The present disclosure relates generally to HVAC systems, and more particularly, to HVAC controllers that may be used for controlling HVAC systems.
Heating, ventilation, and/or air conditioning (HVAC) systems are often used to control the comfort level within a building or other structure. Such HVAC systems typically include an HVAC controller that controls various HVAC components of the HVAC system in order to affect and/or control one or more environmental conditions within the building. The performance of HVAC systems tends to degrade over time, fail, or otherwise operate in a less than ideal manner, which can produce undesirable results.
This disclosure relates generally to HVAC systems, and more particularly, to HVAC controllers that may be used for controlling such HVAC systems. In one illustrative embodiment, an HVAC controller configured to control one or more components of an HVAC system may include a memory, an I/O block and a controller. The I/O block may be configured to receive one or more signals from an HVAC system including one or more signals related to a delta T parameter value of the HVAC system. The I/O block may also be configured to provide one or more control signals to the HVAC system, including one or more control signals to activate the HVAC system. The controller may be programmed to initiate a delta T test that is configured to: provide one or more control signals to activate the HVAC system; monitor the one or more signals related to the delta T parameter value; determine when a rate of change of the delta T parameter value falls below a threshold value indicating a stabilized delta T parameter value; and record the stabilized delta T parameter value in the memory. In some cases, the controller may record the run time in the memory in addition to the stabilized delta T parameter value.
In some cases, the controller may be programmed to initiate a delta T test sequence in response to a request received via a user interface, and once initiated, execute a delta T test for each valid equipment stage combination of the HVAC system. Each delta T test may include, for example: starting a timer to monitor an elapsed time; providing one or more control signals to activate a first/next valid equipment stage combination of the HVAC system; monitoring the one or more signals related to the delta T parameter value; determining when a rate of change of the delta T parameter value falls below a threshold value, indicating a stabilized delta T parameter value at a stabilized elapsed time; and recording the stabilized delta T parameter value and the stabilized elapsed time in the memory.
The preceding summary is provided to facilitate an understanding of some of the innovative features unique to the present disclosure and is not intended to be a full description. A full appreciation of the disclosure can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular examples described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings wherein like reference numerals indicate like elements throughout the several views. The description and drawings show several illustrative embodiments which are meant to illustrative in nature.
It is contemplated that the HVAC controller(s) 18 may be configured to control the comfort level in the building or structure by activating and deactivating the HVAC component(s) 6 in a controlled manner. The HVAC controller(s) 18 may be configured to control the HVAC component(s) 6 via a wired or wireless communication link 21. In some cases, the HVAC controller(s) 18 may be a thermostat, such as, for example, a wall mountable thermostat, but this is not required in all embodiments. Such a thermostat may include (e.g. within the thermostat housing) or have access to a temperature sensor for sensing an ambient temperature at or near the thermostat. In some instances, the HVAC controller(s) 18 may be a zone controller, or may include multiple zone controllers each monitoring and/or controlling the comfort level within a particular zone in the building or other structure.
An illustrative HVAC controller, which is not meant to be limiting in any way, is disclosed in: US Published Patent Application No. 20090140062, entitled “HVAC CONTROLLER THAT SELECTIVELY REPLACES OPERATING INFORMATION ON A DISPLAY WITH SYSTEM STATUS INFORMATION”; US Published Application No. 20090143880, entitled “HVAC CONTROLLER WITH CONTEXT SENSITIVE HELP SCREENS”; US Published Application No. 20090143918, entitled “METHOD AND APPARATUS FOR CONFIGURING AN HVAC CONTROLLER”; US Published Application No. 20090143916, entitled “HVAC CONTROLLER HAVING A PARAMETER ADJUSTMENT ELEMENT WITH A QUALITATIVE INDICATOR”; US Published Application No. 20090143879, entitled “HVAC CONTROLLER WITH PARAMETER CLUSTERING”; US Published Application No. 20090140056, entitled “HVAC CONTROLLER WITH QUICK SELECT FEATURE,” the entireties of which are incorporated herein by reference for all purposes.
In some cases, the HVAC system 4 may include an internet gateway or other device 20 that may permit the HVAC controller 18, as described herein, to communicate over a wired or wireless network 25 with a remote device 23. In some cases, the network 25 may be a wireless local area network (WLAN) or a wide area network (WAN) such as, for example, the Internet. The remote device 23 may be used to access and communicate with the HVAC controller(s) 18 from a remote location outside of and away from the building 2. The remote device 23 may be any one of a smartphone, PDA, tablet computer, laptop computer, or personal computer. These are just some examples.
In the illustrative HVAC system 4 shown in
In some cases, the system of vents or ductwork 10 and/or 14 can include one or more dampers 24 to regulate the flow of air, but this is not required. For example, one or more dampers 24 may be coupled to one or more HVAC controller(s) 18, and can be coordinated with the operation of one or more HVAC components 6. The one or more HVAC controller(s) 18 may actuate dampers 24 to an open position, a closed position, and/or a partially open position to modulate the flow of air from the one or more HVAC components to an appropriate room and/or zone in the building or other structure. The dampers 24 may be particularly useful in zoned HVAC systems, and may be used to control which zone(s) receives conditioned air from the HVAC component(s) 6.
In many instances, one or more air filters 30 may be used to remove dust and other pollutants from the air inside the building 2. In the illustrative example shown in
In some cases, and as shown in
In some cases, the equipment interface module 34 may include a first temperature sensor 38a located in the return (incoming) air duct 14, and a second temperature sensor 38b located in the discharge (outgoing or supply) air duct 10. Alternatively, or in addition, the equipment interface module 34 may include a differential pressure sensor including a first pressure tap 39a located in the return (incoming) air duct 14, and a second pressure tap 39b located downstream of the air filter 30 to measure a change in a parameter related to the amount of flow restriction through the air filter 30. In some cases, the equipment interface module 34, when provided, may include at least one flow sensor that is capable of providing a measure that is related to the amount of air flow restriction through the air filter 30. In some cases, the equipment interface module 34 may include an air filter monitor. These are just some examples.
When provided, the equipment interface module 34 may be configured to communicate with the HVAC controller 18 via, for example, a wired or wireless communication link 42. In other cases, the equipment interface module 34 may be incorporated or combined with the HVAC controller 18. In either cases, the equipment interface module 34 may communicate, relay or otherwise transmit data regarding the selected parameter (e.g. temperatures, pressures, flow rate, etc.) to the HVAC controller 18. In some cases, the HVAC controller 18 may use the data from the equipment interface module 34 to evaluate the system's operation and/or performance. For example, the HVAC controller 18 may compare data related to the difference in temperature (delta T) between the return air side and the discharge air side of the HVAC system 4 to a previously determined delta T limit stored in the HVAC controller 18 to determine a measure related to the current operating performance of the HVAC system 4.
The processor 44 may operate in accordance with an algorithm that controls or at least partially controls one or more HVAC components 6 of an HVAC system such as, for example, HVAC system 4 shown in
In some cases, the processor 44 may be programmed to initiate a delta T test in response to a request received from, for example, a user via the I/O block 58. In other cases, the HVAC controller 18 may be programmed to self-initiate a delta T test, such as in accordance with a programmed schedule, when a sensed parameter falls outside of a predetermined range (e.g. cycle time of a heating cycle rises above 15 minutes), and/or in response to any other suitable predetermined conditions. In some instances, and once a delta T test is initiated, the processor 44 may be configure to execute a delta T test for each equipment stage combination of the HVAC system, and to determine both a run time and a delta T parameter value for each equipment stage for both heating and cooling, as applicable. In some cases, the HVAC system 4 may include two or more equipment stage combinations. In some cases, the processor 44 may be programmed to automatically execute a delta T test for each equipment stage combination of the HVAC system 4 without receiving any further input from the user.
