The present disclosure relates to generally to firearms, and more specifically to auto-loading firearms, including fully automatic and semiautomatic firearms. The disclosure presents apparatus and methods for auto-loading firearms having a live fire mode and a non-live fire, training mode.
For a more complete understanding of the features and advantages of the present disclosure, reference is now made to the detailed description of the disclosure along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
The present disclosures are described by reference to drawings showing one or more examples of how the disclosures can be made and used. In these drawings, reference characters are used throughout the several views to indicate like or corresponding parts. In the description which follows, like or corresponding parts are marked throughout the specification and drawings with the same reference numerals, respectively. Drawings may not be to scale.
The disclosed apparatus and methods relate specifically to auto-loading firearms, including fully automatic and semiautomatic firearms. These firearms typically include: a frame and/or receiver assemblies, a barrel assembly, a magazine (either fixed or removable), and a trigger assembly. Some trigger assemblies include a trigger, a trigger bar, and a sear that either releases a hammer that strikes a firing pin or releases a biased striker with the firing pin striking a chambered cartridge to discharge the firearm. For further disclosure regarding use of live fire and non-live fire training modes with trigger assemblies utilizing trigger bars, see International Patent Application PCT/US2016/013294 which is incorporated herein for all purposes.
The firearms addressed specifically herein utilize trigger assemblies having a trigger, a sear (defined on the trigger or as a separate component) and a hammer as the major components. Such trigger assemblies are seen in AK and AR platforms, most modern battle rifles, and additionally in some sub-machine guns.
The term “auto-loading firearm” and similar refers only to self-reloading, semiautomatic and fully automatic firearms. Revolvers and bolt action rifles are excluded from discussion as they have dry-fire modes indistinguishable from live-fire modes making the disclosures herein unnecessary.
Auto-loading firearm models, whether semiautomatic, fully automatic, exclusively single-action, exclusively double-action, or selectively double-action/single-action, have a single mode of operation, namely a live-fire mode. Normal operation of the firearm can be prevented by switching on a safety mechanism, such as magazine drop safeties, grip safeties, trigger safeties, and manual interrupt safeties.
Training is required for safe and effective operation of a firearm, including use of the firearm in a non-live fire mode where it is not loaded with ammunition. Presented are apparatus and methods of using a “training mode” of firearm operation which allows full functionality simulation while disabling live-fire operation.
The most common non-live fire training option is a practice called “dry fire,” which develops trigger control without having to contend with recoil and report. Dry firing is a manual process requiring cocking of the firearm's hammer or striker, taking aim, and pulling the trigger to simulate firing. The process is repeated (manually cock, aim, pull trigger) to take additional practice “shots.” Only a single simulated shot is “fired” with each cycle. For single-action auto-loading firearms, this training practice is not realistic, given the semi-automatic nature of the firearm, nor effective in creating muscle memory and skill. For selectively double-action/single-action firearms such training practice is also not realistic, as the longer and heavier initial trigger pull must be repeated in each instance, or the hammer or striker mechanism manually reset, to allow practice using the lighter single-action trigger pull. Additionally, there is a negative training impact in training by only performing a single shot and recycle procedure.
The disclosed apparatus and methods address limitations of current training options by providing training with an operable auto-loading firearm, having similar weight, balance and configuration as in live mode, realistic feedback in trigger pull and reset, and full functionality of the auto-loading firearm as in live fire mode except for actual firing of a round. The disclosure addresses realistic feedback recoil and sound. The training system allows seamless transition from a live-fire mode to a training mode having secondary safety features. In an embodiment, an affirmative action by the user is required to return the firearm to live-fire mode.
The firearm provides selectable firing and training modes, with selection performed by a mechanical selector movable between live fire and training positions.
In live fire mode, the present firearm's internal system is configured such that a trigger, having a sear defined thereon, rests against a notch defined on the hammer and, upon depression of the trigger, releases the cocked hammer or striker. This configuration is analogous to standard operation of an auto-loading firearm not having the training system. Rather than repeat “hammer or striker” throughout the description, use of the term “hammer” is intended to and does refer to both hammers and strikers unless the context does not otherwise permit.
