travels along the angled second section of the track, the rotating collar is forced to rotate around the needle shroud. This dampens the proximal movement of the needle shroud and thus reduces the pressure exerted upon the skin of the patient by generating friction.
The auto-injector may preferably be used for subcutaneous or intra-muscular injection, particularly for delivering one of an analgetic, an anticoagulant, insulin, an insulin derivate, heparin, Lovenox, a vaccine, a growth hormone, a peptide hormone, a protein, antibodies and complex carbohydrates.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
Corresponding parts are marked with the same reference symbols in all figures.
The releasable connection between the thrust collar 7 and the coupling shroud 6 is released by a rotation about a relative small angle around the axis of the substantially cylindrical auto-injector 1, like, for example, a quarter twist. The thrust collar 7 and the coupling shroud 6 may be connected by a bayonet kind of coupling or, alternatively, a thread connection with a corresponding lead that allows for a release by a relative small twist.
A drive means 8 is arranged between the distal end of the housing 2 and the thrust collar 7. The drive means 8 biases the thrust collar 7 in a proximal direction P towards the skin of a patient receiving an injection. The thrust collar 7 carries a threaded connection to the coupling shroud 6 with a steep pitch angle, and the coupling shroud 6 is restrained against rotation relative to the housing 2, so that the thrust collar 7 is additionally biased to rotate around the axis of the auto-injector 1.
According to one possible embodiment of the invention, the drive means 8 is arranged as a single, conventional compression spring.
The coupling shroud 6 is firmly attached to a plunger 9 arranged to push on a stopper 10 fluid-tightly sealing a distal end of a syringe barrel 11 containing a dose of a medicament M. A plunger collar 9.2 of the plunger 9 protrudes into a locking recess 6.1 formed into the distal end of the coupling shroud 6 to attach the plunger 9 to the coupling shroud 6.
An inner cavity of the syringe barrel 11 is in fluid communication with an injection needle 12, so that the dose of the medicament M may be expelled through the injection needle 12 by displacing the stopper 10 in the proximal direction P.
The needle shroud 3 is designed to be pushed against the skin of the patient during the injection. Edges of the needle shroud 3 may thus be smoothed to avoid injuries. The needle shroud 3 is slidably arranged with the housing 2 of the auto-injector 1, so that the needle shroud 3 may be pushed from an advanced position PA shown in
The biasing means 13 and the drive means 8 are fitted into each other to optimally use available space within the housing 2.
In a possible embodiment of the invention, the biasing means 13 is arranged as a compression spring having a diameter that differs from the diameter of the compression spring of the drive means 8 in a manner that allows the drive means 8 and the biasing means 13 to expand independently from each other without interfering.
A retaining element 14 is attached to a distal end of the syringe retainer 4 that releasably couples the plunger 9 to the syringe retainer 4, so that the syringe retainer 4 may jointly move with the plunger 9 in the proximal direction P to expose the injection needle 12. The retaining element 14 comprises at least one and preferably two or more first catches 14.1 arranged equi-spaced around retaining element 14, wherein each first catch 14.1 latches to a respective notch 9.1 formed into the plunger 9. The first catch 14.1 abuts against an inner sleeve 2.2 of the housing 2 in the radial outward direction, so that a deflection of the first catch 14.1 and hence a decoupling of the plunger 9 and the syringe retainer 4 is prevented.
The plunger 9 is coupled to the retaining element 14 and the syringe retainer 4 until the syringe retainer 4 mounting the pre-filled syringe 5 is moved proximally to expose the injection needle 12. A longitudinal aperture 2.3 is formed into the inner sleeve 2.2 of the housing 2 that allows for a radial outward deflection of the first catch 14.1 when the syringe retainer 4 is in a proximal position and the injection needle 12 is exposed. The plunger 9 is released from the retaining element 14 in the proximal position and may move proximally to displace the stopper 10, whereby the dose of medication M is expelled through the injection needle 12.
