The present disclosure relates to an antenna device, and, more particularly, to an auto orientating antenna device.
With the development of technology, 5G (5th generation mobile network) has become a main technology of wireless communication, and various 5G antenna devices, such as routers and Wi-Fi sharers, have also been manufactured. Since 5G antenna units need to operate in an ultra-high frequency band, such as 24 GHz, the size of the 5G antenna units need to be smaller than that of the prior arts (such as 4G antenna units), and thus 5G antenna units are more sensitive to the environmental interference. Therefore, the 5G antenna units need to be orientated to face a correct receiving direction.
However, since an antenna device needs to be connected to a power supply, the arrangement of the antenna device may be limited to the location of the power supply outlet in the house, and thus it may be difficult for a user to arrange the antenna device to face the correct receiving direction corresponding to enough signal strength. A good signal transmission cannot be realized without the correct receiving direction.
Therefore, it is desirable to provide an improved antenna device to mitigate and/or obviate the aforementioned problems.
The object of the present disclosure is to provide an auto orientating antenna device capable of automatically facing a suitable receiving direction.
To achieve the object, the auto orientating antenna device of the present disclosure comprises a base, a body, and a processing chip. The base comprises a motor comprising a rotating shaft. The body is connected to the rotating shaft, and the body comprises at least one 5G (5th generation mobile network) antenna unit. The processing chip generates an auto orientating instruction according to at least one signal receiving status of the antenna unit, wherein the motor drives the rotating shaft according to the auto orientating instruction, so as to let the antenna unit face a receiving direction. Thus, the auto orientating antenna device can rotate automatically to face a suitable receiving direction according the signal receiving status.
In an embodiment, the body of the auto orientating antenna device comprises an inner case having an inner case side part, and the inner case side part has a plurality of holes formed thereon.
Furthermore, the auto orientating antenna device may comprise an outer case disposed outside the inner case side part, wherein the outer case has a plurality of slots formed thereon. Or, the auto orientating antenna device may comprise an outer case disposed outside the inner case side part, wherein the outer case is a spiral structure. Or, the auto orientating antenna device may comprise a removable outer case disposed outside the inner case side part.
In an embodiment, the signal receiving status is defined as the strength (typically, the amplitude) of a signal received by the antenna unit in a receiving direction.
Furthermore, the processor can calculate the strengths of the signals received by the antenna unit in different receiving directions, and find a receiving direction corresponding to the maximum strength of the signal, and the motor can rotate the rotating shaft to let the antenna unit face the receiving direction corresponding to maximum strength of the signal. Or, the processing chip can calculate the strength of the signal received by the antenna unit in at least one receiving direction, and find a receiving direction corresponding to the strength of the signal greater than or equal to a predetermined value, and the motor can drive the rotating shaft to let the antenna unit face the receiving direction corresponding to the strength of the signal greater than or equal to the predetermined value.
In an embodiment, a maximum rotating degree of the rotating shaft is 175 degree in clockwise direction or in counterclockwise direction.
Other objects, advantages, and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Different embodiments of the present disclosure are provided in the following description. These embodiments are meant to explain the technical content of the present disclosure, but not meant to limit the scope of the present disclosure. A feature described in an embodiment may be applied to other embodiments by suitable modification, substitution, combination, or separation.
It should be noted that, in the present specification, when a component is described to have an element, it means that the component may have one or more of the elements, and it does not mean that the component has only one of the element, except otherwise specified.
Moreover, in the present specification, the ordinal numbers, such as “first” or “second”, are used to distinguish a plurality of elements having the same name, and it does not means that there is substantially a level, a rank, an executing order, or an manufacturing order among the elements, except otherwise specified. A “first” element and a “second” element may exist together in the same component, or alternatively, they may exist in different components, respectively. The existence of an element described by a greater ordinal number does not substantially means the existent of another element described by a smaller ordinal number.
Moreover, in the present specification, the terms, such as “top”, “bottom”, “left”, “right”, “front”, “back”, or “middle”, as well as the terms, such as “on”, “above”, “under”, “below”, or “between”, are used to describe the relative positions among a plurality of elements, and the described relative positions may be interpreted to include their translation, rotation, or reflection.
Moreover, in the present specification, when an element is described to be arranged “on” another element, it does not substantially means that the elements contact the other element, except otherwise specified. Such interpretation is applied to other cases similar to the case of “on”.