In training mode, the firearm's internal system is configured such that rotational operation of the hammer is interrupted or prevented and the trigger no longer acts on the hammer. Instead, the trigger connects to a trigger-resetting system or trigger break simulator. In training mode the firearm is inoperable to release the hammer and cannot fire a round.
The firearm remains in training mode as long as a mode selector switch is kept in the training mode position. For example, in some embodiments, the firearm remains in training mode only while a specialized training device, such as a “training magazine,” remains attached to the firearm.
The firearm training system reverts to live fire mode when the mode selector switch is moved to the live fire position. In some embodiments, reversion to live fire mode is performed by user-manipulation of a mechanism (e.g., switch, lever), while in others reversion occurs with detachment of the training device (e.g., removal of the training magazine). In an embodiment, the system only reverts to live fire mode after an ammunition loading mechanism is manually activated, or the trigger pressed forward after removal of the training device, to prevent accidental discharge. In other embodiments, the system reverts to live fire mode automatically upon detachment of the training device and consequent activation of the mode selector.
As used herein “training magazine” and the like are used to indicate a training device, or training attachment, which releasably attaches to the firearm via the magazine well. It is understood that the “training magazine” does not contain live or blank ammunition rounds.
Activation of the mode selector can be performed by any mechanism capable of acting as or manipulating a lever, including manual, hydraulic, electric, electromagnetic, or inertial mechanisms. In an embodiment, selection of training mode is performed by attachment of a training device designed for that purpose. Upon attachment, the training device automatically moves the mode selector to training mode; and upon detachment, the selector returns the firearm to live fire mode. The training device can also comprise a trigger-resetting mechanism used in the training mode.
The training device, in some embodiments, comprises a specialized magazine. Alternate embodiments can include external devices selectively attachable to the firearm, such as selectively mountable on Picatinny or accessory rails, in the grip panels, or as part of or comprising an external, removable handguard, etc.
The auto-loading firearm 10 has a frame 12 (or receiver) defining supports for the internal and external mechanisms of the firearm. For example, a grip and barrel (not shown) are part of or attached to the firearm frame 12. A magazine well 14 (a magazine well wall is obscured behind the magazine 16 in
The firearm 10 includes elements of the training system, generally designated 2, as well as common operable elements found in auto-loading firearms. Typical firearm elements such as bolt assemblies, gas chambers and return assemblies, grips, barrels, stocks, firing pins, and the like are not discussed as they are common in the art and understood by practitioners of the art and their function is not effected by the training system disclosed herein. Accessory items can include scopes, silencers, lights, slings, laser sights, etc.
Attached to and partially housed by the frame 12 is a trigger assembly 20 having a trigger 22, trigger pivot 24, and optionally a trigger return spring 25 (here, a torsion spring on the pivot pin). The trigger pivot 24 is commonly a pin extending laterally through the trigger 22 and rotatably attached to the frame 12. The trigger 22 is seen in a home position (not depressed) in
The trigger 22 includes a finger pull 54 and a trigger body 56 defining a sear 48. The sear 48, in the live fire mode and cocked position,
In some firearm designs, the trigger interacts directly with the hammer, as here. In other designs, a firearm trigger and sear are separate components, with the trigger acting on the sear and the sear acting on the hammer in turn.
After discharge of the firearm, the auto-loading and re-cocking assemblies of the firearm automatically return the hammer 60 to a cocked position as is understood by those of skill in the art. If the trigger 22 is still depressed after discharge and auto-return rotation of the hammer 60, a disconnector (not shown) captures the hammer 60 temporarily, preventing its return to the cocked position, until the trigger is released to its home position. Once the trigger is released, the hammer returns to the cocked position with the sear of the trigger engaging the notch on the hammer. Similarly, after discharge of the firearm, the trigger 22 is returned to its home position by the trigger spring.
A training mode assembly includes a selector switch assembly 80, an action arm assembly for interrupting operation of the hammer 60, and a trigger break simulator 92.
