The invention relates to an auto-injector for administering a dose of a liquid medicament according to the preamble of claim 1.
Administering an injection is a process which presents a number of risks and challenges for users and healthcare professionals, both mental and physical.
Injection devices (i.e. devices capable of delivering medicaments from a medication container) typically fall into two categories—manual devices and auto-injectors.
In a manual device—the user must provide the mechanical energy to drive the fluid through the needle. This is typically done by some form of button/plunger that has to be continuously pressed by the user during the injection. There are numerous disadvantages to the user from this approach. If the user stops pressing the button/plunger then the injection will also stop. This means that the user can deliver an underdose if the device is not used properly (i.e. the plunger is not fully pressed to its end position). Injection forces may be too high for the user, in particular if the patient is elderly or has dexterity problems.
The extension of the button/plunger may be too great. Thus it can be inconvenient for the user to reach a fully extended button. The combination of injection force and button extension can cause trembling/shaking of the hand which in turn increases discomfort as the inserted needle moves.
Auto-injector devices aim to make self-administration of injected therapies easier for patients. Current therapies delivered by means of self-administered injections include drugs for diabetes (both insulin and newer GLP-1 class drugs), migraine, hormone therapies, anticoagulants etc.
Auto-injectors are devices which completely or partially replace activities involved in parenteral drug delivery from standard syringes. These activities may include removal of a protective syringe cap, insertion of a needle into a patient's skin, injection of the medicament, removal of the needle, shielding of the needle and preventing reuse of the device. This overcomes many of the disadvantages of manual devices. Injection forces/button extension, hand-shaking and the likelihood of delivering an incomplete dose are reduced. Triggering may be performed by numerous means, for example a trigger button or the action of the needle reaching its injection depth. In some devices the energy to deliver the fluid is provided by a spring.
US 2002/0095120 A1 discloses an automatic injection device which automatically injects a pre-measured quantity of fluid medicine when a tension spring is released. The tension spring moves an ampoule and the injection needle from a storage position to a deployed position when it is released. The content of the ampoule is thereafter expelled by the tension spring forcing a piston forward inside the ampoule. After the fluid medicine has been injected, torsion stored in the tension spring is released and the injection needle is automatically retracted back to its original storage position.
US 2007/0112310 A1 discloses an injector being automatic in that the needle is inserted into the injection site (e.g., a patient's skin) with user or caregiver assistance, the delivery is automatically initiated upon needle insertion, and the needle is retracted automatically after the end of delivery. Preferably the needle is not seen by the user prior to, during or after injection. Prior to and after injection, the needle is hidden in the device so as to avoid any potential injury or health risk to the user or health care provider. The injector includes a housing and a shield arranged to slide relative to the housing and a driver moving during drug delivery. The housing and shield form a cartridge enclosure. The cartridge is shielded and locked after delivery is completed. A needle-locking mechanism can be used in any number of pen-like injectors or safety needles.
U.S. Pat. No. 5,267,963 discloses an automatic injection device which, upon activation by the user, automatically extends a syringe with needle, delivers medication through the needle, and retracts the needle, thus keeping the needle hidden from view. All motions are achieved by means of a tension spring and a cam profile.
WO 2009/081103 A1 discloses an auto-injector for a syringe that is suitable for use in the injected delivery of drug to a patient. The auto-injector comprises a housing defining a housing cavity arranged for receipt of a syringe; and a needle delivery aperture through which a needle tip of the syringe protrudes during dispensing of the liquid drug formulation. The auto-injector further comprises a barrel coupling element that couples to the barrel of the syringe and is movable in tandem therewith; a syringe advancer for moving the syringe and barrel coupling element in tandem therewith from a rest position, in which the hollow needle, is within the housing to a use position, in which the needle tip protrudes through the needle delivery aperture; a syringe actuator for actuating the syringe by plunging said plunger within the barrel of the syringe to dispense the liquid drug formulation; a syringe retractor for retracting the syringe and barrel coupling element in tandem therewith from the use position to a retract position, in which the hollow needle is within the housing; and a syringe lock for locking the barrel coupling element and syringe coupled thereto in the retract position.
WO 2008/155377 discloses an inserter for an infusion set comprising an insertion needle and a spring unit assuring automatic insertion and automatic retraction of the insertion needle. The inserter for a medical device comprises—a housing, —a first body which is movable relative to the housing and comprising penetrating means pointing in the direction of insertion, —a second body which is also movable relative to the housing and—driving means which move respectively the first body and the second body relative to the housing wherein the driving means moves the first body in the direction of insertion and moves the second body in a direction different from the insertion direction.
DE 10 2005 038 933 A1 discloses an inserter for an infusion set comprising an insertion needle and a spring unit assuring automatic insertion and automatic retraction of the insertion needle. The inserter for a medical device comprises—a housing, —a first body which is movable relative to the housing and comprising penetrating means pointing in the direction of insertion, —a second body which is also movable relative to the housing and—driving means which move respectively the first body and the second body relative to the housing wherein the driving means moves the first body in the direction of insertion and moves the second body in a direction different from the insertion direction.