A ring-shaped rotating collar 15 is circumferentially arranged around a tubular proximal section of the needle shroud 3. A pin 15.1 is formed to an inner surface of the rotating collar 15 that engages a track 3.1 formed into an outer surface of the needle shroud 3. The track 3.1 comprises a straight first section 3.1.1 and a helical second section 3.1.2 that can best be seen in
The coupling shroud 6 is slidably arranged within the housing 2 and comprises a flat first lateral wall 6.3 that abuts a corresponding flat second lateral wall 2.4 of the inner sleeve 2.2 to prevent a rotation of the coupling shroud 6 relative to the housing 2.
The essentially ring-shaped thrust collar 7 comprises an outer surface with a plurality of first and second protrusions 7.2, 7.3 formed thereto. The first and second protrusions 7.2, 7.3 are circumferentially displaced from each other and protrude radially outwards. The first protrusions 7.2 have a quadrangular shape, whereas the second protrusion 7.3 comprises a triangular shape.
The quadrangular first protrusion 7.2 comprises a first ramp 7.2.1 that abuts against a corresponding second ramp 2.5 formed to the housing 2. Furthermore, the first protrusion 7.2 abuts against the needle shroud 3 in a circumferential direction. Before the injection, the biased thrust collar 7 is retained in a first position I by the first protrusion 7.2 abutting against the needle shroud 3 and the second ramp 2.5 of the housing 2.
The injection is initiated by pressing the needle shroud 3 against the skin of the patient receiving the injection, whereby the needle shield 3 is displaced from the advanced position PA in the distal direction D to a retracted position PR. As shown in detail in
The thrust collar 7 is connected to the coupling shroud 6 that is attached to the plunger 9. The plunger 9 in turn is coupled to syringe retainer 4 via the retaining element 14. Thus, the coupling shroud 6 driven by the drive means 8 first translates the syringe retainer 4 holding the pre-filled syringe 5 in the proximal direction P until the syringe retainer 4 bears against a bearing surface 2.6 formed to the housing 2 as best seen in
The deflectable first catches 14.1 that couple the plunger 9 to the syringe retainer 4 are now located adjacent to the longitudinal apertures 2.3 formed into the inner sleeve 2.2 of the housing 2. The first catches 14.1 deflect in the radial outward direction due to their ramped engagement with the notches 9.1 and disengage from the notches 9.1 to decouple the plunger 9 from the syringe retainer 4.
The drive means 8 further relaxes and drives the coupling shroud 6, the thrust collar 7 and the plunger 9 in the proximal direction P. The plunger 9 pushes the stopper 10 proximally to expel the dose of medication M contained in the syringe barrel 11 through the injection needle 12.
When the stopper 10 reaches a proximal end of the syringe barrel 11, the injection stroke is completed and the dose of medication M is completely expelled. At the same time, the thrust collar 7 reaches a proximal second position II shown in
The needle shroud 3 is still pressed against the injection site to retain the needle shroud 3 in the retracted position PR. At the same time, the thrust collar 7 is located in the second position II. The triangular second protrusion 7.3 of the thrust collar 7 is retained in a u-shaped indentation 3.2 formed to the needle shroud 3. The u-shaped indentation 3.2 constitutes a proximal end of the second gap G2 and comprises a circumferential width that corresponds to the second protrusion 7.3. The u-shaped indentation 3.2 abuts against the second protrusion 7.3 in the circumferential direction, so that a rotation of the thrust collar 7 and thus a decoupling of the thrust collar 7 and the coupling shroud 6 are prevented until the needle shield 3 leaves the retracted position PR.
The auto-injector 1 is removed from the injection site. The biasing means 13 relaxes to return the needle shroud 3 to the advanced position PA. As a consequence, the needle shroud 3 moves proximally with respect to the housing 2 and the thrust collar 7 connected to the coupling shroud 6.
The clip 2.8 is deflectable in the radial inward direction to release the needle shroud 3. As shown in
When the needle shield 3 moves proximally from the advanced position PA to the safe position PS, the pin 15.1 of the rotating collar 15 travels along the second section 3.1.2 of the track 3.1 formed into the needle shroud 3. As the second section 3.1.2 is oriented at an angle with respect to the axis of the auto-injector, the translatory movement of the needle shroud 3 causes the rotating collar 15 to rotate around the axis, whereby friction is generated. The generated friction slows down and damps the proximal movement of the needle shroud 3.