The action arm assembly has an action arm 62 mounted in the firearm frame 12 for movement between a live fire position, in which the action arm 62 does not interfere with operation of the hammer 60, seen in
The exemplary action arm 62 seen here is mounted for rotational movement about an action arm pivot 64. In alternate designs, the action arm 62 can move between the live fire and training mode positions by sliding, rotating, or otherwise. Here, the action arm 62 uses as its pivot 64 the trigger pivot 24. Alternately, the action arm can rotate about a separate pivot.
The action arm 62 defines an engagement mechanism 66 for selective engagement with a cooperating engagement mechanism 68 on the hammer 60. In the embodiment shown, the action arm engagement mechanism 66 is a simple hook defined on the distal end of the action arm 62 and the cooperating mechanism 68 on the hammer 60 is a simple post. In the live fire position, the engagement mechanism of the action arm does not engage the cooperating mechanism on the hammer, as seen in
More specifically, in many firearms the hammer 60 is rotated, upon manual cocking and/or automatic re-cocking, through and past the cocked (and ready to discharge) position seen in
In alternative arrangements, the action arm and hammer engagement mechanisms can comprise or include one or more latches, spring latches, cam locks, or other releasably engageable mechanisms.
A trigger break simulator 92 is mounted within the firearm, preferably to frame 12. The simulator 92 is moved between a home or live fire position, seen in
In the live fire position, the simulator does not operate. In the training mode position the simulator provides the user with a simulation of the “trigger break” phenomenon. That is, the feel of pulling the trigger under normal operating tension until that tension breaks or sharply decreases as the sear disengages from and releases the hammer. Operation of the simulator is discussed further below.
In
Selective movement of the action arm 62 and activation of the trigger break simulator between live fire and training mode positions is in response to operation of the selector switch assembly. The firearm is in live fire mode (
In the exemplary embodiment, the selector switch is forced into training mode position when a specialized training device is selectively attached to the firearm and returns to live fire mode when such specialized training attachment is removed from the firearm. In the embodiment shown, the training device 70 is a training magazine. The exemplary training magazine operates to switch the firearm from live fire to training mode upon insertion of the training magazine into the magazine well 14 of the firearm. The training device and the selector switch assembly can both take various designs according to aspects of the disclosure.
Turning to
A linkage assembly 88, here a wire or rod, is attached at one end to the rotary cam transfer mechanism 84 and at the other end to the action arm 62 such as at a post 65, aperture, slot or other mechanism for that purpose. Rotary movement of the transfer mechanism 84 results in generally linear movement of the linkage 88 which in turn causes rotational movement of the action arm 62. Other linkage assemblies can be employed including hinged or moveably connected linkage parts and movement of the linkage can be linear, rotary, or otherwise.
A selector switch biasing assembly 104 preferably operates to bias the selector switch assembly towards its live fire position. The live fire position is thus the default position for the selector switch assembly. A biasing mechanism 108 biases the action arm 62, and the transfer mechanism 84 towards and into their home or live fire positions. Here the biasing mechanism 108 is a coil spring connected between the firearm frame 12 at retainer 109 and to the action arm 62. Other biasing mechanisms such as torque springs, leaf springs, etc., as are known in the art can be used. As the transfer mechanism 84 is rotated to the training position seen in
Insertion and removal of a live magazine into the magazine cavity does not activate or otherwise operate the selector switch assembly or transfer mechanism 84. The live fire and training magazines interact with a cooperating magazine catch and release assembly in any manner known in the art.
In
Upon removal of the training magazine, the push bar 110 moves downward and out of engagement with the transfer mechanism 84. The biasing mechanism 108 acts to rotate the action arm 62, transfer mechanism 84, and simulator activation mechanism 99 to their home or live fire positions. That is, the selector switch biasing assembly moves the selector switch assembly from the training to the live fire position when the training device is removed and thus no longer maintains the selector switch assembly in the training position.
In
Traditional safeties can also be used as with known auto-loading firearms, including those which are slide, frame, trigger or grip mounted, lever, pivot, or push activated, and which can act upon the trigger, sear, disconnect, hammer, firing pin, or within the magazine. Operation of traditional safeties is preferably not effected by switching between live and training modes. That is, one or more traditional safeties are operable by the user when the firearm is in training mode, providing a realistic training experience.