Moreover, in the present specification, the terms, such as “preferably” or “advantageously”, are used to describe an optional or additional element or feature, and in other words, the element or the feature is not an essential element, and may be ignored in some embodiments.
Moreover, each component may be realized as a single circuit or an integrated circuit in suitable ways, and may include one or more active elements, such as transistors or logic gates, or one or more passive elements, such as resistors, capacitors, or inductors, but not limited thereto. Each component may be connected to each other in suitable ways, for example, by using one or more traces to form series connection or parallel connection, especially to satisfy the requirements of input terminal and output terminal. Furthermore, each component may allow transmitting or receiving input signals or output signals in sequence or in parallel. The aforementioned configurations may be realized depending on practical applications.
Moreover, in the present specification, the terms, such as “system”, “apparatus”, “device”, “module”, or “unit”, refer to an electronic element, or a digital circuit, an analogous circuit, or other general circuit, composed of a plurality of electronic elements, and there is not substantially a level or a rank among the aforementioned terms, except otherwise specified.
Moreover, in the present specification, two elements may be electrically connected to each other directly or indirectly, except otherwise specified. In an indirect connection, one or more elements, such as resistors, capacitors, or inductors may exist between the two elements. The electrical connection is used to send one or more signals, such as DC or AC currents or voltages, depending on practical applications.
It is noted that, the description “when . . . ” may include “concurrent to”, “before”, or “after”.
Besides, technical effects associated with a feature means that the feature may provide any, some, or all of these technical effects.
Moreover, in the present disclosure, a particular operation executed by an element means that the element may not only execute the particular operation, but also other operations.
For the convenience of explanation, the direction mentioned in the present specification is defined when an object is placed on a horizontal plane (such as a table). In this way, a bottom of the object means a part of the object near the table, and a top of the object means a part of the object far away from the table, and so on.
The base 10 comprises a motor 12 (as shown in
The body 20 comprises at least one antenna unit 22, wherein the antenna unit 22 is 5G (5th generation mobile network) antenna unit. In another embodiment, the body 20 may comprise a plurality of antenna units 22.
The processing chip 30 is used to generate an auto orientating instruction S1 according to at least one signal receiving status of the antenna unit 22. The motor 12 can drive the rotating shaft 120, so that the rotating shaft 120 can rotate, and the body 20 can be rotated following the rotating shaft 120, or the motor 12 can stop the rotating shaft 120 from a rotating status. Thus, the body 20 can rotate with respect to the base 10 or stop rotating from the rotating status, and the antenna unit can face a suitable receiving direction. It is noted that, “the signal receiving status” may be defined as the strength of a 5G signal. Besides, the term “signal receiving” may refer to “signal transmitting” or “signal recreating”.
Then, the details of each elements of the present disclosure will be described as follows.
Regarding the base 10, the base 10 may comprise a bottom cover 11, the motor 12, a control circuit board 13, a motor top 14, a bottom holder 15, a bottom case 16, at least one rubber foot 17, and an input/output interface 18. Besides, a controlling chip 40 may be disposed on the control circuit board 13.
Regarding the bottom cover 11, in an embodiment, the bottom cover 11 has an upper surface 111 and a lower surface 112 opposite to the upper surface 111, wherein the lower surface 112 is near to the table. The motor 12 and the control circuit board 13 may be disposed on the upper surface 111. The rubber foot 17 may be disposed on the lower surface 112 and contact the table, so that the friction between the base 10 and the table can be enhanced.
Regarding the motor 12, in an embodiment, the rotating shaft 120 extends toward a direction away from the bottom cover 11, and the rotating shaft 120 may be fixed to the motor top 14. Any fixing method may be applied as long as it is reasonable. Accordingly, when the rotating shaft 120 rotates, the motor top 14 also rotates following the rotation of the rotating shaft 120. Besides, in an embodiment, the rotating shaft 120 or the motor top 14 may be equipped with a bearing structure to smoothen the rotation.
Regarding the motor top 14, the bottom holder 15 and the bottom case 16, in an embodiment, the bottom holder 15 may be fixed to an inner side of the bottom case 16 and the upper surface 111 of the bottom cover 11 (by any reasonable fixing method), so that the bottom case 16 is combined with the bottom cover 11. The bottom holder 15 may comprise a contain part 151 to contain the motor top 14. The bottom case 16 may have an opening 161 formed thereon, and the opening 161 corresponds to the position of the motor top 14, so that at least one part of the motor top 14 is exposed from the opening 161.
