Autofocus system for a conventional camera that uses depth information from an array camera

Information

  • Patent Grant
  • 10122993
  • Patent Number
    10,122,993
  • Date Filed
    Thursday, May 28, 2015
    9 years ago
  • Date Issued
    Tuesday, November 6, 2018
    6 years ago
Abstract
Systems with an array camera augmented with a conventional camera in accordance with embodiments of the invention are disclosed. In some embodiments, the array camera is used to capture a first set of image data of a scene and a conventional camera is used to capture a second set of image data for the scene. An object of interest is identified in the first set of image data. A first depth measurement for the object of interest is determined and compared to a predetermined threshold. If the first depth measurement is above the threshold, a second set of image data captured using the conventional camera is obtained. The object of interest is identified in the second set of image data and a second depth measurement for the object of interest is determined using at least a portion of the first set of image data and at least a portion of the second set of image data.
Description
FIELD OF THE INVENTION

The present invention relates to array cameras and particularly to array cameras including an array camera module with a separate camera.


BACKGROUND

An array camera includes a plurality of individual cameras (i.e., cameras) that can capture images of a scene where the image obtained by each camera is from a slightly different viewpoint. The individual images from each of the cameras are used to generate a single image having a higher resolution than the resolution of each of the individual cameras in the array. The use of an array camera to generate real-time video can be problematic because of the high computational load involved in synthesizing a single frame of video from the individual images captured by the cameras in the frame every frame interval. This is especially true in a mobile device where high computational load can require a large amount of processing time and/or expend a significant amount of power. For example, an array camera may include 16 individual cameras in the area, where each camera includes 1000×750 pixels. A common output for video data is either 720p (1280×720 pixels) or 1080p (1920×1080 pixels). However, the resolution of the individual cameras (1000×750 pixels) is lower than either of these desired output resolutions. As such, the video images derived from the array camera must undergo a cropping process to convert to a 16:9 format (960×540 pixels) and correspondence (parallax) estimation process to determine a correspondence between the images and a super-resolution processing process (2×) to output video in the desired format. Each of these processes increases the power requirement on a mobile telephone over the existing solution of capturing video using a conventional camera. In a conventional camera, the video is captured in the desired resolution and may be processed using hardware in the sensor. As such, the video from a conventional camera is likely to require less of a computational load and draw less power than an array camera.


SUMMARY OF THE INVENTION

The above and other problems are solved and an advance in the art is made by array cameras including an array camera module augmented with a separate camera in accordance with some embodiments of this invention. In accordance with some embodiments of the invention, an array camera includes an array camera module, a separate camera, a processor and memory storing software for directing the processor. The array camera module includes multiple cameras that capture images of a scene from different viewpoints. The separate camera is located a fixed baseline distance from the array camera module and captures an image of the scene from a different viewpoint to the viewpoints of the cameras in the array camera module. The processor reads the software from the memory.


The software directs the processor to perform in the following manner. A set of images captured from different viewpoints is obtained using the cameras in the array camera module and the separate camera. The images in the set of images are captured from different viewpoints. A reference viewpoint relative to the viewpoints of the set of images captured from different viewpoints is selected. Depth estimates for pixel locations in an image from the reference viewpoint are determined using the images in the set of images captured by the array camera module.


The depth estimate for a given pixel location in the image from the reference may be determined in the following manner. Pixels in the images captured by the array camera module that correspond to the given pixel location in the image from the reference viewpoint based upon expected disparity at a different depths are identified. The similarity of the corresponding pixels identified at each of the plurality of depths are compared and the depth is selected from the different depths at which the identified corresponding pixels have the highest degree of similarity as a depth estimate for the given pixel location in the image from the reference viewpoint.


The software further directs the processor to generate a depth map for an image in the set of images captured by the separate camera using the depth estimates for pixel locations in an image from the reference viewpoint in the following manner. The pixels in an image captured by the separate camera corresponding to pixels in the image from the reference viewpoint for which depth estimates were determined using images in the set of images captured by the cameras in the array camera module identified and depth estimates determined using images in the set of images captured by the array camera module to the corresponding pixels in the image captured by the separate camera are applied.