In an alternate embodiment, the “push” rod can instead be a “pull” rod, applying force to the disk in the opposite direction. Further, the term “rod” as used here does not limit the shape of the member acting on the disk. The push or pull rod is moved into a training position, wherein it engages the trigger 22, and into a live fire position, wherein the rod does not engage the trigger, by movement of the simulator assembly or selector switch assembly into the training position.
Alternative methods include a simple resistance spring for returning the trigger to its home position (with or without trigger break simulation included), a compression spring with reset (a “frog clicker” model), and an electronic implementation based on electromagnets.
A round sensor assembly 150 is provided in some embodiments. The round sensor assembly 150 includes a round sensor light emitter 152 positioned at the base of a light channel 154 defined in the magazine. Similarly, an optical sensor 156 is positioned at the base of an optical channel 158 defined in the magazine. The light emitter 152 emits light sufficient to reflect off of a round loaded in the barrel of the firearm, whereupon the optical sensor 156 detects the reflected light and transmits a signal to the microcontroller 172 that a round is loaded. In the exemplary case, the microcontroller 172 then prevents the standard lighting of LED lights 190 to indicate that the firearm is not fully safe for training. When a live round is absent or ejected, the optical sensor 156 will not signal the presence of a loaded round to the microcontroller 172. The design of the round sensor assembly can vary in terms of placement and orientation, depending on the physical configuration of the firearm, and can have more or fewer components and channels depending on design choice.
A training laser interface 160 is also illustrated having a lead channel 162, and positive and negative leads 164. Laser retaining structures, such as lips or rails 166, can be provided. The laser is both powered and activated by the training attachment through the microcontroller and the momentary switch 140. The power supply 170 is positioned in the training magazine (or other training attachment in other embodiments). In an embodiment, the laser is activated by a momentary switch 140 such that the laser provides a momentary laser burst at or near the time of pulling the trigger in training mode. Hence, the laser assembly indicates the occurrence of training fire, denotes the location where a round would strike, and can work with commercially available laser-detecting targets.
Various electrical components can be mounted in the training magazine such as a power supply 170, a microcontroller 172, circuit wiring (not shown), a magazine release lead or sensor 176, a capacitor bank 178, an RFID or other tag, and other electronic components which will be obvious to those of skill in the art. Each of the electrical assemblies is operably connected to a power supply and the microcontroller. The microcontroller controls functionality of the various sensors and electrical components which can communicate sensed conditions to the microcontroller. For example, the microcontroller can be used to signal error conditions, provide a count of rounds fired, activate other feedback mechanisms such as the recoil solenoid and the speaker, control said mechanisms to provide specific amounts of recoil, noise, or rounds, simulate firearm malfunctions, interface with external training components including scoring devices and position detectors, and maintain training records among other uses.
A speaker 180 can be provided for emitting training sounds such as a simulated firearm report. Buttons or other controls 182 can be mounted such that they are accessible from the exterior of the training magazine while the magazine is inserted into the firearm. A recoil solenoid 174 can be provided for simulating firearm recoil. Recoil and sound mechanisms can be keyed to the “round counting” of the microcontroller such that the microcontroller produces sound and recoil when the training magazine is “loaded,” but does not provide such feedback after the training magazine is “emptied.” A “re-set” button or the like can extend from the training magazine to allow the user to re-load and re-use the magazine.
LED lights or other active indicators 190 can be positioned on the magazine 70 and elsewhere on the firearm. The indicators can communicate that the firearm is in training mode. The indicators can be used to indicate battery charge level and option configuration status. Active indicators can be infrared indicators, invisible to the naked eye but visible through an infrared viewing device. This may be useful in group training and tactics exercises. The indicators can provide information to the user by colored lights, color-changing lights, flash or blink patterns, etc.
An informational display 194 can be provided for displaying data to the user. Such data can include number of simulated rounds available, battery charge status, error codes, and user option selections. In an embodiment, the display is visible when the training magazine is removed from the firearm. The display (as well as the other electronic components discussed herein) can be positioned anywhere on the training magazine.