As the thrust collar 7 and the needle shroud 3 have travelled proximally beyond the clip 2.8, the clip 2.8 deflects outwards to return to its prior position. The needle shroud 3 abuts against the t-shaped clip 2.8 in the distal direction D, so that a distal movement of the needle shroud 3 in the safe position PS relative to the housing 2 is prevented. Thus, the needle shroud 3 is permanently locked in the safe position PS and a re-exposure of the injection needle 12 is prevented. The thrust collar 7 travelled over the fifth ramp 2.7 and is located in a maximum proximal fourth position IV, wherein the thrust collar 7 abuts the needle shroud 3.
Number | Date | Country | Kind |
---|---|---|---|
10196070 | Dec 2010 | EP | regional |
The present application is a continuation of U.S. reissue application Ser. No. 15/905,435, filed Feb. 26, 2018, and is also a reissue application of U.S. Pat. No. 9,272,098. U.S. reissue application Ser. No. 15/905,435 is a broadening reissue of U.S. application Ser. No. 13/993,534, filed Jun. 12, 2013, now U.S. Pat. No. 9,272,098, which is a U.S. National Phase Application pursuant to 35 U.S.C. § 371 of International Application No. PCT/EP2011/073505 filed Dec. 21, 2011, which claims priority to European Patent Application No. 10196070.6 filed Dec. 21, 2010 and U.S. Provisional Patent Application No. 61/432,250 filed Jan. 13, 2011. The entire disclosure contents of these applications are herewith incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6277099 | Strowe et al. | Aug 2001 | B1 |
6620137 | Kirchhofer et al. | Sep 2003 | B2 |
7195616 | Diller et al. | Mar 2007 | B2 |
7291132 | DeRuntz et al. | Nov 2007 | B2 |
7297135 | Jeffrey | Nov 2007 | B2 |
7341575 | Rice et al. | Mar 2008 | B2 |
7597685 | Olson | Oct 2009 | B2 |
7678085 | Graf | Mar 2010 | B2 |
7717877 | Lavi et al. | May 2010 | B2 |
7771398 | Knight et al. | Aug 2010 | B2 |
7976494 | Kohlbrenner et al. | Jul 2011 | B2 |
8038649 | Kronestedt | Oct 2011 | B2 |
8048037 | Kohlbrenner et al. | Nov 2011 | B2 |
8062255 | Brunnberg et al. | Nov 2011 | B2 |
8083711 | Enggaard | Dec 2011 | B2 |
8276583 | Farieta et al. | Oct 2012 | B2 |
8323238 | Cronenberg et al. | Dec 2012 | B2 |
8357125 | Grunhut et al. | Jan 2013 | B2 |
8361025 | Lawlis et al. | Jan 2013 | B2 |
8366680 | Raab | Feb 2013 | B2 |
8376993 | Cox et al. | Feb 2013 | B2 |
8376997 | Hogdahl et al. | Feb 2013 | B2 |
8403883 | Fayyaz et al. | Mar 2013 | B2 |
8409141 | Johansen et al. | Apr 2013 | B2 |
8409148 | Fiechter et al. | Apr 2013 | B2 |
8439864 | Galbraith et al. | May 2013 | B2 |
8491538 | Kohlbrenner et al. | Jul 2013 | B2 |
8568359 | Carrel et al. | Oct 2013 | B2 |
8617109 | Kronestedt et al. | Dec 2013 | B2 |
8617124 | Wieselblad et al. | Dec 2013 | B2 |
8632507 | Bartha | Jan 2014 | B2 |
8684969 | Moller et al. | May 2014 | B2 |
8708973 | Holmqvist | May 2014 | B2 |
8734402 | Sharp et al. | May 2014 | B2 |