Upon initiation of the delta T test, the processor 44 may start a timer, and may transmit one or more control signals via the I/O block 58 to activate one or more HVAC components 6 of the HVAC system 4. During the delta T test, the processor 44 may monitor one or more signals indicative of a delta T parameter value received from the HVAC system 4. The processor 44 may also monitor the amount of time that has elapsed for the delta T test for each equipment stage combination. The delta T parameter value and run time determined for each equipment stage combination may be based, at least in part, on a stabilized delta T parameter value. The processor 44 may determine that the delta T parameter value is a stabilized delta T parameter value when a rate of change of the delta T parameter value falls below a predetermined threshold value. For example, in one instance, the processor 44 may determine that the delta T parameter value is stable for an individual equipment stage combination of the HVAC system 4 when the delta T value changes less than about one degree over a forty-five second period of time. The processor 44 may be programmed to record both the stabilized delta T parameter value and the run time for each equipment stage combination of the HVAC system 4 in the memory 52. It will be generally understood that the delta T parameter value and the run time may be different for each equipment stage. In some cases, the processor 44 may be further configured to notify the user when the delta T test is complete for each equipment stage combination of the HVAC system 4. In some cases, the processor 44 may be configured to notify the user when the delta T test is complete for each individual stage and/or when the delta T test is complete for all stages. The processor 44 may notify the user by, for example, displaying a message on the user interface and/or transmitting a message via the I/O block 58 to a remote device.
In the illustrative embodiment of
In some instances, the user interface 48 need not be physically accessible to a user at the HVAC controller 18. Instead, the user interface 48 may be a virtual user interface 48 that is accessible over the network 25 using a remote wireless device such as a smart phone, PDA, tablet computer, laptop computer, or personal computer. In some cases, the virtual user interface 48 may display one or more web pages that are broadcasted over the network 25 by an internal web server implemented by the processor 44 or by an external web service to which the HVAC controller 18 may be connected. An example of such an external web service is Honeywell, Inc.'s TOTAL CONNECT™ web service. When so provided, the virtual user interface 48 may be accessed over the network 25 using a remote wireless device 23. Through the one or more web pages, the processor 44 may be configured to display information relevant to the current operating status of the HVAC system 4 including the current operating mode, temperature set point, actual temperature within the building, outside temperature, outside humidity and/or the like. In some cases, the processor 44 may be configured to receive and accept any user inputs entered via the virtual user interface 48 including temperature set points, humidity set points, starting times, ending times, schedule times, window frost protection settings, diagnostic limits, tests requests, responses to alerts, and/or the like. In some cases, the virtual user interface 48 may be provided by an application program (sometimes known as an app) that is downloaded to the remote wireless device.
The memory 52 of the illustrative HVAC controller 18 may be in communication with the processor 44. The memory 52 may be used to store any desired information, such as the aforementioned control algorithm, set points, schedule times, diagnostic limits such as, for example, differential pressure limits, delta T limits, delta T parameter values for each equipment stage combination, run times, and/or the like. The memory 52 may be any suitable type of storage device including, but not limited to, RAM, ROM, EPROM, flash memory, a hard drive, and/or the like. In some cases, the processor 44 may store information within memory 52, and may subsequently retrieve the stored information from the memory 52.
In some cases, as illustrated in
The data port 56 may be configured to communicate with the processor 44 and may, if desired, be used to upload information to the processor 44 and/or download information from the processor 44. Information that can be uploaded and/or downloaded may include, for example, values of operating parameters. In some instances, the data port 56 may be used to upload a previously-created thermostat configuration into HVAC controller 18, thereby hastening the programming process. In some cases, the data port 56 may be used to download a thermostat configuration that has been created using HVAC controller 18, so that the thermostat configuration may be transferred to other similar thermostats, hastening their programming process. In some cases, the data port 56 may be used to upload and/or download information pertaining to an HVAC dealer or contractor, if desired.
In some cases, the data port 56 may be used to download data stored within the memory 52 for analysis. For example, the data port 56 may be used to download a faults and/or alerts log or parts thereof to a remote device such as a USB memory stick (also sometimes referred to as a thumb drive or jump drive), personal computer, laptop, iPAD® or other tablet computer, PDA, smart phone, or other remote device, as desired. In some cases, the data may be convertible to an MS EXCEL®, MS WORD®, text, XML, and/or Adobe PDF® file, but this is certainly not required. In other cases, data stored in the memory 52 may be uploaded to and/or downloaded from an external web service such as, for example, Honeywell Inc.'s TOTAL CONNECT™, hosted by an external web server over a wired or wireless network via the I/O block 58.
In the illustrative example, the HVAC controller 18 may be configured to provide substantial display and/or programming functionality. In some cases, the HVAC controller 18 may be configured to display a default display, referred to herein as a home screen, that is displayed by HVAC controller 18 when no other data entry is underway for a period of time.
In some cases, the home screen 72 may be considered as having two or more regions. For example, the home screen 72 may include a first region 86 and a second region 88. In some instances, the first region 86 may be considered as displaying or otherwise providing primary information, while the second region 88 may be considered as displaying or otherwise providing secondary information. In some cases, primary information may be information that is considered to be more important, more interesting and/or more useful than secondary information. To illustrate, the first region 86 may display one or more of a current air temperature reading, a current indoor humidity, a schedule status, and the like. The second region 88 may display one or more of a date and time, an outdoor air temperature reading, an outdoor humidity reading, an equipment status, and the like.
The home screen 72 may also include a third region 90 that may be used for displaying and/or adjusting a parameter value such as a parameter that is displayed within first region 86 of home screen 72. In some cases, for example, the third region 90 may, as illustrated, display both a heating temperature set point and a cooling temperature set point, but this is not required. The third region 90 may display a first parameter 92, a first up arrow 94 and a first down arrow 96. The third region 90 may also display a second parameter 98, a second up arrow 100 and a second down arrow 102. The first parameter 92 may be adjusted up or down by a user using first up arrow 94 and/or first down arrow 96, as appropriate. The second parameter 98 may be adjusted up or down by a user using second up arrow 100 and/or second down arrow 102, as desired.
In some cases, the HVAC controller 18 may be configured to display a user alert on the display 62 which may prompt the user to take action. In one case, a user alert may be displayed when the processor 44 determines that system maintenance is needed. For example, the processor 44 may determine that a filter change is necessary, a battery change is necessary, a UV bulb change is necessary or some other maintenance is necessary that requires a user's attention. In another case, the HVAC controller 18 may display a user alert indicating that the HVAC system 4 is operating outside of a predetermined set of “normal” operating parameters. Such an alert, for example, may be displayed when the HVAC system 4 has exceeded a predetermined delta T limit stored in the controller memory 52 for either a heating or a cooling mode. The predetermined delta T limit may be determined by an installer based, at least in part, on the result of a delta T test initiated by the installer and executed by the processor 44. A user's response (or, in some cases, absence of a response) to an alert may be considered a user interaction. In some cases, a user's interactions with HVAC system may be recorded and stored in a user interaction log contained within the controller memory 52.