The system can also be used in logistics training. For example, the training magazine (or other training attachment) can be programmed, via the microcontroller, to allow a user to “re-load” the magazine a set number of times equaling the number of magazines the user would have in a live fire situation. Further, the microcontrollers of multiple firearms can be programmed such that, in tow, they allow multiple users a selected number of rounds or re-loads by the users, thereby allowing “sharing” of ammunition among users with a maximum amount of ammunition available to the group. Also, an on-site, electronic, virtual ammunition depot can be used in conjunction with the training firearms such that, upon exhausting his selected number of training rounds or magazines, the user is required to physically go to the ammunition depo to re-arm themselves with another set of training rounds or magazines. For example, when out of training rounds, as indicated by the firearm in training mode (by indicators, feedback mechanisms, etc.), a user re-arms by taking the training magazine (or attachment) to the ammunition depo. An electronic interaction between the user's magazine and the depot effectively “re-loads” the training magazine with a selected number of training rounds and/or magazines.
Multiple virtual depots can be used in conjunction, connected or networked to one another and/or a central computer for communication and coordination, such that multiple smaller groups of users have access to a central ammunition depot with a selected amount of ammunition. The virtual depots (or networked computer) can track and control: ammunition use per user, ammunition use per group of users (e.g., a team, a platoon), per firearm, per type of firearm or ammunition (e.g., both semiautomatic handguns and automatic rifles), etc. The depot can limit the total amount of ammunition available (for one or multiple types of firearm) for distribution to the group, such that the group is trained in logistical use of limited available ammunition. For prolonged training exercises, the virtual depot can also mimic restocking and resupply.
The training magazine can include a base plate 200, base plate hinge 202, and base plate release 204 to allow access to the magazine internal components. A magazine release mechanism 96 is discussed above herein. Similarly, the push bar 110 is described above herein. Various cavities, channels, mountings, and alignment and positioning features can be defined in and on the magazine, internally and externally, to allow for placement of sensors, electronics, lights and indicators, and other components.
Further, the training magazine can include a communications device 192, such as a Bluetooth device, infrared (IR) device, wireless device, Ethernet device, etc. The communications device communicates with the microcontroller or computer 172. The communications device is preferably operable to receive and send data to other devices having corresponding communications abilities.
Further, the firearm itself can include onboard storage which has multiple functions and can consist of some form of static storage (e.g., Write Once, Read Many) and a dynamic component (e.g., read and write). The static storage can be used for manufacturer data and serialization features, and the dynamic storage can be for data and state information storage to allow advanced training functionality. Additionally, it allows encoding of data into a laser targeting component (assuming such a capability on the model of firearm) for training. This can be accessed through wired or wireless connection. Onboard storage can be powered by a power source onboard the firearm or by the power source in the training mode device such as the training magazine.
The following disclosure is provided in support of the methods claimed or which may be later claimed. Specifically, this support is provided to meet the technical, procedural, or substantive requirements of certain examining offices. It is expressly understood that the portions or actions of the methods can be performed in any order, unless specified or otherwise necessary, that each portion of the method can be repeated, performed in orders other than those presented, that additional actions can be performed between the enumerated actions, and that, unless stated otherwise, actions can be omitted or moved. Those of skill in the art will recognize the various possible combinations and permutations of actions performable in the methods disclosed herein without an explicit listing of every possible such combination or permutation. It is explicitly disclosed and understood that the actions disclosed, both herein below and throughout, can be performed in any order (xyz, xzy, yxz, yzx, etc.) without the wasteful and tedious inclusion of writing out every such order.