In accordance with some embodiments, the array camera module and the separate camera are set farther apart than the cameras in the array camera module. In accordance with many embodiments, the array camera module and the separate camera are located a fixed baseline distance apart.


In accordance with some embodiments, the cameras in the array camera module and the separate camera have the same resolution. In accordance with some embodiments, the separate camera has a higher resolution than the cameras in the array camera module. In accordance with many embodiments, the separate camera and the cameras in the array camera module capture image data in multiple color channels. In various embodiments, the separate camera is a Bayer camera and the array camera module includes cameras selected from the group consisting of Bayer cameras, and monochrome cameras.


In accordance with some embodiments, the baseline distance between the array camera module and the separate camera is variable. In many embodiments, the array camera includes internal sensors including gyroscopes and accelerometers and the software further directs the processor to estimate the baseline distance between the array camera module and the separate camera from extrinsics determined from matching features in the images captured by the array camera module and the separate cameras in combination with information from the gyroscopes and accelerometers.


In accordance with some embodiments, the array camera module forms an M×N array of cameras.


In accordance with many embodiments, the software further directs the processor to operate in the following manner. The processor determines whether a depth estimate for pixel locations in an image from the reference viewpoint determined using the images in the set of images captured by the array camera module corresponds to an observed disparity below a predetermined threshold. When the depth estimate corresponds to an observed disparity below the predetermined threshold, the depth estimate is refined using at least one image in the set of images captured by the separate camera. In accordance with a number of embodiments, the software further directs the processor to refine a depth estimate using images in the set of images captured by the separate cameras in the following manner. Pixels in images captured by the array camera module and by the separate camera that correspond to the given pixel location in the image from the reference viewpoint based upon expected disparity at different depths are identified. The similarity of the corresponding pixels identified at each of the plurality of depths is compared. The depth from the different depths at which the identified corresponding pixels have the highest degree of similarity as a depth estimate for the given pixel location in the image from the reference viewpoint is selected. In accordance with several embodiments, the software directs the processor to refine a depth estimate using images in the set of images captured by the array camera module and the separate camera by selecting the different depths based upon the depth estimate initially determined using the images in the set of images captured by the array camera module.


In accordance with some embodiments, the software further directs the processor to generate a depth map using the depth estimates for pixel locations in an image from the reference viewpoint, where the depth map indicates distances of surfaces of scene objects from the reference viewpoint. In accordance with many embodiments, the software further directs the processor to generate a depth map by identifying pixels in an image captured by the array camera module and the separate camera corresponding to pixels for which depth estimates were determined using images in the set of images captured by the array camera module and applying depth estimates determined using images from the set of images captured by the array camera module to the corresponding pixels.


In accordance with some embodiments, the software further directs the processor to synthesize a higher resolution image from the set of images captured by the array camera module using the depth map. In many embodiments, the software further directs the processor to synthesize a higher resolution image from the set of images captured by the array camera module and the separate cameras using the depth map. In accordance with a number of embodiments, the cameras in the array camera module form a π filter group. In accordance with several of these embodiments, the separate camera is a Bayer camera.


In accordance with some embodiments, an array camera includes an array camera module comprising multiple cameras that capture images of a scene from different viewpoints, a separate camera located a fixed baseline distance from the array camera module, where the separate camera captures an image of the scene from a different viewpoint to the viewpoints of the cameras in the array camera module, a processor and memory in communication with the processor storing software. The software directs the processor to operate in the following manner. An instruction to capture one of a still image and video images is received. Image data is synthesized using image data captured by the multiple cameras in the array camera module in response to an instruction to capture a still image. Video images are captured using image data from the separate camera in response to an instruction to capture video images.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a conceptual illustration of a camera architecture including an array camera and a conventional camera in accordance with an embodiment of the invention.