8758292 | Tschirren et al. | Jun 2014 | B2 |
8808250 | Eckman et al. | Aug 2014 | B2 |
8808251 | Raab et al. | Aug 2014 | B2 |
8821451 | Daniel | Sep 2014 | B2 |
8834431 | Kohlbrenner et al. | Sep 2014 | B2 |
8840591 | Raab et al. | Sep 2014 | B2 |
8858510 | Karlsson | Oct 2014 | B2 |
8882723 | Smith et al. | Nov 2014 | B2 |
8911411 | Nielsen | Dec 2014 | B2 |
8939934 | Brereton et al. | Jan 2015 | B2 |
8945063 | Wotton et al. | Feb 2015 | B2 |
8956331 | Johansen et al. | Feb 2015 | B2 |
8961473 | Heald | Feb 2015 | B2 |
8968256 | Raab | Mar 2015 | B2 |
8968258 | Nzike et al. | Mar 2015 | B2 |
8992484 | Radmer et al. | Mar 2015 | B2 |
8992487 | Eich et al. | Mar 2015 | B2 |
9011386 | Kronestedt et al. | Apr 2015 | B2 |
9005160 | Karlsson et al. | May 2015 | B2 |
9011387 | Eckman et al. | May 2015 | B2 |
9022991 | Moeller | May 2015 | B2 |
9022993 | Dasbach et al. | May 2015 | B2 |
9022994 | Moser et al. | May 2015 | B2 |
9044548 | Miller et al. | Jun 2015 | B2 |
9044553 | James et al. | Jun 2015 | B2 |
9057369 | Kohlbrenner et al. | Jun 2015 | B2 |
9061104 | Daniel | Jun 2015 | B2 |
9067024 | Roberts et al. | Jun 2015 | B2 |
9089652 | Nzike et al. | Jul 2015 | B2 |
9108002 | Markussen | Aug 2015 | B2 |
9125988 | Karlsson | Sep 2015 | B2 |
9132235 | Holmqvist | Sep 2015 | B2 |
9199038 | Daniel | Dec 2015 | B2 |
9205199 | Kemp et al. | Dec 2015 | B2 |
9216251 | Daniel | Dec 2015 | B2 |
9220841 | Daniel | Dec 2015 | B2 |
9233214 | Kemp et al. | Jan 2016 | B2 |
9233215 | Hourmand et al. | Jan 2016 | B2 |
9242044 | Markussen | Jan 2016 | B2 |
9272098 | Hourmand et al. | Mar 2016 | B2 |
9283326 | Kemp et al. | Mar 2016 | B2 |
9283327 | Hourmand et al. | Mar 2016 | B2 |
9308327 | Marshall et al. | Apr 2016 | B2 |
9333304 | Brereton et al. | May 2016 | B2 |
9339607 | Langley et al. | May 2016 | B2 |
9352088 | Eckman et al. | May 2016 | B2 |
9358345 | Brereton et al. | Jun 2016 | B2 |
9358351 | Eckman et al. | Jun 2016 | B2 |
9393368 | Nzike et al. | Jun 2016 | B2 |
9408897 | Levinson et al. | Aug 2016 | B2 |
9408977 | Butler et al. | Aug 2016 | B2 |
9408979 | Veasey et al. | Aug 2016 | B2 |
9415165 | Cowe | Aug 2016 | B2 |
9421336 | Eckman et al. | Aug 2016 | B2 |
9427525 | Barrow-Williams et al. | Aug 2016 | B2 |
9446196 | Hourmand et al. | Sep 2016 | B2 |
9446201 | Holmqvist | Sep 2016 | B2 |
9457149 | Kemp et al. | Oct 2016 | B2 |
9457152 | Raab et al. | Oct 2016 | B2 |
9492622 | Brereton et al. | Nov 2016 | B2 |
9662452 | Daniel | May 2017 | B2 |
9713677 | Daniel | Jul 2017 | B2 |
RE47903 | Hourmand | Mar 2020 | E |
20020007154 | Hansen et al. | Jan 2002 | A1 |
20020095120 | Larsen et al. | Jul 2002 | A1 |
20050222539 | Gonzales et al. | Oct 2005 | A1 |
20050273055 | Harrison et al. | Dec 2005 | A1 |
20060153693 | Fiechter et al. | Jul 2006 | A1 |
20060287630 | Hommann | Dec 2006 | A1 |
20070027430 | Hommann | Feb 2007 | A1 |
20070112310 | Lavi et al. | May 2007 | A1 |