It is an object of the present invention to provide an improved auto-injector.
The object is achieved by an auto-injector according to claim 1.
Preferred embodiments of the invention are given in the dependent claims.
According to the invention, an auto-injector for administering a dose of a liquid medicament comprises:
In the context of this patent application the term proximal refers to the direction pointing towards the patient during an injection while the term distal refers to the opposite direction pointing away from the patient.
According to the invention the spring means is a single compression spring arranged to be grounded at a distal end in the housing for advancing the needle and for injecting the dose of medicament. The force of the compression spring is forwarded to the needle and/or the syringe via a plunger. The compression spring is arranged to have its ground in the housing switched to its proximal end for retracting the syringe when the injection of the medicament is at least nearly finished.
The single compression spring is used for inserting the needle, fully emptying the syringe and retracting the syringe and needle to a safe position after injection. Thus a second spring for withdrawing the syringe and needle, which is a motion with an opposite sense compared to advancing the syringe and injecting the dose, is not required. While the distal end of the compression spring is grounded the proximal end moves the syringe forward for inserting the needle and carries on to the injection by pushing on the stopper. When the injection is at least nearly finished the compression spring bottoms out at its proximal end, resulting in the proximal end being grounded in the housing. At the same time the distal end of the compression spring is released from its ground in the housing. The compression spring is now pulling the syringe in the opposite direction.
The auto-injector according to the invention has a particularly low part count compared to most conventional auto-injectors. The use of just one compression spring reduces the amount of metal needed and thus consequently reduces weight and manufacturing costs.
In a preferred embodiment of the invention a retraction sleeve is axially movable arranged in the housing. At least one latch is provided for axially fixing the retraction sleeve in a maximum proximal position. The compression spring is arranged inside the retraction sleeve with its distal end bearing against a distal end face of the retraction sleeve and with its proximal end bearing against a thrust face of a decoupling member. The decoupling member is arranged to decouple the latch when being moved in proximal direction nearly into a maximum proximal position. When decoupled the retraction sleeve is allowed to move in distal direction and retract the needle by means of the spring force which is no longer grounded at its distal end.
Preferably the plunger is arranged for pushing the syringe and/or the stopper in proximal direction. At least two resilient decoupling arms are arranged at the decoupling member. The decoupling arms exhibit inner ramped surfaces bearing against a first shoulder of the plunger in proximal direction P. The resilient decoupling arms are supportable by an inner wall of the retraction sleeve in order to prevent the decoupling arms from being flexed outward and slip past the first shoulder. In this state the plunger may be pushed in proximal direction by the decoupling member pushing against the first shoulder in order to insert the needle and inject the dose. At least one aperture is arranged in the retraction sleeve allowing the decoupling arms to be flexed outward by the first shoulder thus allowing the first shoulder to slip through the decoupling arms in proximal direction. This may happen when the injection is at least nearly finished. The decoupled plunger allows the syringe and needle to be retracted since it is no longer bearing against the decoupling member.
The syringe may be arranged for joint axial movement with a syringe holder which is slidably arranged in the retraction sleeve. The syringe holder is provided with at least two resilient syringe holder arms arranged distally, the syringe holder arms having a respective inclined surface for bearing against a second shoulder, which is arranged at the plunger proximally from the first shoulder. The syringe holder arms are supportable by an inner surface of the housing in order to prevent them from being flexed outward. Thus, when the trigger button is pressed the spring force forwarded by the plunger does not yet press against the stopper but against the syringe for forwarding it. Consequently, a so called wet injection is avoided, i.e. the liquid medicament is not leaking out of the hollow needle before the needle is inserted. A widened portion is provided in the housing for allowing the syringe holder arms to flex outwards when the syringe holder has nearly reached a maximum proximal position thus allowing the second shoulder to slip through the syringe holder arms and to switch load of the compression spring from the syringe to the stopper. This allows for defining the moment to start injecting the medicament.
A stud may be arranged at the distal end of the plunger. The retraction sleeve may have two or more resilient arms distally from the end face for holding the stud. The stud and/or the resilient arms have ramp features. Thus the resilient arms may be pushed apart by the stud when the plunger is moved in proximal direction. The activating means comprise a trigger button arranged at the distal end of the auto-injector. The trigger button is axially moveable and has at least two rigid retainers for preventing the resilient arms from being flexed outward when the trigger button is in a maximum distal position. Upon pushing the trigger button in proximal direction the retainers are moved in proximal direction in a manner to allow the resilient arms to be flexed out by the stud biased by the compression spring in proximal direction. Thus the stud is allowed to slip past the resilient arms in proximal direction under load of the compression spring in order to start a needle insertion/injection/retraction cycle. The main advantages of this trigger mechanism are its simplicity, the low part count and a high reliability.