FIG. 2 is an illustration of a flow diagram of a process for capturing image data using an array camera and a conventional camera in accordance with an embodiment of the invention.



FIG. 3 is an illustration of a flow diagram of a process for capturing image data using an array camera and a conventional camera in accordance with another embodiment of the invention.



FIG. 4 is an illustration of a flow diagram of a process for capturing image data using an array camera and a conventional camera in accordance with yet another embodiment of the invention.



FIG. 5 is an illustration of parallax effects on the images captured in a two camera system.



FIG. 6 is a graph illustrating object distance versus observed disparity.



FIG. 7 is a graph illustrating object distance versus depth error.



FIG. 8 is an illustration of a flow diagram of a process for measuring depth using an array camera and a conventional camera in accordance with an embodiment of the invention.



FIG. 9 is an illustration of a process for reusing depth information in accordance with embodiments of the invention.



FIG. 10 illustrates a process for measuring speed using an array camera and a conventional camera in accordance with embodiments of the invention.



FIG. 11 is an illustration of a flow diagram of a process for providing an auto focus function to a conventional camera using depth information obtained using images captured by an array camera in accordance with an embodiment of the invention.



FIG. 12 is an illustration of the arrays of pixels in cameras of an array in accordance with an embodiment of this invention.



FIG. 13 is an illustration of captured scenes and depth information for a conventional camera and an array camera in accordance with an embodiment of the invention.



FIG. 14 is a conceptual illustration of an alternative camera architecture including an array camera and a conventional camera in accordance with an embodiment of the invention.





DETAILED DISCLOSURE OF THE INVENTION

Turning now to the drawings, array cameras including an array camera module augmented with a separate camera in accordance with various embodiments of this invention are disclosed. In accordance with some embodiments of this invention, the array camera includes an array camera module positioned a known distance from a conventional camera. The term conventional camera is referred herein to describe a camera implemented using a single sensor and associated optics including a single aperture that forms a single image of a scene on the sensor, where the capture of image data by the sensor and read out of image data from the sensor can be directly performed by an external device. In several embodiments, the conventional camera has a sufficiently high resolution to capture video sequences according to the requirements of specific video capture applications. Array camera modules included in array cameras in accordance with embodiments of the invention can be utilized to capture image data from different viewpoints as disclosed in U.S. Patent Publication No. 2011/0069189, entitled “Capturing and Processing of Images using Monolithic Camera Array with Heterogeneous Images”, to Venkataraman et al., the relevant disclosure from which is incorporated by reference herein in its entirety. As disclosed in U.S. Patent Publication No. 2011/0069189, an array camera typically contains two or more cameras that capture image data from multiple viewpoints that can be used in depth estimation and super-resolution processing. The combination of an array camera module and a separate camera where the resolution of the cameras in the array camera module and the resolution of the separate camera can be considered a special case of the class of non-grid array cameras disclosed in U.S. Patent Publication No. 2011/0069189. Array cameras in accordance with various embodiments of this invention utilize the presence of different types of cameras in a non-grid array camera to vary the cameras and/or image data captured based upon the requirements of specific applications. In this way, the power efficiency of video capture using a single camera can be harnessed in combination with the ability to estimate depth and perform super-resolution processing afforded by capturing image data from different viewpoints. In some embodiments, the separate camera and a set of depth cameras can be packaged as a single module where the separate camera has distinct imaging characteristics relative to the depth cameras. The specific configuration of cameras having different imaging characteristics is largely dependent upon the requirements of specific applications.


In accordance with some embodiments of the invention, the conventional camera is used to capture video images when video is desired and the array camera module is used to capture still images when still images are required. In accordance with many embodiments, the conventional camera may be used to provide preview images for use in capturing still images with the cameras in the array camera module. In accordance with a number of embodiments, the preview images are modified to indicate the scene that may be captured using the array camera module. In a number of embodiments, the image capture parameters for the conventional camera is detected while preview images are captured and the image capture parameters from the conventional camera is used to adjust the image capture parameters for the cameras in the array camera module.