In some cases, and upon selection of the INSTALLER OPTIONS menu option 142, the illustrative HVAC controller 18 (and/or the remote device 23) may be configured to display a password prompt screen 152, as illustrated in
Upon selection of the DONE button 160 confirming entry of a password, the HVAC controller 18 may confirm that a valid password has been entered. If a valid password has been entered, the HVAC controller 18 (and/or the remote device 23) may display an installer options menu screen 166, such as illustrated in
In many cases, the table 170 may include one or more installer options 190 that may be selected by the user. In some cases, a CREATE SETUP installer option 190 may be provided, which may provide access to a series of successive installer set-up screens that may query the installer to specify one or more setup parameters relating to the system setup for the particular HVAC system 4. Selection of this option may be appropriate when the user is initially setting up the HVAC system prior to operation. For example, in some instances, the series of successive screens may query the user regarding parameters related to HVAC systems and their setup including, but not limited to: the type of HVAC system (e.g. zoned or non-zoned), the type of heating system (e.g. conventional forced, air, heat pump, radiant heat, to name a few), the type of heating equipment (e.g. standard efficiency gas forced air, high efficiency gas forced air, electric forced air, etc.), the number of equipment stages for each of the cooling system and heating system, the temperature ranges (e.g. minimum and maximum set points) for both heating and cooling, what sensors are included in the HVAC system (e.g. indoor air temperature, outdoor air temperature, return air temperature sensor, discharge air temperature sensor, etc.), the number of air filters, whether not the HVAC system includes a humidifier, the type of humidifier (if applicable), whether or not the HVAC system includes a dehumidifier, ventilation, the number and type of UV devices (if applicable), among others. These are just some examples. The HVAC controller 18 may be programmed to accept one or more set up parameters selected by the user via the CREATE SETUP installer option 190 or the VIEW/EDIT installer set up option. At least one of the set up parameters may correspond to a number of equipment stages of the HVAC system 4. In some instances, the HVAC controller 18 may be configured to automatically detect the various components of the HVAC system and parameters indicative of the system setup. Still, in other instances, the user may view and/or edit the current setup by selecting the VIEW/EDIT CURRENT SETUP menu option 190 which may facilitate the user in viewing and/or making changes to previously entered and/or detected setup parameters.
The following illustrative figures and examples will be described as they relate to a conventional forced air system including a return air temperature sensor (RATS) (e.g. RATS 38a of
In many cases, after the current setup of the HVAC system has been established either through creation of a new setup or by editing an existing set up, as discussed herein, the installer may return to the installer options menu screen 166 to select one or more additional options. For example, the table 170 provided on the installer options menu screen 166 may include an INSTALLER TEST installer option 190, which may provide access to one or more installer tests that may be initiated by the installer. Selection of this option may be appropriate when the installer desires to run a number of tests including one or more tests to identify delta T parameter values and run times for each equipment stage combination of the HVAC system 4, as applicable. The delta T parameter values and run times determined through testing may be used by the installer to determine and/or set delta T limits and run time limits for delta T diagnostics prior to operation of the HVAC system 4. In some cases, in response to selection of the INSTALLER TEST installer option 190 by a user, the HVAC controller 18 may be configured to automatically execute a delta T test. When more than one stages are present in the HVAC system 4, the HVAC controller 18 may be configured to automatically execute a delta T test for one or more equipment stage combinations.
In some instances, the HVAC controller 18 may be configured to automatically execute a delta T test for each equipment stage combination of the HVAC system 4, sometimes for both heating stages and cooling stages, without receiving any further input by the user. The HVAC controller 18 may determine, for example, the run time and the delta T parameter value for each equipment stage combination of the HVAC system 4 based, at least in part, on a stabilized delta T parameter value. During the test, the HVAC controller 18 may monitor the delta T parameter value and determine when the delta T parameter value has stabilized for each equipment stage combination test. In some cases, the HVAC controller 18 may determine that a delta T parameter value is stable T when the delta T parameter value experiences less than about a one degree change in value over a about a forty-five second period of time. When the HVAC controller 18 determines that the delta T parameter value is stable for a first stage (e.g. Heat Stage 1), the controller 18 may automatically proceed to a next equipment stage combination and repeat the testing until testing for all valid equipment stage combinations of the HVAC system 4, as applicable, has been completed. The HVAC controller 18 may record the run time and delta T parameter value for each equipment stage combination and store the run times and delta T parameter values in the memory 52.
In the example shown, the installer test screen 202 may include a first banner 206 provided along a top portion 210 of screen 202 that may identify the equipment mode (e.g. heat or cool) for which the delta T test relates. Installer test screen 202 may also include a second banner 212 provided in a middle region 214 of screen 202 that may display a user message 220, which may indicate to the user that, for example, testing is in progress. In addition, installer test screen 202 may include an EXIT SETUP button 224 that, when selected, may cause the HVAC controller 18 to exit the testing procedure and return to a home screen such as, for example, home screen 72 as shown in
As shown in
During testing for an equipment stage or stage combination, the HVAC controller 18 may monitor the delta T parameter value and the run time. The HVAC controller 18 may determine when a stabilized delta T parameter value is reached, and may record and store the stabilized delta T parameter value and the run time in the memory 52 of the HVAC controller 18. In some cases, and as best shown in
The HVAC controller 18 may be programmed to repeatedly update the current total run time, the current discharge air temperature, the current return air temperature, and/or the current delta T parameter value for the HVAC system 4 displayed on the installer test screen 202 during the installer test. The user (e.g. installer) may monitor the displayed values during the test. The user may terminate the test at any time by selecting the EXIT SETUP button 224. The HVAC controller 18 may terminate the test when testing for each stage is complete. In some cases, completion of a test for each stage/stage combination is determined by the HVAC controller 18 when the current discharge air temperature, return air temperature, and/or the delta T parameter values that are displayed on the diagnostics test screen 202 stabilize and do not substantially change over a predetermined amount of time. In one example, the HVAC controller 18 may determine that a test for a particular stage or stage combination is complete when the delta T parameter values exhibit less than about a one degree change over a forty five second period of time. This is just one example. In some cases, when testing is determined to be complete for a first stage/stage combination (
In some instances, the HVAC controller 18 may notify the user when testing is completed for all valid equipment stage combinations of the HVAC system 4.
In some instances, the user notification screen 300 may also include a NEXT STEP button 320 that, when selected by the user, may cause the HVAC controller 18 to display one or more screens related to setting diagnostic limits based, at least in part, on the delta T parameter values and run times as determined by the installer test for each equipment stage combination of the HVAC system 4. In some cases, the delta T parameter values and run times as determined by the installer tests may be displayed for each valid stage/stage combination, sometimes in a table format. In some cases, diagnostic limits are automatically determined from the test, and the HVAC controller 18 may automatically assign the diagnostic limits as default values. In some cases, the user (e.g. installer) may use the stabilized delta T parameter values and the run times determined by the HVAC controller 18 during the installer test to set and/or adjust the default delta T limits and appropriate run time settings. This approach may save time, and may reduce errors during the setup of the HVAC system 4.
It should be understood that while the illustrative example provide in
Having thus described several illustrative embodiments of the present disclosure, those of skill in the art will readily appreciate that yet other embodiments may be made and used within the scope of the claims hereto attached. Numerous advantages of the disclosure covered by this document have been set forth in the foregoing description. It will be understood, however, that this disclosure is, in many respect, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of parts without exceeding the scope of the disclosure. The disclosure's scope is, of course, defined in the language in which the appended claims are expressed.