In order to reduce the risk of unintentionally triggering the auto-injector a safety button may be arranged laterally at the housing. The safety button has an interlock for preventing the trigger button from being pushed. The safety button is arranged to pull the interlock outward when operated thus allowing the trigger button to be pushed. For this purpose the safety button may be pivoted in the housing or it may be cast in one piece with the housing in a manner to be pivoted somewhere in the middle so pushing one end inwards causes the other end to be pulled outwards.
Consequently, in order to operate the trigger button the safety button has to be pushed first so the auto-injector cannot be operated unintentionally. Another advantage of the lateral safety button is that the risk of operating the auto-injector in the wrong orientation and injecting into the thumb is reduced.
In a preferred embodiment of the invention a delay box is arranged for slowing down the motion of the retraction sleeve. The latches are arranged to be disengaged by the decoupling member before the stopper has reached a maximum proximal position in the syringe. The apertures are arranged to meet the decoupling arms after the stopper has reached its maximum proximal position by means of the motion of the retraction sleeve. A gap is provided between a front face of the retraction sleeve and the syringe holder in their respective maximum proximal positions. The gap allows the retraction sleeve to travel a distance before retracting the syringe holder so the syringe holder is retracted after the decoupling arms met the apertures.
Triggering the retraction when the stopper exactly reaches the end of its travel is a problem due to tolerances when manufacturing the syringe and stopper. Due to these tolerances the position of the stopper at the end of its travel is not repeatable. Consequently, in some cases the stopper would prematurely bottom out so the retraction would not be triggered at all. In other cases the retraction would be triggered before the stopper bottomed so residual medicament would remain in the syringe.
Releasing the retraction sleeve from the housing a certain amount of time or travel before the stopper bottoms out in the syringe avoids the risk of stalling the retraction by the stopper hitting the end of the syringe prematurely. The damped backward motion of the retraction sleeve due to the delay box allows the plunger and stopper to finish their forward travel so the syringe is entirely emptied. The apertures of the retraction sleeve and the decoupling arms, which are now moving in opposite directions, meet after the stopper and plunger have stopped in order to decouple the decoupling member from the plunger. Due to the gap between the front face and the syringe holder the retraction sleeve is not immediately dragging the syringe back in distal direction when starting to move back. When the retraction sleeve has travelled back far enough to close the gap the stopper has already bottomed out and the plunger has been decoupled from the decoupling member. As soon as the gap is closed the syringe holder, the syringe, the hollow needle and the plunger are dragged back in distal direction.
Thus both problems are solved, reliably retracting the hollow needle to a safe position and fully emptying the syringe which is particularly desirable with expensive drugs. Emptying the syringe is also important for dosage accuracy.
The delay box may comprise a circumferential outer wall with a back collar attached to the housing and a circumferential inner wall with a front collar attached to the retraction sleeve. A volume is defined between the outer wall and inner wall, the volume sealed by the back collar and front collar and filled with a viscous fluid. At least one hole is arranged in the delay box for allowing the viscous fluid to be pushed out as the volume decreases due to motion of the retraction sleeve. This is a particularly simple and cost-efficient way to damp the backward motion of the retraction sleeve.
Usually the hollow needle is equipped with a protective needle shield for keeping the needle sterile and preventing it from being mechanically damaged. The protective needle shield is attached to the needle when the auto-injector or the syringe is assembled.
Preferably a cap is provided at the proximal end of the housing. A sheet metal clip is attached to the cap for joint axial movement and independent rotation. The sheet metal clip is arranged to extend through an orifice into the housing when the cap is attached to the housing. The sheet metal clip comprises at least two barbs snapped into a circumferential notch or behind a shoulder of the protective needle shield. This allows for automatically engaging the sheet metal clip with the protective needle shield during assembly. When the cap is removed from the housing in preparation of an injection the protective needle shield is reliably removed without exposing the user too high a risk to injure themselves.
The cap may be attachable to the housing by a screw connection. This allows for a low force removal of the protective needle shield.
The housing may have at least one viewing window for inspecting the syringe.
The auto-injector may preferably be used for subcutaneous or intra-muscular injection, particularly for delivering one of an analgetic, an anticoagulant, insulin, an insulin derivate, heparin, Lovenox, a vaccine, a growth hormone, a peptide hormone, a proteine, antibodies and complex carbohydrates.
The term “medicament”, as used herein, means a pharmaceutical formulation containing at least one pharmaceutically active compound,
Insulin analogues are for example Gly(A21), Arg(B31), Arg(B32) human insulin; Lys(B3), Glu(B29) human insulin; Lys(B28), Pro(B29) human insulin; Asp(B28) human insulin; human insulin, wherein proline in position B28 is replaced by Asp, Lys, Leu, Val or Ala and wherein in position B29 Lys may be replaced by Pro; Ala(B26) human insulin; Des(B28-B30) human insulin; Des(B27) human insulin and Des(B30) human insulin.