In accordance with some embodiments, the conventional camera and the cameras in the array camera module capture still images when a still image is desired. The image data from the conventional camera and the cameras in the array camera module may then be used to generation depth information in accordance with many of embodiments. In a number of embodiments, the depth information includes a depth map for the image. In accordance with several of these embodiments, the still image is generated from the image data captured by the conventional camera. In accordance with still other embodiments, the still image is generated from image data captured by the cameras in the array camera module.


In accordance with some embodiments, the conventional camera and the cameras in the array camera module capture video images when video images are desired. The video image data from the conventional camera and the cameras in the array camera module may then be used to generation depth information for the images in accordance with many of embodiments. In a number of embodiments, the depth information includes a depth map for the video images. In accordance with several of these embodiments, the video image is generated from the video image data captured by the conventional camera. In accordance with still other embodiments, the video image is generated from image data captured by the cameras in the array camera module.


In accordance with some embodiments of the invention, the conventional camera and/or the array camera module are activated to capture image data based upon a desired task to be performed. In many embodiments, the array camera module is activated when depth-enabled features are activated and a conventional camera is activated when variable resolution features are activated.


In accordance with some embodiments, two or more cameras in the array camera module are used to capture depth information for use in providing an autofocus function. In accordance with many embodiments, the image data for a focus window is captured from two or more cameras in the array camera module. Depth information for the focus window is determined from the captured image data. The depth information is then translated to the focus window of a conventional camera and used to determine a focus depth for use in adjusting the actuator of an autofocus mechanism within the conventional camera to focus the conventional camera at the desired depth. In accordance with a number of these embodiments, a conventional autofocus process is used if a focal depth cannot be determined using the depth information from the two or more cameras in the array.


Array cameras including an array camera module and a separate camera in accordance with various embodiments of the invention are discussed below.


Array Camera Architecture


An array camera architecture that can be used in a variety of array camera configurations in accordance with embodiments of the invention is illustrated in FIG. 1. The array camera system 100 includes an array camera module 102 and a conventional camera 103 that are spaced a known distance apart. Both the array camera module 102 and the conventional camera 103 are connected to a processor 104. Cameras 106 in the array camera module 102 are evenly spaced in a 5×5 square. In other embodiments, cameras may have different spacing or can be arranged in other orientations in the array camera module.


The array camera module 102 is connected to the processor 106. The processor is also configured to communicate with one or more different types of memory 108 that can be utilized to store an image processing pipeline application 110, image data 112 captured by the array camera module 102, a video encoder 114 and encoded video 116. The image processing pipeline application 110 is typically non-transitory machine readable instructions utilized to direct the processor to perform processes including (but not limited to) the various processes described below.


Processors 108 in accordance with many embodiments of the invention can be implemented using a microprocessor, a coprocessor, an application specific integrated circuit and/or an appropriately configured field programmable gate array that is directed using appropriate software to control various operating parameters of the array camera module 102 and/or conventional camera 103. The processor 104 can also function to process the images captured by array camera module 102 to produce a synthesized higher resolution image using super-resolution processes, or transfer the images to other hardware, software, firmware or a combination thereof to process the images. The processor 104 may also process the images captured by conventional camera 103 to provide a final image or transfer the images to other hardware, software, firmware or a combination thereof to process the images. The array camera system 100 can also include memory 108 in communication with the processor 104 for storing images. In a variety of embodiments, the memory 108 includes circuitry such as, but not limited to, memory cells constructed using transistors, that are configured to store instructions. Similarly, the processor 104 can include logic gates formed from transistors (or any other device) that are configured to dynamically perform actions based on the instructions stored in the memory. In several embodiments, the instructions are embodied in a configuration of logic gates within the processor to implement and/or perform actions described by the instructions. In this way, the systems and methods described herein can be performed utilizing both general-purpose computing hardware and by single-purpose devices.