20070129686 | Daily et al. | Jun 2007 | A1 |
20100185178 | Sharp et al. | Jul 2010 | A1 |
20100280460 | Markussen | Nov 2010 | A1 |
20100305512 | Guillermo et al. | Dec 2010 | A1 |
20110092915 | Olson et al. | Apr 2011 | A1 |
20110152781 | Brunnberg et al. | Jun 2011 | A1 |
20110313364 | Rolfe et al. | Dec 2011 | A1 |
20120010575 | Jones et al. | Jan 2012 | A1 |
20120041387 | Bruggemann et al. | Feb 2012 | A1 |
20120172817 | Bruggemann et al. | Jul 2012 | A1 |
20130035647 | Veasey et al. | Feb 2013 | A1 |
20130041328 | Daniel | Feb 2013 | A1 |
20130123710 | Ekman et al. | May 2013 | A1 |
20130131590 | Olson et al. | May 2013 | A1 |
20130261556 | Jones et al. | Oct 2013 | A1 |
20130274662 | Hourmand et al. | Oct 2013 | A1 |
20130274677 | Eckman et al. | Oct 2013 | A1 |
20130289525 | Kemp et al. | Oct 2013 | A1 |
20130310759 | Hourmand et al. | Nov 2013 | A1 |
20130345643 | Hourmand et al. | Dec 2013 | A1 |
20140288504 | Karlsson et al. | Sep 2014 | A1 |
20150100029 | Cowe et al. | Apr 2015 | A1 |
20150273157 | Kohlbrenner et al. | Oct 2015 | A1 |
20160089498 | Daniel | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
19819409 | Nov 1999 | DE |
202007000578 | Mar 2007 | DE |
102005052502 | May 2007 | DE |
0666084 | Aug 1995 | EP |
0824923 | Feb 1998 | EP |
0991441 | Dec 2003 | EP |
2399634 | Dec 2011 | EP |
2468334 | Jun 2012 | EP |
2468335 | Jun 2012 | EP |
WO 1999053979 | Oct 1999 | WO |
WO 2003062672 | Jul 2003 | WO |
WO 2005025636 | Mar 2005 | WO |
WO 2005097238 | Oct 2005 | WO |
WO 2006057604 | Jun 2006 | WO |
WO 2007099044 | Sep 2007 | WO |
WO 2007129324 | Nov 2007 | WO |
WO 2008059385 | May 2008 | WO |
WO 2008116688 | Oct 2008 | WO |
WO 2009040607 | Apr 2009 | WO |
WO 2009062508 | May 2009 | WO |
WO 2010063707 | Jun 2010 | WO |
WO 2010146358 | Dec 2010 | WO |
WO 2011012903 | Feb 2011 | WO |
WO 2011109205 | Sep 2011 | WO |
WO 2011111006 | Sep 2011 | WO |
WO 2011117592 | Sep 2011 | WO |
WO 2011126439 | Oct 2011 | WO |
WO 2012045350 | Apr 2012 | WO |
WO 2012085024 | Jun 2012 | WO |
Entry |
---|
PCT International Preliminary Report on Patentability in International Appln. No. PCT/EP2011/073503, dated Jun. 25, 2013, 7 pages. |
PCT International Search Report in International Appln. No. PCT/EP2011/073503, dated Mar. 9, 2012, 4 pages. |
PCT International Preliminary Report on Patentability in International Application No. PCT/EP2011/073505, dated Jun. 25, 2013, 5 pages. |
PCT International Search Report in International Application No. PCT/EP2011/073505, dated Jun. 15, 2012, 7 pages. |
International Search Report for Int. App. No. PCT/EP2011/073505, completed Jun. 6, 2012. |
Number | Date | Country | |
---|---|---|---|
61432250 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15905435 | Feb 2018 | US |
Child | 13993534 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13993534 | Dec 2011 | US |
Child | 16749698 | US | |
Parent | 13993534 | Jun 2013 | US |
Child | 15905435 | US |