Insulin derivates are for example B29-N-myristoyl-des(B30) human insulin; B29-N-palmitoyl-des(B30) human insulin; B29-N-myristoyl human insulin; B29-N-palmitoyl human insulin; B28-N-myristoyl LysB28ProB29 human insulin; B28-N-palmitoyl-LysB28ProB29 human insulin; B30-N-myristoyl-ThrB29LysB30 human insulin; B30-N-palmitoyl-ThrB29LysB30 human insulin; B29-N—(N-palmitoyl-Y-glutamyl)-des(B30) human insulin; B29-N—(N-lithocholyl-Y-glutamyl)-des(B30) human insulin; B29-N-(ω-carboxyheptadecanoyl)-des(B30) human insulin and B29-N-(ω-carboxyheptadecanoyl) human insulin.
Exendin-4 for example means Exendin-4(1-39), a peptide of the sequence H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu- Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser- Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2.
Exendin-4 derivatives are for example selected from the following list of compounds:
Hormones are for example hypophysis hormones or hypothalamus hormones or regulatory active peptides and their antagonists as listed in Rote Liste, ed. 2008, Chapter 50, such as Gonadotropine (Follitropin, Lutropin, Choriongonadotropin, Menotropin), Somatropine (Somatropin), Desmopressin, Terlipressin, Gonadorelin, Triptorelin, Leuprorelin, Buserelin, Nafarelin, Goserelin.
A polysaccharide is for example a glucosaminoglycane, a hyaluronic acid, a heparin, a low molecular weight heparin or an ultra low molecular weight heparin or a derivative thereof, or a sulphated, e.g. a poly-sulphated form of the above-mentioned polysaccharides, and/or a pharmaceutically acceptable salt thereof. An example of a pharmaceutically acceptable salt of a poly-sulphated low molecular weight heparin is enoxaparin sodium.
Pharmaceutically acceptable salts are for example acid addition salts and basic salts. Acid addition salts are e.g. HCl or HBr salts. Basic salts are e.g. salts having a cation selected from alkali or alkaline, e.g. Na+, or K+, or Ca2+, or an ammonium ion N+(R1)(R2)(R3)(R4), wherein R1 to R4 independently of each other mean: hydrogen, an optionally substituted C1-C6-alkyl group, an optionally substituted C2-C6-alkenyl group, an optionally substituted C6-C10-aryl group, or an optionally substituted C6-C10-heteroaryl group. Further examples of pharmaceutically acceptable salts are described in “Remington's Pharmaceutical Sciences” 17. ed. Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, Pa., U.S.A., 1985 and in Encyclopedia of Pharmaceutical Technology.
Pharmaceutically acceptable solvates are for example hydrates.
The delay box may be employed with other types of auto-injectors.
The cap with the sheet metal spring may also be applied with other auto-injectors and injection devices.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus, are not limiting of the present invention, and wherein:
Corresponding parts are marked with the same reference symbols in all figures.
Inside the housing 2 a retraction sleeve 10 is slidably arranged. Before the injection is triggered as shown in
The decoupling member 14 comprises a thrust face 17 for bearing against a proximal end of the compression spring 8. Proximally from the thrust face 17 two or more resilient decoupling arms 18 are provided at the decoupling member 14, the decoupling arms 18 having inner ramped surfaces bearing against a first shoulder 19 in the plunger 9 in proximal direction P. The resilient decoupling arms 18 are supported by an inner wall of the retraction sleeve 10 in this situation so they cannot flex outward and slip past the first shoulder 19.
A trigger button 20 is arranged at the distal end D of the auto-injector 1. The trigger button 20 may be pushed in proximal direction P in order to start an injection. As long as the trigger button 20 is not pushed the resilient arms 15 are caught between two or more retainers 21 arranged at the trigger button 20 so the resilient arms 15 cannot flex outward and the stud 16 although proximally biased by the compression spring 8 cannot slip through.
The syringe carrier 7 is engaged for joint axial movement with a syringe holder 22 which is slidably arranged in the retraction sleeve 10. The syringe holder 22 is provided with two or more resilient syringe holder arms 23 arranged distally. The syringe holder arms 23 have a respective inclined surface for bearing against a second shoulder 24 in the plunger 9 arranged proximally from the first shoulder 19. In the initial position shown in
When a user wants to operate the auto-injector 1 the first step is to unscrew the cap 25. Thus the barbs 27 pull the protective needle shield 5 off the syringe 3 in proximal direction P and through the orifice making the syringe 3 ready to be used.
A safety button 29 is arranged laterally at the distal part of the housing 2. The safety button 29 serves for interlocking with the trigger button 20 in a manner to prevent the trigger button 20 from being inadvertently operated without the safety button 29 being released from a first blocking position.
Consequently, in order to operate the trigger button 20 the safety button 29 has to be pushed transversally with respect to the longitudinal axis against the force of a spring element 30 which is formed in the safety button 29. The safety button 29 is pivoted in the middle so pushing the proximal end of the safety button 29 inward pulls an interlock 31 at its proximal end obstructing the trigger button 20 outward so the trigger button 20 can be pushed.
When the trigger button 20 is pushed the retainers 21 are pushed in proximal direction P so the resilient arms 15 are allowed to flex outward. Under load of the compression spring 8 the inclined surfaces of the stud 16 force the resilient arms 15 apart until the stud 16 can slip through.