Number | Name | Date | Kind |
---|---|---|---|
4016360 | Cane | Apr 1977 | A |
4079366 | Wong | Mar 1978 | A |
4174807 | Smith et al. | Nov 1979 | A |
4206872 | Levine | Jun 1980 | A |
4224615 | Penz | Sep 1980 | A |
4264034 | Hyltin et al. | Apr 1981 | A |
4296334 | Wong | Oct 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4308991 | Peinetti et al. | Jan 1982 | A |
4332352 | Jaeger | Jun 1982 | A |
4337822 | Hyltin et al. | Jul 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4382544 | Stewart | May 1983 | A |
4386649 | Hines et al. | Jun 1983 | A |
4388692 | Jones et al. | Jun 1983 | A |
4431134 | Hendricks et al. | Feb 1984 | A |
4442972 | Sahay et al. | Apr 1984 | A |
4446913 | Krocker | May 1984 | A |
4479604 | Didner | Oct 1984 | A |
4503471 | Hanajima et al. | Mar 1985 | A |
4506827 | Jamieson et al. | Mar 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4585164 | Butkovich et al. | Apr 1986 | A |
4606401 | Levine et al. | Aug 1986 | A |
4621336 | Brown | Nov 1986 | A |
4622544 | Bially et al. | Nov 1986 | A |
4628201 | Schmitt | Dec 1986 | A |
4646964 | Parker et al. | Mar 1987 | A |
4717333 | Carignan | Jan 1988 | A |
4725001 | Carney et al. | Feb 1988 | A |
4819714 | Otsuka et al. | Apr 1989 | A |
4837731 | Levine et al. | Jun 1989 | A |
4881686 | Mehta | Nov 1989 | A |
4918439 | Wozniak et al. | Apr 1990 | A |
4920263 | Fimian et al. | Apr 1990 | A |
4942613 | Lynch | Jul 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4969508 | Tate et al. | Nov 1990 | A |
4992779 | Sugino et al. | Feb 1991 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5012973 | Dick et al. | May 1991 | A |
5036698 | Conti | Aug 1991 | A |
5038851 | Metha | Aug 1991 | A |
5042265 | Baldwin et al. | Aug 1991 | A |
5053752 | Epstein et al. | Oct 1991 | A |
5065813 | Berkeley et al. | Nov 1991 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088645 | Bell | Feb 1992 | A |
5140310 | DeLuca et al. | Aug 1992 | A |
5161606 | Berkeley et al. | Nov 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5181653 | Foster et al. | Jan 1993 | A |
5187797 | Nielsen et al. | Feb 1993 | A |
5191874 | McWilliams | Mar 1993 | A |
5197862 | Kladder | Mar 1993 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5238184 | Adams | Aug 1993 | A |
5251813 | Kniepkamp | Oct 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5272477 | Tashima et al. | Dec 1993 | A |
5284024 | Hanson | Feb 1994 | A |
5329991 | Metha et al. | Jul 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5351035 | Chrisco | Sep 1994 | A |
5386577 | Zenda | Jan 1995 | A |
5388444 | Gerard | Feb 1995 | A |
5390206 | Rein et al. | Feb 1995 | A |
5395042 | Riley et al. | Mar 1995 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5414618 | Mock et al. | May 1995 | A |
5429649 | Robin | Jul 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5495722 | Manson et al. | Mar 1996 | A |
5495887 | Kathnelson et al. | Mar 1996 | A |
5506572 | Hills et al. | Apr 1996 | A |
5526422 | Keen | Jun 1996 | A |
5537106 | Mitcuhashi | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5551797 | Sanford | Sep 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5568385 | Shelton | Oct 1996 | A |
5570837 | Brown et al. | Nov 1996 | A |
5590831 | Manson et al. | Jan 1997 | A |
5603451 | Helander et al. | Feb 1997 | A |
5654813 | Whitworth | Aug 1997 | A |
5668535 | Hendrix et al. | Sep 1997 | A |
5671083 | Conner et al. | Sep 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
5679137 | Erdman et al. | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5711785 | Maxwell | Jan 1998 | A |
5729474 | Hildebrand et al. | Mar 1998 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5761649 | Hill | Jun 1998 | A |
5782296 | Metha | Jul 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5818428 | Eisenbrandt et al. | Oct 1998 | A |
5833134 | Ho et al. | Nov 1998 | A |
5836815 | Jennemann | Nov 1998 | A |
5839654 | Weber | Nov 1998 | A |
5840094 | Osendorf et al. | Nov 1998 | A |
5841112 | Brooks et al. | Nov 1998 | A |
5862737 | Chin et al. | Jan 1999 | A |
5873519 | Beilfuss | Feb 1999 | A |
5877957 | Bennett | Mar 1999 | A |
5886697 | Naughton et al. | Mar 1999 | A |
5901183 | D' Souza | May 1999 | A |
5902183 | D' Souza | May 1999 | A |
5909429 | Satyanarayana et al. | Jun 1999 | A |
5915473 | Ganesh et al. | Jun 1999 | A |
5917141 | Naquin, Jr. | Jun 1999 | A |
D413328 | Kazama | Aug 1999 | S |
5937942 | Bias et al. | Aug 1999 | A |
5947372 | Tiernan | Sep 1999 | A |
5950709 | Krueger et al. | Sep 1999 | A |
5997476 | Brown | Dec 1999 | A |
6009355 | Obradovich et al. | Dec 1999 | A |
6013121 | Chin et al. | Jan 2000 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
D422594 | Henderson et al. | Apr 2000 | S |
6059195 | Adams et al. | May 2000 | A |
6064310 | Busak et al. | May 2000 | A |
6081197 | Garrick et al. | Jun 2000 | A |
6084523 | Gelnovatch et al. | Jul 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6101824 | Meyer et al. | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman et al. | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6145751 | Ahmed et al. | Nov 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6154681 | Drees et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6167766 | Dunn et al. | Jan 2001 | B1 |
6175934 | Hershey et al. | Jan 2001 | B1 |
6190442 | Redner | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6196467 | Dushane et al. | Mar 2001 | B1 |
6208331 | Singh et al. | Mar 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6236326 | Murphy | May 2001 | B1 |
6259074 | Brunner et al. | Jul 2001 | B1 |
6260765 | Natale et al. | Jul 2001 | B1 |
6282454 | Papadopoulos et al. | Aug 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
D448757 | Okubo | Oct 2001 | S |
6315211 | Sartain et al. | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6321637 | Shanks et al. | Nov 2001 | B1 |
6330806 | Beaverson et al. | Dec 2001 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6344861 | Naughton et al. | Mar 2002 | B1 |
6385510 | Hoog et al. | May 2002 | B1 |
6394359 | Morgan | May 2002 | B1 |
6398118 | Rosen et al. | Jun 2002 | B1 |
6448896 | Bankus et al. | Sep 2002 | B1 |
6449726 | Smith | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
D464948 | Vasquez et al. | Oct 2002 | S |
6460774 | Sumida et al. | Oct 2002 | B2 |
6466132 | Caronna et al. | Oct 2002 | B1 |
6467054 | Lenny | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6493425 | Abe | Dec 2002 | B1 |
6496858 | Frailong et al. | Dec 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6507282 | Sherwood | Jan 2003 | B1 |
6518953 | Armstrong | Feb 2003 | B1 |
6518957 | Lehtinen et al. | Feb 2003 | B1 |
6535838 | Abraham et al. | Mar 2003 | B2 |
6539499 | Stedman et al. | Mar 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6574537 | Kipersztok et al. | Jun 2003 | B2 |