Array camera modules 102 in accordance with many embodiments of the invention can be constructed from an array camera module or sensor including an array of focal planes and an optic array including a lens stack for each focal plane in the array camera module. Sensors including multiple focal planes and the operation of such sensors are discussed in U.S. Patent Publication No. 2012/0013748 entitled “Architectures for System on Chip Array Cameras”, to Pain et al., the relevant disclosure from which is incorporated herein by reference in its entirety. A sensor including a single array of pixels on which images are formed by the optics of each camera can also be utilized to capture image data. In several embodiments, each camera includes a separate sensor. In many embodiments, individual lens barrels are utilized to implement the optics of the camera. Array camera modules incorporating cameras implemented using combinations of separate sensors and optic arrays, separate sensors and separate lens barrels and a single sensor and separate lens barrels in accordance with embodiments of the invention are disclosed in U.S. patent application Ser. No. 14/536,537 entitled “Methods of Manufacturing Array Camera Modules Incorporating Independently Aligned Lens Stacks” to Rodda et al. filed Nov. 7, 2014, the relevant disclosure from which is incorporated by reference herein in its entirety. Light filters can be used within each optical channel formed by the optics of a camera in the array camera module to enable different cameras to capture image data with respect to different portions of the electromagnetic spectrum.


In accordance with some embodiments, conventional camera 103 has a wider field of view than array camera module 102 to account for the diverging viewpoints based upon the distance between conventional camera 103 and array camera module 102. In accordance with some embodiments, the cameras in array camera module 102 and the conventional camera 103 have fixed focus lengths so that the blurring profiles of the conventional camera 103 and the array camera module 102 are consistent and fixed over a wide range of scenes. The fixed focal lengths in the conventional camera 103 and the array camera module 102 can also enable the conventional camera 103 and the array camera module 102 to have similar depth of field profiles and reduce potential sources of differences during the image processing of image data captured by the cameras in the array camera module 102 and the conventional camera 103 in accordance with some embodiments.


In accordance with some embodiments, the conventional camera 103 and the array camera module 102 may be synchronized in terms of frame delivery and shutter speed. In accordance with many embodiments, the conventional camera 103 and the array camera module 102 are synchronized using linked clocks and signals indicating an image capture. In a number of embodiments, frame capture by the conventional camera 103 and the cameras in the array camera module 102 are synchronized so that frames from both cameras are captured synchronously and can be compared to each other during subsequent image processing.


In accordance with some embodiments, the individual cameras in array camera module 102 each capture images in a particular spectral channel including but not limited to Red, Green, and Blue. In accordance with a number of embodiments, the individual cameras in the array camera module 102 are Bayer cameras. In accordance with some embodiments, the conventional camera 103 is a Bayer camera. As can readily be appreciated, the specific cameras utilized in an array camera module and/or a separate conventional camera can be any of a variety of cameras that image any portion(s) of the spectral band appropriate to the requirements of a specific application.


In accordance with some embodiments, two or more array camera modules may be placed at known distances on various sides of conventional camera 103 so that each portion of the scene sampled by the conventional camera 103 is visible in at least one camera in the array camera module. Where the array camera module includes multiple types of camera that image different portions of the spectrum, then array cameras in accordance with many embodiments of the invention position the cameras in the array camera module so that one camera of each type views each portion of the scene sampled by the conventional camera. In accordance with various embodiments, the array camera module may be enhanced by synchronized gyroscopes, accelerometers, structured illumination and the like to further enhance the depth map and to keep array camera module 102 synchronous with the vertical sync of conventional camera 103.