The second shoulder 24 pushes the syringe holder 22, syringe carrier 7 and syringe 3 forward while no load is exerted onto the stopper 6. The hollow needle 4 appears from the proximal end P and is inserted into an injection site, e.g. a patient's skin.
The forward movement continues until the syringe holder 22 bottoms out at a first abutment 32 in the housing 2 (see
When the syringe holder 22 has nearly bottomed out the resilient syringe holder arms 23 have reached a widened portion 2.1 of the housing 2 where they are no longer supported by the inner wall of the housing 2. However, since the force required to insert the needle 4 is relatively low the second shoulder 24 will continue to drive forward the syringe holder 22 until proximal travel is halted at the first abutment 32. At this point the syringe holder arms 23 are flexed out by the continued force of the second shoulder 24 and allow it to slip through. Now the plunger 9 no longer pushes against the syringe holder 22 but against the stopper 6 for expelling the medicament M from the syringe 3 and injecting it into or through the patient's skin.
When the stopper 6 has nearly bottomed out in the syringe 3 (cf.
Just before the decoupling member 14 decouples the retraction sleeve 10 from the housing 2 the decoupling arms 18 reach an aperture 34 in the retraction sleeve 10 (see
The syringe holder 22 is taken along in distal direction D by the retraction sleeve 10, e.g. by a front face 35. Thus the syringe 3 and needle 4 are retracted into a safe position inside the housing 2, e.g. into the initial position. The plunger 9, no longer bearing against the decoupling arms 18 is pulled back too.
In the distal part of the auto-injector 1 a delay box 36 is arranged (see
The retraction sleeve 10 is released by the decoupling member 14 from the housing 2 a certain amount of time or travel before the stopper 6 bottoms out in the syringe 3 and the distal motion of the retraction sleeve 10 begins. The motion of the retraction sleeve 10 is slowed down by the delay box 36. Due to a gap 41 between the front face 35 and the syringe holder 22 the retraction sleeve 10 is not yet dragging the syringe back in distal direction D. The plunger 9 is still pushing against the stopper 6 and expelling residual medicament M. As the stopper 6 hits the proximal end of the syringe 3 the stopper 6 and plunger 9 stop while the retraction sleeve 10 is still slowly moving back in distal direction D. The apertures 34 now meet the decoupling arms 18 allowing them to flex out and the plunger 9 to come clear. The retraction sleeve 10 has now travelled back far enough to close the gap 41 so the syringe holder 22, syringe carrier 7, syringe 3, needle 4 and plunger 9 are dragged back in distal direction D.
The cap 25 and the delay box 36 are not restricted to be used with the auto-injector 1 shown in the embodiments. Instead the cap 25 may be combined with any kind of auto-injector with the needle hidden in the housing prior to an injection. The delay box may be combined with any kind of auto-injector for ensuring full delivery of the syringe's contents and reliable triggering of the retraction, irrespective of the spring means or driving means used in the respective auto-injector.
The housing 2 may have at least one viewing window for inspecting the syringe 3.
The auto-injector 1 may preferably be used for subcutaneous or intra-muscular injection, particularly for delivering one of an analgetic, an anticoagulant, insulin, an insulin derivate, heparin, Lovenox, a vaccine, a growth hormone, a peptide hormone, a proteine, antibodies and complex carbohydrates.
The aforementioned arrangement for coupling the plunger (9) to either, the syringe (3) or the stopper (6), may be applied in any auto-injector having a plunger for forwarding a force of a drive means to a syringe with a stopper. The primary advantage of this arrangement ensures the load from the drive means is not transferred directly to the stopper until the needle is inserted in the patient, thus avoiding a wet injection. The arrangement comprises the syringe holder (22) and associated syringe holder arms (23), a shoulder (e.g. the second shoulder 24) on the plunger (9), the support of the holder arms (23) by an inner surface in order to prevent them from flexing out in a first position and, a widened portion (2.1) for allowing them to flex radially and to disconnect from the plunger when in a more proximal position. The spring means or other drive means, the ability to retract the syringe or to forward a needle shroud after injection and other features described herein are not required for the prevention of a wet injection.