Regarding the controlling chip 40, in an embodiment, the controlling chip 40 may be electrically connected to the motor 12 to control the motor 12 to drive the rotating shaft 120. It is noted that, an “electrical connection” in the present specification may be regarded as a “direct connection”, an “indirect connection”, or a “wireless signal transmission”, but not limited thereto. In an embodiment, the controlling chip 40 may receive an instruction from the processing chip 30, or transmit a signal to the processing chip 30.
It is noted that, the controlling chip 40 may comprise a plurality of circuits, such as a memory circuit, a signal processing circuit, a signal converting circuit, or a communication circuit, but not limited thereto.
Regarding the input/output interface 18, the input/output interface 18 may be disposed on the upper surface 111 of the bottom cover 11. In an embodiment, the position of the input/output interface 18 may correspond to a second opening 181 formed on the bottom case 16, so that when the bottom case 16 is combined with the bottom cover 11, the input/output interface 18 is exposed form the second opening 181. In an embodiment, the input/output interface 18 may be electrically connected to the controlling chip 40 or the processing chip 30, but not limited thereto. In an embodiment, the input/output interface 18 may comprise a power interface or a data transmission interface (e.g. a universal serial bus (USB) interface or LAN interface), but not limited thereto.
Then, regarding the body 20, the body 20 may comprise an inner case 21, the antenna unit 22, a circuit board 23, a circuit board holder 24, an outer case 25, and a top 26. The antenna unit 22 and the processing chip 30 may be disposed on the circuit board 23 or electrically connected to the circuit board 23.
Regarding the circuit board 23 and the circuit board holder 24, in an embodiment, the circuit board holder 24 is fixed to the inner case 21, and the circuit board 23 is fixed to the circuit board holder 24, so the inner case 21 can protect the circuit board 23.
Regarding the inner case 21, in an embodiment, the inner case 21 has a top terminal 211, a bottom terminal 212, and an inner case side part 214 connected to the top terminal 211 and the bottom terminal 212, wherein when the body 20 is combined with the base 10, the top terminal 211 is located far away from the base 10, while the bottom terminal 212 is located near the base 10. The top terminal 211 may comprise an inner case opening 213 used to contain the top 26. In an embodiment, the bottom terminal 212 may be connected to the motor top 14, so that when the rotating shaft 120 rotates, the motor top 14 and the body 20 also rotate.
Besides, the inner case 21 may be a hollow structure of various shapes, such as a circular cylinder and an elliptical cylinder, but not limited thereto. In an embodiment, in a top view (e.g. observed from the top 26 toward the base 10), the size of the top terminal 211 and the size of the bottom terminal 212 are different, so the inner case 21 presents as a trapezoidal cylinder (as shown in
Besides, in an embodiment, the inner case side part 214 may have a plurality of holes 215 formed thereon. The holes 215 can help heat dissipation for the components in the inner case 21. In an embodiment, the top 26 may have a plurality of holes formed thereon to enhance the effect of the heat dissipation.
Regarding the outer case 25, in an embodiment, the outer case 25 may be disposed outside the inner case side part 214, e.g. the outer case 25 encases the inner case side part 214, so that at least one part of the inner case side part 214 is covered by the outer case 25. In an embodiment, the outer case 25 may be fixed on the inner case side part 214, and in this case, the outer case 25 directly contacts the inner case side part 214. In an embodiment, the outer case 25 may be fixed on the base 10, and there remains a distance between the outer case 25 and the inner case side part 214. Besides, in an embodiment, the outer case 25 may has at least one slot 251 formed thereon, but not limited thereto.
Regarding the antenna unit 22, in an embodiment, the antenna unit 22 is at least one 5G millimeter wave (mmWave) antenna, and the antenna unit 22 has a working band more than 24 GHz, but in another embodiment, the antenna unit 22 may be a sub 6 GHz antenna with a working band lower than 6 GHz. In an embodiment, the antenna unit 22 may be a single antenna or an antenna array formed by a plurality of antennas. When the antenna unit 22 is the antenna array, the antenna unit 22 can transmit or receive the signal by using beam forming technology.