6578770 | Rosen | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6581846 | Rosen | Jun 2003 | B1 |
6584113 | Manduley et al. | Jun 2003 | B1 |
6584430 | Rosenbaum et al. | Jun 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6596059 | Greist et al. | Jul 2003 | B1 |
6601086 | Howard et al. | Jul 2003 | B1 |
D478051 | Sagawa | Aug 2003 | S |
6608560 | Abrams | Aug 2003 | B2 |
6619555 | Rosen | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6643611 | Ito et al. | Nov 2003 | B1 |
6658372 | Abraham et al. | Dec 2003 | B2 |
6658586 | Levi | Dec 2003 | B1 |
6663010 | Chene et al. | Dec 2003 | B2 |
6685098 | Okano et al. | Feb 2004 | B2 |
6697894 | Mitchell et al. | Feb 2004 | B1 |
6708072 | Arima et al. | Mar 2004 | B2 |
6711470 | Hartenstein et al. | Mar 2004 | B1 |
6726112 | Ho | Apr 2004 | B1 |
6741915 | Poth | May 2004 | B2 |
D492282 | Lachello et al. | Jun 2004 | S |
6754707 | Richards et al. | Jun 2004 | B2 |
6778945 | Chassin et al. | Aug 2004 | B2 |
6782345 | Siegel et al. | Aug 2004 | B1 |
6783079 | Carey et al. | Aug 2004 | B2 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6792321 | Sepe, Jr. | Sep 2004 | B2 |
6801849 | Szukala et al. | Oct 2004 | B2 |
6810307 | Addy | Oct 2004 | B1 |
6810397 | Qian et al. | Oct 2004 | B1 |
6824069 | Rosen | Nov 2004 | B2 |
6826512 | Dara-Abrams et al. | Nov 2004 | B2 |
6832199 | Kucek et al. | Dec 2004 | B1 |
6833990 | LaCroix et al. | Dec 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6842721 | Kim et al. | Jan 2005 | B2 |
6847916 | Ying | Jan 2005 | B1 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6853958 | Turin et al. | Feb 2005 | B1 |
6854010 | Christian et al. | Feb 2005 | B1 |
6857013 | Ramberg et al. | Feb 2005 | B2 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6892225 | Tu et al. | May 2005 | B1 |
6947675 | Koyama et al. | Sep 2005 | B2 |
6967565 | Lingemann | Nov 2005 | B2 |
D512208 | Kubo et al. | Dec 2005 | S |
6973410 | Seigel | Dec 2005 | B2 |
7001495 | Essalik et al. | Feb 2006 | B2 |
7002462 | Welch | Feb 2006 | B2 |
7035768 | Matsuda | Apr 2006 | B2 |
D520989 | Miller | May 2006 | S |
7047092 | Wimsatt | May 2006 | B2 |
7050026 | Rosen | May 2006 | B1 |
7055759 | Wacker et al. | Jun 2006 | B2 |
7058508 | Combs et al. | Jun 2006 | B2 |
7080358 | Kuzmin | Jul 2006 | B2 |
7083109 | Pouchak | Aug 2006 | B2 |
7083189 | Ogata | Aug 2006 | B2 |
7089088 | Terry et al. | Aug 2006 | B2 |
7092794 | Hill et al. | Aug 2006 | B1 |
7108194 | Hankins, II | Sep 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7130720 | Fisher | Oct 2006 | B2 |
D531588 | Peh | Nov 2006 | S |
7135965 | Chapman, Jr. et al. | Nov 2006 | B2 |
D533515 | Klein et al. | Dec 2006 | S |
7144611 | Nakamura et al. | Dec 2006 | B2 |
7146253 | Hoog et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
7163156 | Kates | Jan 2007 | B2 |
7188002 | Chapman, Jr. et al. | Mar 2007 | B2 |
D542236 | Klein et al. | May 2007 | S |
7212887 | Shah et al. | May 2007 | B2 |
7222800 | Wruck | May 2007 | B2 |
7225054 | Amundson et al. | May 2007 | B2 |
7231605 | Ramakesavan | Jun 2007 | B1 |
7232075 | Rosen | Jun 2007 | B1 |
7240289 | Naughton et al. | Jul 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7274973 | Nichols et al. | Sep 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7341201 | Stanimirovic | Mar 2008 | B2 |
7354005 | Carey et al. | Apr 2008 | B2 |
7383158 | Krocker et al. | Jun 2008 | B2 |
RE40437 | Rosen | Jul 2008 | E |
7419532 | Sellers et al. | Sep 2008 | B2 |
7435278 | Terlson | Oct 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7452396 | Terlson et al. | Nov 2008 | B2 |
7496627 | Moorer et al. | Feb 2009 | B2 |
7505914 | McCall | Mar 2009 | B2 |
7542867 | Steger et al. | Jun 2009 | B2 |
7556207 | Mueller et al. | Jul 2009 | B2 |
7594960 | Johansson | Sep 2009 | B2 |
7604046 | Bergman et al. | Oct 2009 | B2 |
7617691 | Street et al. | Nov 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7665019 | Jaeger | Feb 2010 | B2 |
7676282 | Bosley | Mar 2010 | B2 |
7707189 | Haselden et al. | Apr 2010 | B2 |
7713339 | Johansson | May 2010 | B2 |
7734724 | Rezvani et al. | Jun 2010 | B2 |
7739282 | Smith et al. | Jun 2010 | B1 |
7770242 | Sell | Aug 2010 | B2 |
7784291 | Butler et al. | Aug 2010 | B2 |
7793056 | Boggs et al. | Sep 2010 | B2 |
7801646 | Amundson et al. | Sep 2010 | B2 |
7814516 | Stecyk et al. | Oct 2010 | B2 |
7865252 | Clayton | Jan 2011 | B2 |
7941431 | Bluhm et al. | May 2011 | B2 |
7957775 | Allen, Jr. et al. | Jun 2011 | B2 |
7984220 | Gerard et al. | Jul 2011 | B2 |
8032254 | Amundson et al. | Oct 2011 | B2 |
8040234 | Ebrom et al. | Oct 2011 | B2 |
8087593 | Leen | Jan 2012 | B2 |
8091796 | Amundson et al. | Jan 2012 | B2 |
8167216 | Schultz et al. | May 2012 | B2 |
8219249 | Harrod et al. | Jul 2012 | B2 |
8239066 | Jennings et al. | Aug 2012 | B2 |
8332178 | Simons | Dec 2012 | B2 |
8434023 | Ge | Apr 2013 | B2 |
9477239 | Bergman | Oct 2016 | B2 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010042684 | Essalik et al. | Nov 2001 | A1 |
20010052459 | Essalik et al. | Dec 2001 | A1 |
20020005435 | Cottrell | Jan 2002 | A1 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020060701 | Naughton et al. | May 2002 | A1 |
20020082746 | Schubring et al. | Jun 2002 | A1 |
20020092779 | Essalik et al. | Jul 2002 | A1 |
20020096572 | Chene et al. | Jul 2002 | A1 |
20020138184 | Kipersztok et al. | Sep 2002 | A1 |
20020147804 | Cosmao et al. | Oct 2002 | A1 |
20020147806 | Haegawa | Oct 2002 | A1 |
20020171624 | Stecyk et al. | Nov 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20020198990 | Bradfield et al. | Dec 2002 | A1 |
20030000692 | Takaski et al. | Jan 2003 | A1 |
20030014179 | Szukala et al. | Jan 2003 | A1 |
20030033156 | McCall | Feb 2003 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030070544 | Mulvaney et al. | Apr 2003 | A1 |
20030074489 | Steger et al. | Apr 2003 | A1 |
20030121262 | Godwin | May 2003 | A1 |
20030103075 | Rosselot | Jun 2003 | A1 |
20030121652 | Carey et al. | Jul 2003 | A1 |
20030123224 | LaCroix et al. | Jul 2003 | A1 |
20030136135 | Kim et al. | Jul 2003 | A1 |
20030142121 | Rosen | Jul 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030177012 | Drennen | Sep 2003 | A1 |
20040193324 | Hoog et al. | Mar 2004 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040232345 | Jagam et al. | Nov 2004 | A1 |
20040245352 | Smith | Dec 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050033707 | Ehlers et al. | Feb 2005 | A1 |
20050083168 | Beitenbach | Apr 2005 | A1 |
20050086952 | Nonaka | Apr 2005 | A1 |
20050095269 | Ainpour et al. | May 2005 | A1 |
20050109764 | Kopel | May 2005 | A1 |
20050130652 | O'Toole et al. | Jun 2005 | A1 |
20050164678 | Rezvani et al. | Jun 2005 | A1 |
20050228607 | Simons | Oct 2005 | A1 |