An alternative camera architecture that can be used in a variety of array camera configurations in accordance with embodiments of the invention is illustrated in FIG. 14. Array camera system 1400 includes low resolution cameras 1405-1408 that are arranged in a defined geometrical arrangement with regard to high resolution camera 1410. In accordance with a number of embodiments, the location of high resolution camera 1410 may not be in the center of low resolution cameras 1408-1410. In the shown embodiment, the low resolution cameras are substantially near the corners of high resolution 1401. However, different geometrical arrangements of the low resolution camera 1405-1408 with regards to the high resolution camera 1410 can be used without depending on the embodiment. Furthermore, any number of low resolution cameras 1405-1408 may be used depending on the embodiment. The low resolution camera 1405-1408 form an array camera. High resolution camera 1410 has a known baseline with respect to each of the low resolution cameras 1405-1408 and/or the array camera that includes the low resolution cameras. The known baselines form the basis of a geometrical relationship between the high resolution camera and the array camera that can be used for the various process described further below.


Although specific architectures are illustrated in FIGS. 1 and 2, any of a variety of architectures including an M×N array of cameras that enables the capture of low resolution images and application of super-resolution processes to produce a synthesized high resolution image as well as a conventional camera a known distance from the array can be utilized in accordance with embodiments of the invention.


Image Capture Processes


In accordance with some embodiments of the invention, a system with an array camera module augmented with a conventional camera captures video images using the convention image sensor and still images using the array camera module. A flow diagram of a process of capturing image data using either the array camera module or the conventional camera in accordance with an embodiment of this invention is shown in FIG. 2. In process 200, an input requesting an image capture function is received (205). In accordance with several embodiments, the request is a user input that indicates one of a number of image capture options including (but not limited to) video image capture, and still image capture. In accordance with some of these embodiments, the input is obtained via selection of an icon on a graphical user interface. In the illustrated embodiment, the process 200 determines (210) whether video images or still images are to be captured based upon the user input.


If video images are to be captured, the convention image sensor is activated to capture video image data in a conventional manner. If still images are to be captured, the process 200 can activate the conventional camera to capture preview images (215), display the preview images from the conventional camera (220), receive a request to capture a still image (235), and capture a still image using the array camera module (240).


The conventional camera may have a viewpoint that is different from the array camera module due to space between the conventional camera and the array camera module. To show the scene that may be captured by the array camera module, the conventional camera may have a larger field of view than the fields of view of the cameras in the array camera module. Furthermore, the field of view of the convention camera can include the fields of view of the cameras in the array camera module. In this way, the portion of the scene sampled (or that will be sampled) by the cameras in the array camera module can be determined.


The preview image(s) captured by the conventional camera are displayed to the user (225). In accordance with some embodiments the display includes an indication of the field of view of the array camera module. In many embodiments, the indication may be provided by cropping the preview image(s) to approximate the scene of the field of view of the array camera module. In accordance with a number of embodiments, the indication may be an outline of a box, crosshairs, or some other graphical element super-imposed over the displayed preview image(s). In several embodiments, a depth map for the scene is generated based upon image data generated by the array camera during preview mode and a perspective correction is applied to a portion of the field of view of the images captured by the conventional camera to shift the image into the viewpoint of the array camera.


In accordance with some embodiments, process 200 optionally includes the determining of the image settings for the conventional camera (230) and the providing of image settings for the array camera module based upon the image settings of the sensor in the convention camera (235). In accordance with some embodiments, an auto-exposure loop of the conventional camera converges to a particular desired gain and exposure and/or other image settings for a scene being captured. In some embodiments, the image setting of the conventional camera is provided to the array camera module to adjust the image settings of the cameras in the array camera module. However, the array camera module may have different properties in terms of various image settings including (but not limited to) transmissivity, pixel sensitivity, available gain, and/or exposure range. Thus, a controller, circuit, or software process may convert the image settings of the conventional camera to terms for use in the array camera in accordance with many embodiments. In a number of embodiments, the conversion includes (but is not limited to) gain settings, exposure settings, color balance corrections and tone curve.


The array camera module is configured to capture an image of a scene that is indicated in the preview image(s). A request or snap is then detected (240) and the array camera module capture image data for the desired image. The image data may then be used to render an image using image processing techniques similar to those described the applications incorporated by reference above.