Number | Date | Country | Kind |
---|---|---|---|
10153999 | Feb 2010 | EP | regional |
The present application is a continuation of U.S. patent application Ser. No. 17/706,380, filed Mar. 28, 2022, which is a continuation of U.S. patent application Ser. No. 17/453,601, filed on Nov. 4, 2021, which is a continuation of U.S. patent application Ser. No. 16/276,366, filed Feb. 14, 2019, now U.S. Pat. No. 11,197,958, which is a continuation of U.S. patent application Ser. No. 14/995,964, filed Jan. 14, 2016, now U.S. Pat. No. 10,232,116, which is a continuation of U.S. patent application Ser. No. 13/579,435, filed Feb. 25, 2013, now U.S. Pat. No. 9,248,245, which is a 35 U.S.C. 371 National Application of PCT/EP2011/052301, filed Feb. 16, 2011, and claims priority to European Patent Application No. 10153999.7, filed Feb. 18, 2010 and U.S. Patent Application No. 61/412,086, filed Nov. 10, 2010, the entire contents of which are incorporated entirely herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5137516 | Rand | Aug 1992 | A |
5267963 | Bachynsky | Dec 1993 | A |
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6277099 | Strowe et al. | Aug 2001 | B1 |
6454743 | Weber | Sep 2002 | B1 |
6620137 | Kirchhofer et al. | Sep 2003 | B2 |
7195616 | Diller et al. | Mar 2007 | B2 |
7291132 | DeRuntz et al. | Nov 2007 | B2 |
7297135 | Jeffrey | Nov 2007 | B2 |
7341575 | Rice et al. | Mar 2008 | B2 |
7597685 | Olson | Oct 2009 | B2 |
7666164 | Giambattista et al. | Feb 2010 | B2 |
7678085 | Graf | Mar 2010 | B2 |
7717877 | Lavi et al. | May 2010 | B2 |
7771397 | Olson | Aug 2010 | B1 |
7771398 | Knight et al. | Aug 2010 | B2 |
7811261 | Rubinstein et al. | Oct 2010 | B2 |
7918824 | Bishop et al. | Apr 2011 | B2 |
7976494 | Kohlbrenner et al. | Jul 2011 | B2 |
7988675 | Gillespie et al. | Aug 2011 | B2 |
8038649 | Kronestedt | Oct 2011 | B2 |
8048037 | Kohlbrenner et al. | Nov 2011 | B2 |
8062255 | Brunnberg et al. | Nov 2011 | B2 |
8083711 | Enggaard | Dec 2011 | B2 |
8323238 | Cronenberg et al. | Dec 2012 | B2 |
8357125 | Grunhut et al. | Jan 2013 | B2 |
8361025 | Lawlis et al. | Jan 2013 | B2 |
8366680 | Raab | Feb 2013 | B2 |
8376993 | Cox et al. | Feb 2013 | B2 |
8376997 | Hogdahl et al. | Feb 2013 | B2 |
8403883 | Fayyaz et al. | Mar 2013 | B2 |
8409138 | James et al. | Apr 2013 | B2 |
8409141 | Johnsen et al. | Apr 2013 | B2 |
8409148 | Fiechter et al. | Apr 2013 | B2 |
8414533 | Alexandersson | Apr 2013 | B2 |
8439864 | Galbraith et al. | May 2013 | B2 |
8491538 | Kohlbrenner et al. | Jul 2013 | B2 |
8568359 | Carrel et al. | Oct 2013 | B2 |
8579866 | Morgan et al. | Nov 2013 | B2 |
8617109 | Kronestedt et al. | Dec 2013 | B2 |
8617124 | Wieselblad et al. | Dec 2013 | B2 |
8632507 | Bartha | Jan 2014 | B2 |
8684969 | Moller et al. | Apr 2014 | B2 |
8708973 | Holmqvist | Apr 2014 | B2 |
8734394 | Adams et al. | May 2014 | B2 |
8734402 | Sharp et al. | May 2014 | B2 |
8758292 | Tschirren et al. | Jun 2014 | B2 |
8808250 | Ekman et al. | Aug 2014 | B2 |
8808251 | Raab et al. | Aug 2014 | B2 |
8821451 | Daniel | Sep 2014 | B2 |
8834431 | Kohlbrenner et al. | Sep 2014 | B2 |
8840591 | Raab et al. | Sep 2014 | B2 |
8882723 | Smith et al. | Nov 2014 | B2 |
8911410 | Ekman et al. | Dec 2014 | B2 |
8911411 | Nielsen | Dec 2014 | B2 |
8939934 | Brereton et al. | Jan 2015 | B2 |
8945063 | Wotton et al. | Feb 2015 | B2 |
8956331 | Johnsen et al. | Feb 2015 | B2 |
8961473 | Heald | Feb 2015 | B2 |
8968256 | Raab | Mar 2015 | B2 |
8968258 | Nzike et al. | Mar 2015 | B2 |
8992484 | Radmer et al. | Mar 2015 | B2 |
8992487 | Eich et al. | Mar 2015 | B2 |