20050270151 | Winick | Dec 2005 | A1 |
20060032379 | Kates | Feb 2006 | A1 |
20060071086 | Kates | Apr 2006 | A1 |
20060149414 | Archacki, Jr. et al. | Jul 2006 | A1 |
20060168342 | Budde et al. | Jul 2006 | A1 |
20060186213 | Carey et al. | Aug 2006 | A1 |
20060196953 | Simon et al. | Sep 2006 | A1 |
20060219799 | Schultz et al. | Oct 2006 | A1 |
20060242591 | Van Dok et al. | Oct 2006 | A1 |
20070012052 | Butler | Jan 2007 | A1 |
20070013534 | DiMaggio | Jan 2007 | A1 |
20070029397 | Mueller et al. | Feb 2007 | A1 |
20070045429 | Chapman, Jr. et al. | Mar 2007 | A1 |
20070057079 | Stark et al. | Mar 2007 | A1 |
20070114293 | Gugenheim | May 2007 | A1 |
20070114295 | Jenkins | May 2007 | A1 |
20070277061 | Ashe | Nov 2007 | A1 |
20070278320 | Lunacek et al. | Dec 2007 | A1 |
20070289731 | Deligiannis et al. | Dec 2007 | A1 |
20080015740 | Osann, Jr. | Jan 2008 | A1 |
20090140056 | Leen | Jun 2009 | A1 |
20090140060 | Stoner et al. | Jun 2009 | A1 |
20090140062 | Amundson et al. | Jun 2009 | A1 |
20090143879 | Amundsom et al. | Jun 2009 | A1 |
20090143880 | Amundson et al. | Jun 2009 | A1 |
20090143916 | Boll et al. | Jun 2009 | A1 |
20090144015 | Bedard | Jun 2009 | A1 |
20090165644 | Campbell | Jul 2009 | A1 |
20090199212 | Schneider | Aug 2009 | A1 |
20100008422 | Shimizu et al. | Jan 2010 | A1 |
20100044449 | Tessier | Feb 2010 | A1 |
20100070907 | Harrod et al. | Mar 2010 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100107112 | Jennings et al. | Apr 2010 | A1 |
20100118913 | Courtois | May 2010 | A1 |
20100161574 | Davidson et al. | Jun 2010 | A1 |
20100197238 | Pathuri et al. | Aug 2010 | A1 |
20100204834 | Comerford et al. | Aug 2010 | A1 |
20100217406 | Berry, Jr. et al. | Aug 2010 | A1 |
20110061527 | Sullivan | Mar 2011 | A1 |
20110072492 | Mohler et al. | Mar 2011 | A1 |
20110078515 | Yasukawa | Mar 2011 | A1 |
20110093424 | Zimmermann et al. | Apr 2011 | A1 |
20110138328 | Ge | Jun 2011 | A1 |
20110190910 | Lombard et al. | Aug 2011 | A1 |
20110282937 | Deshpande et al. | Nov 2011 | A1 |
20120318073 | Zavodny et al. | Dec 2012 | A1 |
20120318135 | Hoglund et al. | Dec 2012 | A1 |
20120318137 | Ragland et al. | Dec 2012 | A1 |
20120318138 | Bisson et al. | Dec 2012 | A1 |
20120319851 | Hoglund et al. | Dec 2012 | A1 |
20120323374 | Dean-Hendricks et al. | Dec 2012 | A1 |
20120323375 | Dean-Hendricks et al. | Dec 2012 | A1 |
20120323377 | Hoglund et al. | Dec 2012 | A1 |
20130060385 | Leen | Mar 2013 | A1 |
20130073244 | Simons | Mar 2013 | A1 |
20130158717 | Zywicki | Jun 2013 | A1 |
20130261807 | Zywicki | Oct 2013 | A1 |
20140174114 | Tamaki | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
3334117 | Apr 1985 | DE |
0070414 | Jan 1983 | EP |
0434926 | Aug 1995 | EP |
0678204 | Mar 2000 | EP |
0985994 | Mar 2000 | EP |
1033641 | Sep 2000 | EP |
1074009 | Jul 2001 | EP |
1143232 | Oct 2001 | EP |
1196002 | Apr 2002 | EP |
0848215 | May 2004 | EP |
1196003 | Mar 2009 | EP |
2138919 | Dec 2009 | EP |
2711230 | Apr 1995 | FR |
1159846 | Jun 1989 | JP |
2002044750 | Feb 2002 | JP |
WO 9711448 | Mar 1997 | WO |
WO 9739392 | Oct 1997 | WO |
WO 9965192 | Dec 1999 | WO |
WO 0001169 | Jan 2000 | WO |
WO 0043870 | Jul 2000 | WO |
WO 0152515 | Jul 2001 | WO |
WO 0179952 | Oct 2001 | WO |
WO 0193779 | Dec 2001 | WO |
WO 0223744 | Mar 2002 | WO |
WO 2010021700 | Feb 2010 | WO |
Entry |
---|
Honeywell System Installation Guide; pulled from: https://customer.honeywell.com/resources/techlit/TechLitDocuments/69-0000s/69-2490.pdf; hereinafter referred as NPL_THX9321; p. 1-28, Year 2012). |
“Comfort™ Programmable Owner's Manual,” Carrier Touch-N-Go™, 60 pages, 2010. Catalog No. 0M-TCPHP-4CA, Replaces: OM-TCPHP-3CA. |
“CorAccess Systems/In Home,” http://web.archive.org/web20011212084427/www.coraccess.com/home.html, 1 page, copyright 2001, printed Aug. 19, 2004. |
“HAI Company Background,” http://www.homeauto.com/AboutHAI/abouthai_main.htm, 2 pages, printed Aug. 19, 2004. |
“High-tech options take hold in new homes—200-08-28—Dallas Business Journal,” http://bizjournals.com/dallas/stories/2000/08/28/focus4, 3 pages, dated Aug. 28, 2000, printed Aug. 19, 2004. |
“Home Toys Review—TouchLinc”, http://www.hometoys.com/htinews/aug99/reviews/touchlinc/touchlinc.htm, 3 pages, dated Aug. 1999, printed Aug. 20, 2004. |
“HTI News Release,” http://www.hometoys.com/htinews/apr99/releases/ha101.htm, 3 pages, Apr. 1999. |
“Mark of Excellence Award Finalist Announced,” http://64.233.167.104/search?Q=cache:ciOA2YtYaBIJ:www.hometoys.com/releases/mar . . . , 6 pages, Leopard Touchscreen on p. 2, dated prior to Mar. 4, 2000, printed Aug. 20, 2004. |
“Product Review—Phillips Pronto Remote Control,” http://hometheaterhifi.com/volume_6_2/philipsprontoremotecontrol.html, 5 pages, dated May 1999, printed Aug. 20, 2004. |
“RC X10 Automation Forum: Control your Heating and Cooling System with Pronto(1/1),” http://www.remotecentral.com/cgi-bin/mboard/rc-x10/thread.cgi?12, 2 pages, dated Apr. 23, 1999, printed Aug. 20, 2004. |
“RCS X10 Thermostat Plug-In for Home Seer Beta Version,” 25 pages, Downloaded Sep. 9, 2011. 2.0.105. |
“Spotlight on integrated systems,” Custom Builder, V8, N2, p. 66(6), Mar.-Apr. 1993. |
“Vantage Expands Controls for Audio/Video, HVAC and Security,” http://www.hometoys.com/htinews/aug99/releases/vantage03.htm, 2 pages, dated Aug. 3, 1999, printed Aug. 20, 2004. |
ADI, “Leopard User Manual,” 93 pages, 2001. |
Adicon 2500, “The Automator,” 4 pages, Oct.-Dec. 2000. |
ADT Security Services, “iCenter Advanced User Interface 8142ADT,” Installation and Setup Guide, 4 pages, May 2001; First Sale Feb. 2001. |
AED Electronics, Inc., “Presenting Climatouch the Most Innovative Thermostat in the World!,” 2 pages, prior to Nov. 30, 2007. |
Andrews et al., “Clicky: User-Centric Input for Active Spaces,” 17 pages, Aug. 2004. |
Aprilaire Electronic Thermostats Models 8344, 8346, 8348, 8363, 8365, 8366 Operating Instructions, 8 pages, 2003. |
Aube Technologies, Electronic Thermostat for Heating System Model TH135-01, 5 pages, Aug. 14, 2001. |
Aube Technologies, TH140-28 Electronic Programmable Thermostat, Installation Instructions and User Guide, pp. 1-4, Jan. 22, 2004. |
AutomatedBuildings.com Article—“Thin Client” Solutions, “Pressure, Air Flow, Temperature, Humidity & Valves,” Dwyer Instruments, Inc., 5 pages, printed Sep. 20, 2004. |
Blake et al., “Seng 310 Final Project Demo Program” Illustration, 3 pages, Apr. 6, 2001. |
Blake et al., “Seng 310 Final Project” Report, dated Apr. 6, 2001. |
Blister Pack Insert from a Ritetemp 8082 Touch Screen Thermostat Product, 2 pages, 2002. |
Braeburn Model 3000 Owner's Manual, pp. 1-13, 2001. |
Braeburn Model 5000 Owners Manual, pp. 1-17, 2001. |
BRK Electronics Maximum Protection Plus Ultimate Convenience Smoke Alarm, 24 pages, Sep. 2000. |
BRK First Alert, User's Manual, Smoke and Fire Alarms, pp. 1-7, Nov. 2002. |