Further, disclosed herein are methods comprising steps as indicated. 16. A method of switching an auto-loading firearm between a live fire mode in which the firearm is operable to discharge rounds of ammunition and a training mode wherein the firearm is prevented from firing rounds of ammunition, the method comprising: moving a selector switch from a live fire position to a training mode position; in response to moving the selector switch to the training mode position, moving an action arm into engagement with a hammer of the firearm, the action arm preventing the hammer from moving to discharge the firearm; and with the selector switch in the training mode position, resetting the trigger from a depressed position to a home position. 17. The method of claim 16, further comprising: returning the selector switch to the live fire position from the training mode position; in response to returning the selector switch to the live fire position, moving the action arm out of engagement with the hammer. 18. The method of claim 17, further comprising, after returning the selector switch to the live fire position: depressing the trigger and thereby moving a sear; in response to moving the sear, releasing the hammer to move under a hammer biasing force; and discharging the firearm. 19. The method of claim 16, further comprising, in response to moving the selector switch to the training mode position: moving a trigger break simulator into a training mode position; depressing the trigger; and in response to depressing the trigger, resetting the trigger to a home position. 20. The method of claim 16, wherein engaging the action arm with the hammer further comprises: moving the action arm with respect to the hammer, the action arm defining a hook, the hammer defining a post, the hook of the action arm contacting the post of the hammer. 21. The method of claim 16, further comprising: attaching a selectively detachable device to the firearm and moving the selector switch in response thereto. 22. The method of claim 16 further comprising: biasing the selector switch toward the live fire position. 23. The method of claim 21, wherein the selector switch is movably mounted either on the firearm or on the detachable device. 24. The method of claim 19, activating a recoil mechanism or emitting a sound in response to depression of the trigger. 25. The method of claim 16, further comprising, with the selector switch in the training mode position: automatically tracking virtual rounds available or expended, and simulating a firearm malfunction and preventing expending of further virtual rounds until the simulated malfunction is corrected.
For further disclosure on the operation and parts of exemplary hammer-type and striker-type self-loading firearms, see the following references which are each incorporated herein by reference for all purposes including support of the claims: GLOCK Semiautomatic “SAFE ACTION” Pistols, Glock 17, 19, 20, 21, 22, 23 & 17L, Glock Armorer's Manual, Glock, Inc. (January 1992), 60 pages; Springfield Armory, XD Operation and Safety Manual, Springfield, Inc. (2008), 45 pages; HK USP Pistol Armorers Instruction, Heckler Koch, 39 pages; SIGARMS Training, P220 Combat Pistol, Armorers Manual, SIGARMS, 61 pages; SIG SAUER, P320, Owner's Manual: Handling & Safety Instructions, Sig Sauer, Inc., 68 pages; U.S. Pat. No. 8,156,677 B2 to Glock, issued Apr. 17, 2012, entitled “Assemblies and Firearms Incorporating Such Assemblies;” U.S. Pat. No. 5,655,326, to Levavi, et al., issued Aug. 12, 1997, entitled “Method of Deploying a Weapon Utilizing the “Glock System” which Provides Maximum Safety and Readiness.”
Use of the term “training” throughout is not intended as a limitation in purpose or use of the apparatus or method. Certainly the disclosure also addresses other purposes and uses, such as operational safety, educational use of firearms, etc. The term “training” is used as a short-hand term and encompasses any purposes applicable to provision and use of an auto-loading firearm having a live fire mode in which ammunition can be discharged and a “non-live fire” mode in which discharge of live ammunition is prevented but wherein some or all aspects of the self-loading mechanism still operate such that the user does not have to manually reset (e.g., pull the slide, push the trigger forward, etc.) after “firing” the firearm in the non-live fire mode.
The words or terms used herein have their plain, ordinary meaning in the field of this disclosure, except to the extent explicitly and clearly defined in this disclosure or unless the specific context otherwise requires a different meaning.
If there is any conflict in the usages of a word or term in this disclosure and one or more patent(s) or other documents that may be incorporated by reference, the definitions that are consistent with this specification should be adopted.
The words “comprising,” “containing,” “including,” “having,” and all grammatical variations thereof are intended to have an open, non-limiting meaning. For example, a composition comprising a component does not exclude it from having additional components, an apparatus comprising a part does not exclude it from having additional parts, and a method having a step does not exclude it having additional steps. When such terms are used, the compositions, apparatuses, and methods that “consist essentially of” or “consist of” the specified components, parts, and steps are specifically included and disclosed.