Regarding the processing chip 30, in an embodiment, the processing chip 30 is electrically connected to the antenna unit 22, so that the processing chip 30 can process the signal received by the antenna unit 22. The processing chip 30 may be electrically connected to the controlling chip 40, so that data can be transmitted between the processing chip 30 and the controlling chip 40. In an embodiment, the processing chip 30 executes an algorithm to enable the auto orientating antenna device 1 to execute an auto orientating procedure. In the auto orientating procedure, the processing chip 30 analyzes the signal receiving status of the antenna unit 22, and determines whether the receiving direction of the antenna unit 22 should be adjusted, and then generates an auto orientating instruction S1, and the controlling chip 40 controls the motor 12 to drive the rotating shaft 120 according to the auto orientating instruction S1. In an embodiment, the term “the signal receiving status” may be defined as the strength of the signal received by the antenna unit 22, but not limit thereto. Besides, in an embodiment, the processing chip 30 may be integrated with the controlling chip 40, and it is still possible to dispose the processing unit 30 outside the body 20. In addition, the processing chip 30 can process data from the input/output interface 18.
It is noted that, the processing chip 30 may comprise a plurality of circuits, such as a memory circuit, a signal processing circuit, a signal converting circuit, or a communication circuit, but not limited thereto.
More details of the present disclosure are described as follows.
The outer case 25 and the inner case side part 214 of the present disclosure may be provided with various arrangements.
In the first embodiment of
In the first embodiment of
In the embodiment of
Besides, the connection between the body 20 and the base 10 may implemented by a plurality types.
In the embodiment of
In the embodiment of
Then, the rotating types of the auto orientating antenna device 1 are described herein.
In the embodiment of
In the embodiment of
By the aforementioned rotation types and an auto orientating procedure executed by the processing chip 30 and the control chip 40, the auto orientating antenna device 1 can automatically face a receiving direction corresponding to better signal strength.
The details of the auto orientating procedure are described as follows.
In the embodiment of
Regarding the step S11, in an embodiment, the processing chip 30 can determine whether to start the auto orientating procedure according to a predetermined condition, for example, when the power of the auto orientating antenna device 1 is turned on, or the signal strength of the current receiving direction is lower than a threshold, or the auto orientating procedure is started at specific time point, etc., but not limited thereto.
Regarding the step S12, in an embodiment, when the auto orientating procedure is started, the antenna unit 22 receives the signal in each receiving direction, and transmits the signal receiving status of each receiving direction to the processing chip 30. In an embodiment, an interval between two adjacent receiving directions is in a range between 5 to 10 degrees, but not limited thereto.
Regarding the steps S13, S14, and S15, in an embodiment, when the first receiving direction corresponding to the maximum signal strength is found by the processing chip 30, the processing chip 30 can calculates a distance between a current receiving direction of the antenna unit 22 and the first receiving direction, and then generate the auto orientating instruction S1 according to the distance, which means that, the auto orientating instruction S1 can comprise an information of an angle difference between the current receiving direction and the first receiving direction. In an embodiment, the angle difference may be 0 degree. In this way, the controlling chip 40 can adjust the receiving direction of the antenna unit 22 according to the auto orientating instruction S1.
Accordingly, in the first embodiment of the auto orientating procedure, the auto orientating antenna device 1 can face the direction corresponding to maximum signal strength automatically.
In the embodiment of
The step S21 may be applied similarly to the description for the step S11, so the detailed description therefor is deemed unnecessary.
Regarding the steps S22 to S25, the processing chip 30 may compare the signal strength in current receiving direction with a predetermined value instantly during the rotation of the body 20. When the signal strength in current receiving direction is greater than or equal to the predetermined value, it means that the signal strength is enough, so the processing chip 30 will transmit the auto orientating instruction S1 to the control chip 40 to stop the operation of the motor 12. In an embodiment, the predetermined value may be adjusted at any time. In an embodiment, if the antenna unit 22 has deviated from the second receiving direction, the auto orientating instruction S1 may comprise a controlling instruction for adjusting the receiving direction of the body 20, which controls the motor 12 to drive the rotation of the rotating shaft 120.
Accordingly, in the second embodiment of the auto orientating procedure, the auto orientating antenna device 1 can face a receiving direction with signal strength satisfying the predetermined value.
In this way, the present disclosure can solve the conventional problem, and the user can place the auto orientating antenna device 1 at any location, and the body 20 of the auto orientating antenna 1 can face a suitable receiving direction automatically.
Although the present disclosure has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.