9005160 | Karlsson et al. | Apr 2015 | B2 |
9011386 | Kronestedt et al. | Apr 2015 | B2 |
9011387 | Ekman et al. | Apr 2015 | B2 |
9022991 | Moeller | May 2015 | B1 |
9022994 | Moser et al. | May 2015 | B2 |
9044548 | Miller et al. | Jun 2015 | B2 |
9044553 | James et al. | Jun 2015 | B2 |
9057369 | Kohlbrenner et al. | Jun 2015 | B2 |
9061104 | Daniel | Jun 2015 | B2 |
9067024 | Roberts et al. | Jun 2015 | B2 |
9089652 | Nzike et al. | Jul 2015 | B2 |
9108002 | Markussen | Aug 2015 | B2 |
9125988 | Karlsson | Sep 2015 | B2 |
9132235 | Holmqvist | Sep 2015 | B2 |
9199038 | Daniel | Dec 2015 | B2 |
9205199 | Kemp et al. | Dec 2015 | B2 |
9216256 | Olson et al. | Dec 2015 | B2 |
9233213 | Olson et al. | Jan 2016 | B2 |
9233214 | Kemp et al. | Jan 2016 | B2 |
9233215 | Hourmand et al. | Jan 2016 | B2 |
9242044 | Markussen | Jan 2016 | B2 |
9248245 | Ekman et al. | Feb 2016 | B2 |
9272098 | Hourmand et al. | Mar 2016 | B2 |
9283326 | Kemp et al. | Mar 2016 | B2 |
9283327 | Hourmand et al. | Mar 2016 | B2 |
9283328 | Dasbach | Mar 2016 | B2 |
9308327 | Marshall et al. | Apr 2016 | B2 |
9333304 | Brereton et al. | May 2016 | B2 |
9339607 | Langley et al. | May 2016 | B2 |
9352088 | Ekman et al. | May 2016 | B2 |
9358345 | Brereton et al. | Jun 2016 | B2 |
9358351 | Ekman et al. | Jun 2016 | B2 |
9393368 | Nzike et al. | Jul 2016 | B2 |
9402957 | Adams et al. | Aug 2016 | B2 |
9408976 | Olson | Aug 2016 | B2 |
9408977 | Butler et al. | Aug 2016 | B2 |
9408979 | Veasey et al. | Aug 2016 | B2 |
9415165 | Cowe | Aug 2016 | B2 |
9421336 | Ekman et al. | Aug 2016 | B2 |
9427525 | Barrow-Williams et al. | Aug 2016 | B2 |
9446196 | Hourmand et al. | Sep 2016 | B2 |
9446201 | Holmqvist | Sep 2016 | B2 |
9457149 | Kemp et al. | Oct 2016 | B2 |
9457152 | Raab et al. | Oct 2016 | B2 |
9492622 | Brereton et al. | Nov 2016 | B2 |
9649441 | Barrow-Williams et al. | May 2017 | B2 |
9662452 | Daniel | May 2017 | B2 |
9867940 | Holmqvist et al. | Jan 2018 | B2 |
9872961 | Fourt et al. | Jan 2018 | B2 |
10118001 | Fourt et al. | Nov 2018 | B2 |
10314981 | Sampson et al. | Jun 2019 | B2 |
10350356 | Hirschel et al. | Jul 2019 | B2 |
10350362 | Dennis, Jr. et al. | Jul 2019 | B2 |
10363377 | Atterbury et al. | Jul 2019 | B2 |
10420898 | Daniel | Sep 2019 | B2 |
10569019 | Hirschel et al. | Feb 2020 | B2 |
10799647 | Hostettler et al. | Oct 2020 | B2 |
10881799 | Hirschel et al. | Jan 2021 | B2 |
11197958 | Ekman et al. | Dec 2021 | B2 |
11298462 | Atterbury et al. | Apr 2022 | B2 |
11383044 | Tschirren et al. | Jul 2022 | B2 |
11452821 | Lafever et al. | Sep 2022 | B2 |
20020007154 | Hansen et al. | Jan 2002 | A1 |
20020095120 | Larsen et al. | Jul 2002 | A1 |
20030105430 | Lavi et al. | Jun 2003 | A1 |
20040039336 | Amark et al. | Feb 2004 | A1 |
20050101919 | Brunnberg et al. | May 2005 | A1 |
20050165360 | Stamp | Jul 2005 | A1 |
20050222539 | Gonzales et al. | Oct 2005 | A1 |
20060129089 | Stamp | Jun 2006 | A1 |
20060153693 | Fiechter et al. | Jul 2006 | A1 |
20060287630 | Hommann | Dec 2006 | A1 |
20070027430 | Hommann | Feb 2007 | A1 |
20070112310 | Lavi et al. | May 2007 | A1 |
20080147006 | Brunnberg et al. | Jun 2008 | A1 |
20080262427 | Hommann | Oct 2008 | A1 |
20080269692 | James et al. | Oct 2008 | A1 |
20090012471 | Harrison | Jan 2009 | A1 |
20100130930 | Stamp et al. | May 2010 | A1 |
20100152655 | Stamp | Jun 2010 | A1 |
20100185178 | Sharp et al. | Jul 2010 | A1 |
20110054411 | Dowds et al. | Mar 2011 | A1 |
20110282278 | Stamp et al. | Nov 2011 | A1 |
20110319864 | Beller et al. | Dec 2011 | A1 |
20120010575 | Jones et al. | Jan 2012 | A1 |