Although processes for capturing image data using either the array camera module or the conventional camera are described above with reference to FIG. 2, one skilled in the art will recognize that other processes for capturing image data using either a conventional camera or an array camera module may be performed as appropriate to the requirements of specific applications in accordance with various embodiments of this invention.


In accordance with some embodiments, the conventional camera may be leveraged to improve depth accuracy in image processing of images from the array camera module for still images. Likewise, array camera module may be used to improve depth accuracy in video data obtained using the convention image sensor. In particular, the conventional camera can implement both the still and video mode in some embodiments. In these embodiments, the array camera module is utilized as a depth sensor. The array camera module captures lower resolution and/or lower quality stills that contain depth enabled features including, but not limited to, matting and segmentation. A process for using the conventional camera and/or array camera module to improve depth accuracy for image processing in accordance with an embodiment of this invention is shown in FIG. 3. In process 300, an input requesting an image capture function is received (305). In accordance with some embodiments, the request is an input by user that can indicate that video image capture or still image capture is requested. In accordance with some of these embodiments, the input is a selection of an icon on a graphical user interface. The process 300 determines whether video images or still images are to be captured (310).


In accordance with some embodiments, the capturing of the preview image(s) involves capturing video image data using the conventional camera (315). The conventional camera may have a viewpoint that is different from the array camera module due to space between the conventional camera and the array camera module. To show the scene that may be captured by the array camera module, the conventional camera may have a larger field of view than the fields of view of the cameras in the array camera module. Furthermore, the field of view of the convention camera can include the fields of view of the cameras in the array camera module. In this way, the portion of the scene sampled (or that will be sampled) by the cameras in the array camera module can be determined.


The preview image(s) captured by the conventional camera are displayed to the user (320). In some embodiments, the display may also provide an indication of depth and the preview may only show the portion of the field of view of the conventional camera for which depth information is available from image data captured by the cameras in the array camera module.


An indication to capture an image is received (325). In some embodiments, the indication may be an input by a user. In accordance with many embodiments, the indication may be a signal received by another process using the array camera to capture an image. Image data is captured by the cameras in the array camera module (330) and the conventional camera (340) In accordance with some embodiments and the capture of the image data is synchronized to occur over a common image capture time interval. In accordance with some embodiments, the determination of image setting information discussed with respect to process 200 above may be performed prior to image capture with the array camera.


Depth information can be determined using image data captured by the cameras in the array camera module and conventional camera (350). In accordance with some embodiments, disparity searches along epipolar lines can be performed to identify correspondences between pixels in images captured by one or more cameras in the array camera module and pixels in the image from the conventional camera. These disparity searches can be utilized in combination with information concerning the baseline between the various cameras to perform depth estimation. The determined depth estimates can improve depth estimates determined with only image data from the cameras in the array camera module, because depth error typically increases quadratically as the baseline (distance between the cameras capturing the compared images) gets smaller. Thus, depth estimation error can be reduced in array cameras in which the baseline (distance) between the conventional camera and one or more cameras in the array camera module is larger than the baseline between the cameras in the array camera module.


In accordance with some embodiments, the individual cameras in the array camera module capture an individual spectral channel. In these embodiments, the image data captured by a camera in the array camera module within a specific spectral channel may be compared against image data captured by other cameras from within the array camera module that capture image data within the same spectral channel and/or image data captured by the conventional camera in the same spectral channel. For example, a red pixel in image data captured by a camera in the array camera module can be compared to the red channel of the image data from the conventional camera. In accordance with a number of embodiments, the individual cameras in the array camera module are Bayer cameras (capturing Red (R), Green (G), and Blue (B) spectral channels).


In accordance with some embodiments, the process may determine whether to determine the depth information only using image data from the cameras in the array camera module when the objects at very near distances because the small baselines between cameras reduces the disparity range that needs to be searched. However, the image data from the conventional camera and one or more cameras from the array camera module are used when the objects are at far distances to provide better measurements of disparity.