Business Wire, “MicroTouch Specialty Products Group to Capitalize on Growing Market for Low-Cost Digital Matrix Touchscreens,” p1174 (2 pages), Jan. 6, 1999. |
Cardio Manual, available at http://www.secant.ca/En/Documentation/Cardio2é-Manual.pdf, Cardio Home Automation Inc., 55 pages, printed Sep. 28, 2004. |
Cardio, by Secant; http://www.hometoys.com/htinews/apr98/reviews/cardio.htm, “HTINews Review,” Feb. 1998, 5 pages, printed Sep. 14, 2004. |
Carrier Microelectronic Programmable Thermostat Owner's Manual, pp. 1-24, May 1994. |
Carrier TSTATCCRF01 Programmable Digital Thermostat, pp. 1-21, prior to Apr. 21, 2005. |
Carrier, “Edge Performance Programmable Owner's Manual,” 64 pages, 2007. |
Carrier, “Programmable Dual Fuel Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-12, Oct. 1998. |
Carrier, “Programmable Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-16, Sep. 1998. |
Carrier, “Standard Programmable Thermostat,” Homeowner's Manual, pp. 1-8 pages, 1998. |
Carrier, “Thermidistat Control,” Installation, Start-Up, and Operating Instructions, pp. 1-12, Aug. 1999. |
Climatouch, User Manual, Climatouch CT03TSB Thermostat, Climatouch CT03TSHB Thermostat with Humidity Control, Outdoor UHF Temperature Transmitter 217S31, 19 pages, Printed Sep. 15, 2004. |
U.S. Appl. No. 13/434,778, filed Mar. 29, 2012. |
U.S. Appl. No. 13/227,395, filed Sep. 11, 2011. |
U.S. Appl. No. 13/325,300, filed Dec. 14, 2011. |
U.S. Appl. No. 13/325,315, filed Dec. 14, 2011. |
U.S. Appl. No. 13/325,503, filed Dec. 14, 2011. |
U.S. Appl. No. 13/325,515, filed Dec. 14, 2011. |
U.S. Appl. No. 13/325,525, filed Dec. 14, 2011. |
U.S. Appl. No. 13/325,554, filed Dec. 14, 2011. |
U.S. Appl. No. 13/325,617, filed Dec. 14, 2011. |
U.S. Appl. No. 13/326,553, filed Dec. 15, 2011. |
U.S. Appl. No. 13/415,743, filed Mar. 8, 2012. |
U.S. Appl. No. 13/420,120, filed Mar. 14, 2012. |
CorAccess, “Companion 6,” User Guide, pp. 1-20, Jun. 17, 2002. |
Danfoss RT51/51RF & RT52/52RF User Instructions, 2 pages, Jun. 2004. |
DeKoven et al., “Designing Collaboration in Consumer Products,” 2 pages, 2001. |
DeKoven et al., “Measuring Task Models in Designing Intelligent Products,” 2 pages, Jan. 13-16, 2002. |
DESA Heating Products, “Wireless Hand-Held Remote Control Sets Models (C) GHRCB and (C)GHRCTB, Operating Instructions,” 4 pages, May 2003. |
Domotique Secant Home Automation—Web Page, available at http://www.secant.ca/En/Company/Default.asp, 1 page, printed Sep. 28, 2004. |
Emme Core User Guide, Version 1.1, 47 pages, Jan. 2011. |
Firex Smoke Alarm, Ionization Models AD, ADC Photoelectric Model Pad, 4 pages, prior to Apr. 21, 2005. |
Fluke, “561 HVAC Pro” Infrared Thermometer Users Manual, 22 pages, Downloaded May 24, 2012. 11-99. |
Freudenthal et al., “Communicating extensive smart home functionality to users of all ages: the design of a mixed-initiative multimodal thermostat-interface,” pp. 34-39, Mar. 12-13, 2001. |
Gentex Corporation, HD135, 135° Fixed Temperature Heat Detector AC Pwered, 120V, 60Hz With Battery Backup, Installation Instructions—Owner's Information, pp. 1-5, Jun. 1, 1998. |
Gentex Corporation, 9000 Series, Photoelectric Type Single Station/Multi-Station Smoke Alarms AC Powered With Battery Backup, Installation Instructions—Owner's Information, pp. 9-1 to 9-6, Jan. 1, 1993. |
Harris et al., “Optimizing Memory Transactions,” Microsoft Research Havard University, 12 pages, May 25, 2012. |
Honeywell Brivis Deluxe Programmable Thermostat, pp. 1-20, 2002. |
Honeywell Brivis T8602C Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell CT8602C Professional Fuel Saver Thermostat, pp. 1-6, 1995. |
Honeywell Electronic Programmable Thermostat, Owner's Guide, pp. 1-20, 2003. |
Honeywell Electronic Programmable Thermostats, Installation Instructions, pp. 1-8, 2003. |
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995. |
Honeywell T8002 Programmable Thermostat, Installation Instructions, pp. 1-8, 2002. |
Honeywell T8602A,B,C,D and TS8602A,C Chronotherm III Fuel Saver Thermostats, Installation Instructions, pp. 1-12, 1995. |
Honeywell T8602D Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell TH8000 Series Programmable Thermostats, Owner's Guide, pp. 1-44, 2004. |
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995. |
Honeywell, “Installation Guide: Wireless Entry/Exit Remote,” 12 pages, 2011. |
Honeywell, Wireless Entry/Exit Remote, Operating Manual, 9 pages, 2011. |
Honeywell, “Introduction of the S7350A Honeywell WebPAD Information Appliance,” Home and Building Control Bulletin, 2 pages, Aug. 29, 2000; Picture of WebPad Device with touch screen, 1 Page; and screen shots of WebPad Device, 4 pages. |
Honeywell, “RedLINK™ Wireless Comfort Systems,” RedLINK Wireless Technology, 8 pages, Aug. 2011. 50-1194 PR. |
Honeywell, “Total Connect Online Help Guide,” Revision A, 800-02577-TC, Mar. 2010. |
Honeywell, “Total Connect User Guide,” Revision B, 34 pages, May 15, 2012. K14741. |
Honeywell, “VisionPRO® 8000 Thermostats,” Homeywell International Inc., 2 pages, Downloaded May 24, 2012. http://yourhome.honeywell.com. |
Honeywell, “W7006A Home Controller Gateway User Guide,” 31 pages, Jul. 2001. |
Honeywell, MagicStat® CT3200 Programmable Thermostat, Installation and Programming Instructions, pp. 1-24, 2001. |
http://www.cc.gatech.edu/computing/classes/cs6751_94_fall/groupc/climate-2/node1.html, “Contents,” 53 pages, printed Sep. 20, 2004. |
http://www.ritetemp.info/rtMenu_13.html, Rite Temp 8082, 6 pages, printed Jun. 20, 2003. |
http://www.thermostatsales.com, Robertshaw, “9610 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9700 Deluxe Programmable Thermostat” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9710 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9720 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://hunter-thermostats.com/hunter_programmable_thermostats.html, Hunter Thermostat 44668 Specifications, and 44758 Specifications, 2 pages, Printed Jul. 13, 2011. |
Hunter, “44200/44250,” Owner's Manual, 32 pages, prior to Jul. 7, 2004. |
Hunter, “44300/44350,” Owner's Manual, 35 pages, prior to Jul. 7, 2004. |
Hunter, “Model 44758 Remote Sensor,” Owner's Manual, 2 pages, Revision Sep. 4, 2008. Form No. 44044-01. |
Hunter, “Auto Saver 550”, Owner's Manual Model 44550, 44 pages, prior to Jul. 7, 2004. |
Install Guide for Ritetemp Thermostat 8082, 6 pages, 2002. |
Invensys™, “9700i 9701i 9715i 9720i Deluxe Programmable Thermostats,” User's Manual, pp. 1-28, prior to Jul. 7, 2004. |
Larsson, “Battery Supervision in Telephone Exchanges,” Ericsson Components AB Sweden, 5 pages, Downloaded May 5, 2012. 9.14. |
Lennox, “Network Control Panel (NCP),” User's Manual, 18 pages, Nov. 1999. |
Lennox, “Prodigy Control System,” Lennox Industries, 4 pages, May 25, 2012. (63W21)-01/11. |