20120041387 | Bruggemann et al. | Feb 2012 | A1 |
20120053528 | Bollenbach et al. | Mar 2012 | A1 |
20120172817 | Bruggemann et al. | Jul 2012 | A1 |
20130035647 | Veasey et al. | Feb 2013 | A1 |
20130041328 | Daniel | Feb 2013 | A1 |
20130123710 | Ekman et al. | May 2013 | A1 |
20130261556 | Jones et al. | Oct 2013 | A1 |
20130274662 | Hourmand et al. | Oct 2013 | A1 |
20130274677 | Ekman et al. | Oct 2013 | A1 |
20130289525 | Kemp et al. | Oct 2013 | A1 |
20130345643 | Hourmand et al. | Dec 2013 | A1 |
20150273157 | Kohlbrenner et al. | Oct 2015 | A1 |
20160089498 | Daniel | Mar 2016 | A1 |
20180064875 | Holmqvist | Mar 2018 | A1 |
20200139047 | Hirschel et al. | May 2020 | A1 |
20210154407 | Hirschel et al. | May 2021 | A1 |
20230022361 | Heiniger et al. | Jan 2023 | A1 |
20240197997 | Ekman et al. | Jun 2024 | A1 |
20240197998 | Ekman et al. | Jun 2024 | A1 |
Number | Date | Country |
---|---|---|
705345 | Feb 2013 | CH |
705992 | Jun 2013 | CH |
19819409 | Nov 1999 | DE |
102005038933 | Feb 2007 | DE |
202007000578 | Mar 2007 | DE |
102005052502 | May 2007 | DE |
0666084 | Aug 1995 | EP |
0824923 | Feb 1998 | EP |
0991441 | Dec 2003 | EP |
2399634 | Dec 2011 | EP |
2468334 | Jun 2012 | EP |
2468335 | Jun 2012 | EP |
2742962 | Jun 2014 | EP |
3650064 | May 2020 | EP |
3381490 | Sep 2020 | EP |
2654938 | May 1991 | FR |
2438592 | Dec 2007 | GB |
H08-502180 | Mar 1996 | JP |
2002-528182 | Sep 2002 | JP |
2007-500530 | Jan 2007 | JP |
WO 1994004103 | Mar 1994 | WO |
WO 1999053979 | Oct 1999 | WO |
WO 2000024441 | May 2000 | WO |
WO 2002047746 | Jun 2002 | WO |
WO 2003062672 | Jul 2003 | WO |
WO 2005009515 | Feb 2005 | WO |
WO 2005070481 | Aug 2005 | WO |
WO 2005097238 | Oct 2005 | WO |
WO 2005115507 | Dec 2005 | WO |
WO 2006057604 | Jun 2006 | WO |
WO 2006079064 | Jul 2006 | WO |
WO 2007083115 | Jul 2007 | WO |
WO 2007099044 | Sep 2007 | WO |
WO 2007129324 | Nov 2007 | WO |
WO 2008059385 | May 2008 | WO |
WO 2008116688 | Oct 2008 | WO |
WO 2008155377 | Dec 2008 | WO |
WO 2009019440 | Feb 2009 | WO |
WO 2009040601 | Apr 2009 | WO |
WO 2009040603 | Apr 2009 | WO |
WO 2009040607 | Apr 2009 | WO |
WO 2009040672 | Apr 2009 | WO |
WO 2009062508 | May 2009 | WO |
WO 2009081103 | Jul 2009 | WO |
WO 2010007395 | Jan 2010 | WO |
WO 2010063707 | Jun 2010 | WO |
WO 2010136077 | Dec 2010 | WO |
WO 2011012903 | Feb 2011 | WO |
WO 2011043714 | Apr 2011 | WO |
WO 2011075101 | Jun 2011 | WO |
WO 2011109205 | Sep 2011 | WO |
WO 2011111006 | Sep 2011 | WO |
WO 2011117592 | Sep 2011 | WO |
WO 2011123024 | Oct 2011 | WO |
WO 2011126439 | Oct 2011 | WO |
WO 2012045350 | Apr 2012 | WO |
WO 2012085024 | Jun 2012 | WO |
WO 2019074788 | Apr 2019 | WO |
WO 2020190529 | Sep 2020 | WO |
WO 2021008839 | Jan 2021 | WO |
WO 2021160540 | Aug 2021 | WO |
WO 2021197804 | Oct 2021 | WO |
WO 2022069617 | Apr 2022 | WO |
WO 2022184388 | Sep 2022 | WO |
Entry |
---|
International Preliminary Report on Patentability in Application No. PCT/EP2011/052301, dated Aug. 21, 2012, 6 pages. |
International Search Report and Written Opinion in Application No. PCT/EP2011/052301, dated May 26, 2011, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20240238520 A1 | Jul 2024 | US |
Number | Date | Country | |
---|---|---|---|
61412086 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17706380 | Mar 2022 | US |
Child | 18622107 | US | |
Parent | 17453601 | Nov 2021 | US |
Child | 17706380 | US | |
Parent | 16276366 | Feb 2019 | US |
Child | 17453601 | US | |
Parent | 14995964 | Jan 2016 | US |
Child | 16276366 | US | |
Parent | 13579435 | US | |
Child | 14995964 | US |