As used herein, the words “consisting essentially of,” and all grammatical variations thereof are intended to limit the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s) of the claimed disclosure.
The indefinite articles “a” or “an” mean one or more than one of the component, part, or step that the article introduces. The terms “and,” “or,” and “and/or” shall be read in the least restrictive sense possible. Each numerical value should be read once as modified by the term “about” (unless already expressly so modified), and then read again as not so modified, unless otherwise indicated in context.
While the foregoing written description of the disclosure enables one of ordinary skill to make and use the embodiments discussed, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiments, methods, and examples herein. The disclosure should therefore not be limited by the above described embodiments, methods, and examples. While this disclosure has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments as well as other embodiments of the disclosure will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
The particular embodiments disclosed above are illustrative only, as the present disclosure may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. It is, therefore, evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope of the present disclosure. The various elements or steps according to the disclosed elements or steps can be combined advantageously or practiced together in various combinations or sub-combinations of elements or sequences of steps to increase the efficiency and benefits that can be obtained from the disclosure. It will be appreciated that one or more of the above embodiments may be combined with one or more of the other embodiments, unless explicitly stated otherwise. Furthermore, no limitations are intended to the details of construction, composition, design, or steps herein shown, other than as described in the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/042026 | 7/14/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/013806 | 1/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2405308 | Jack | Aug 1946 | A |
4449312 | Ruger | May 1984 | A |
4845870 | Vernon | Jul 1989 | A |
5225612 | Bernkrant | Jul 1993 | A |
5320023 | Erdem | Jun 1994 | A |
5608982 | Bouvard | Mar 1997 | A |
6125735 | Guhring | Oct 2000 | A |
6412207 | Crye et al. | Jul 2002 | B1 |
6457271 | Vaid et al. | Oct 2002 | B1 |
6519887 | Allen et al. | Feb 2003 | B1 |
6952895 | Zonshine | Oct 2005 | B1 |
6968770 | Barfield et al. | Nov 2005 | B2 |
7033175 | Kunimoto | Apr 2006 | B2 |
8176833 | Quis | May 2012 | B2 |
8434254 | Watchorn et al. | May 2013 | B1 |
8495832 | Vukovic | Jul 2013 | B2 |
8585407 | Hu | Nov 2013 | B2 |
8646201 | Hughes | Feb 2014 | B2 |
8667881 | Hawbaker | Mar 2014 | B1 |
8726555 | Carr | May 2014 | B2 |
8899985 | Walls | Dec 2014 | B2 |
8935872 | Zukowski | Jan 2015 | B2 |
8991090 | Mizrachi | Mar 2015 | B2 |
9046313 | Lutton | Jun 2015 | B1 |
9057577 | Hannan | Jun 2015 | B2 |
9347725 | McAlister | May 2016 | B2 |
9551546 | Alicea, Jr. | Jan 2017 | B2 |
9952013 | Fellows | Apr 2018 | B2 |
10415912 | Iwasawa | Sep 2019 | B2 |
10436540 | Bascom | Oct 2019 | B2 |
10488136 | Sullivan | Nov 2019 | B2 |
20110005115 | Cahill | Jan 2011 | A1 |
20110306020 | Peterson | Dec 2011 | A1 |
20130316308 | Monti | Mar 2013 | A1 |
20140173964 | Mizrachi | Jun 2014 | A1 |
20140322673 | Uhr | Oct 2014 | A1 |
20150068090 | Christensen | Mar 2015 | A1 |
20150226516 | Dvorak | Aug 2015 | A1 |
20150241156 | Alicea | Aug 2015 | A1 |
20150338181 | McAlister | Nov 2015 | A1 |
20160018176 | Fellows | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
202814217 | Mar 2013 | CN |
0268276 | May 1988 | EP |
2012215373 | Nov 2012 | JP |
20070010263 | Jan 2007 | KR |
1762101 | Sep 1992 | SU |
2015057360 | Apr 2015 | WO |
2017123223 | Jul 2017 | WO |
Entry |
---|
PCT/US2017/042026, International Search Report and Written Opinion, dated Jan. 26, 2018, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20210148667 A1 | May 2021 | US |