Logitech, “Harmony 880 Remote User Manual,” v. 1, pp. 1-15, prior to Nov. 30, 2007. |
Lux ELV1 Programmable Line Voltage Thermostat, Installation Instructions, 3 pages, prior to Jul. 7, 2004. |
Lux TX500 Series Smart Temp Electronic Thermostat, 3 pages, prior to Jul. 7, 2004. |
Lux TX9000 Installation, 3 pages, prior to Apr. 21, 2005. |
Lux, “9000RF Remote Instructions,” 2 pages, prior to Nov. 30, 2007. |
Lux, “511 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “600 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “602 Series Multi-Stage Programmable Thermostat,” Owner's Manual, 2 pages, prior to Jul. 7, 2004. |
Lux, “605/2110 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “700/9000 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “PSPH521 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “TX1500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 6 pages, prior to Jul. 7, 2004. |
Metasys, “HVAC PRO for Windows User's Manual,” 308 pages, 1998. |
Mounting Template for Ritetemp Thermostat 8082, 1 page, 2002. |
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. JB301-E3-01, 6 pages, Mar. 2005. |
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. B02WAD1, 2 pages, Jun. 2002. |
Operation Manual for Ritetemp Touch Screen Thermostat 8082, 8 pages, 2002. |
Proliphix, “Web Enabled IP Thermostats, Intelligent HVAC Control,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004. |
Proliphix, “Web Enabled IP Thermostats, Ultimate in Energy Efficiency!,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004. |
Proliphix, Inc., “NT10e & NT20e,” 54 pages, on or before Aug. 30, 2005. |
Quick Start Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Remote Control Power Requirement for Ritetemp Thermostat 8082, 1 page, 2002. |
Ritetemp Operation 8029, 3 pages, Jun. 19, 2002. |
Ritetemp Operation 8050, 5 pages, Jun. 26, 2002. |
Ritetemp Operation 8085, pp. 1-6, prior to Apr. 21, 2005. |
Saravanan et al, “Reconfigurable Wireless Interface for Networking Sensors,” IJCSNS International Journal of Computer Science and Network Security, vol. 8 No. 7, pp. 270-276. Revised Jul. 20, 2008. |
Screenshot of http://lagotek.com/index.html?currentSection=TouchIt , Lagotek, 1 page, prior to Mar. 29, 2012. |
Sealed Unit Parts Co., Inc., Supco & CTC Thermostats . . . loaded with features, designed for value!, 6 pages, prior to Apr. 21, 2005. |
Sharp Corporation, “GP1S036HEZ Phototransistor Output, Transmissive Photointerrupter with Tilt Direction (4-Direction) Detecting,” pp. 1-11, Oct. 3, 2005. |
SmartAC, “Thermostat Programming Web Site Guide,” PG-WC-7E, 2 pages, 2009. |
Totaline Model P474-1035 Owner's Manual Programmable 5-2 Day Digital Thermostat, pp. 1-21, Apr. 2003. |
Totaline Star CPE230RF, Commercial Programmable Thermostat Wireless Transmitter, Owner's Manual, pp. 1-16, Oct. 1998. |
Totaline Star P/N P474-0130 Non-Programmable Digital Thermostat Owner's Manual, pp. 1-22, prior to Apr. 21, 2005. |
Totaline, “1 For All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100FM, 23 pages, Nov. 1998. |
Totaline, “1 For All Programmable Digital Thermostat,” Owner's Manual P/N P474-1050, 21 pages, Nov. 1998. |
Totaline, “1 For All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100, 24 pages, Apr. 2001. |
Totaline, “Intellistat Combination Temperature and Humidity Control,” Owner's Manual P/N P374-1600, 25 pages, Jun. 2001. |
Totaline, “P/N P374-0431 Thermostat Remote Control and Receiver,” Owner's Manual, 11 pages, prior to Nov. 30, 2007. |
Totaline, “P474-1100RF, P474-1100REC Wireless Thermostat,” 1 page, prior to Nov. 30, 2007. |
Totaline, “Programmable Thermostat Configurable for Advanced Heat Pump or Dual Fuel Operation,” Owner's Manual P/N P374-1500, 24 pages, Jun. 1999. |
Totaline, “Wireless Remote Sensor, Model P474-0401-1RF/REC,” 2 pages, prior to Nov. 30, 2007. |
Totaline, “Instructions P/N P474-1010”, Manual, 2 pages, Dec. 1998. |
Totaline, “Programmable Thermostat”, Homeowner's Guide, 27 pages, Dec. 1998. |
Totaline, “Wireless Programmable Digital Thermostat,” Owner's Manual 474-1100RF, 21 pages, 2000. |
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002. |
Trane, “Wireless Zone Sensor. Where Will Wireless Technology Take You?,” 4 pages, Feb. 2006. |
Travis Industries, Remote Fireplace Thermostat, Part #99300651, 6 pages, printed Feb. 3, 2003. |
Trouble Shooting Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Visor Handheld User Guide, 280 pages, Copyright 1999-2000. |
Warmly Yours, “Model TH111GFCI-P (120 VAC),” Manual, pp. 1-4, prior to Jul. 7, 2004. |
White-Rodgers 1F80-224 Programmable Electronic Digital Thermostat, Installation and Operation Instructions, 8 pages, prior to Apr. 21, 2005. |
White-Rodgers Comfort-Set III Thermostat, pp. 1-44, prior to Jul. 7, 2004. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 Non-Programmable Thermostat, 6 pages, prior to Apr. 21, 2005. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 5/2 Day Programmable Thermostat, 7 pages, prior to Jul. 7, 2004. |
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF72 5/2 Day Programmable Heat Pump Thermostat,” 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, “Comfort-Set 90 Series Thermostat,” Manual, pp. 1-24, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-240 “(for Heating Only systems) Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-241 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 6 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-261 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F81-261 “Programmable Electronic Digital Multi-Stage Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F82-261 “Programmable Electronic Digital Heat Pump Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, Comfort-Set 90 Series Premium, 4 pages, prior to Apr. 21, 2005. |
www.icmcontrols.com, Simplecomfort, SC3000 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3001 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3006 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3201 2 Stage Heat Pump Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3801 2 Stage Heat/2 Stage Cool 2 Stage Heat Pump/Audio Changeover, 1 page, prior to Jul. 7, 2004. |
“RTCA's E-Smart Radon Monitoring Service,” Radon Testing Corporation of America, 3 pages, prior to Jan. 11, 2006. |
Clapman et al., “An SNMP-Based Approach for Home Bus Network Management,” Proceedings of the International Conference on Consumer Electronics, 4 pages, Jun. 8-10, 1992. |
U.S. Appl. No. 13/743,163, filed Jan. 16, 2013. |
Polaroid, “PhotoMAX Digital Picture Frame,” User's Guide, 25 pages, prior to Jan. 16, 2013. |
Westinghouse, “DPF-0702 Widescreen Digital Photo Frame,” User's Manual, 46 pages, prior to Jan. 16, 2013. |
Number | Date | Country | |
---|---|---|---|
20140214212 A1 | Jul 2014 | US |