In many embodiments, the conventional camera may have different physical characteristics from the individual cameras within the array camera module. As such, normalizations are enacted to reduce the apparent dissimilarity between the raw image data captured by the conventional camera and the individual cameras from the array camera module to enable the correspondence searches. The normalizations may include, but are not limited to, measurement and correction of differential or absolute distortion between images captured by the conventional camera and images captured by the individual cameras in the array camera module prior to the correspondence search; measurement and correction of different photometric properties of the respective lenses in the cameras from the array camera module and/or the conventional camera; measurement and correction of different spectral properties or color biases in the respective lenses or pixels and color filters involved in the different cameras; measurement and correction or normalization of blur differences between different lenses (for example, in one embodiment blurring images from both the array camera module and the conventional camera to a common lower resolution, or blurring whichever image is captured at a higher resolution to match the frequency response of the other camera as much as possible); and measurement and correction of varying fields of view between the conventional camera and cameras in array camera module. In accordance with a number of embodiments, the images captured at a higher resolution will be appropriately filtered and downsampled to match both the pixel count and blur of the lower resolution images so that the similarity of corresponding pixels can be determined. Additionally, in some embodiments, differential responses (e.g. noise characteristics, pixel sensitivities, etc.) of pixels in the respective cameras may be characterized in order to normalize the responses prior to correspondence search.


A more complete discussion of processes for determining depth information is provided below with respect to FIGS. 5-10.


Turning back to process 300, if it is determined that video images are to be captured (310), video image data is captured with the conventional camera (350) and the array camera module (355). The video image data from the conventional camera and the array camera module are then used to generate depth information for the frames in the video sequence (360) using techniques similar to those discussed above with respect to still images.


Although specific processes for using a conventional camera and/or an array camera module to improve depth estimation accuracy during image and/or video capture are discussed above with reference to FIG. 3, other processes can be performed using one or more conventional cameras and/or an array camera module to obtain depth estimates during image and/or depth capture as appropriate to the requirements of specific applications in accordance with other embodiments of this invention.


In accordance with some embodiments, the user may be provided an option to activate the array camera module for particular desired tasks. For example, the user may be provided a choice in the camera application that allows them to indicate a desire to capture a refocusable image for a particular image. In this scenario, during the capture of the image, the array camera module is activated and image data captured by the cameras in the array camera module is at least used for depth estimation and/or synthesis of an image in accordance with some embodiments. In many embodiments, the user may be provided an option to maximize resolution, but perhaps at the expense of depth-enabled features. In such a scenario the conventional camera captures the still image provided the physical characteristics of the conventional camera enable the sensor to provide at least as high a resolution output as the array camera module. In accordance with many embodiments, the live still preview perspective is selected to match the camera selected for the particular mode of capture. For example, if the user selected a ‘refocusable’ image, the array camera module might activate a preview capability of the array camera module for the sake of framing the scene in order to ensure that the viewpoint of the still preview reflects as closely as possible the viewpoint of the eventual captured image.


In accordance with a number of embodiments, a real-time video and/or depth mode in the array camera module may be activated upon the request of a user or application. The real-time video and/or depth mods may provide different resolutions and/or frame rates than the video mode provided by the conventional camera but could be used to additional capabilities such as augmented reality. In such a case, a higher level process in a software library or performed by a controller may manage which of the conventional camera and/or array camera is active depending on high-level options provided to users.


A process for activating either the conventional camera and/or the array camera module depending on the function being performed in accordance with an embodiment of the invention is shown in FIG. 4. In process 400, a request for an image capture function is received (405). Based on the image capture function requested, the process determines which one or both of the conventional camera and the array camera module to activate (410). If the conventional camera is needed, image data is captured with the conventional camera (412). If the array camera module is needed, image data is captured with the array camera module (415).


Although an embodiment of a process for activating one of either the conventional camera and/or the array camera module based on the image capture function to be performed is described above, other processes for activating one of either the conventional camera and/or the array camera module based on the image capture function to be performed may be utilized in accordance with other embodiments of this invention.


Depth Measurement Processes


In many embodiments of the invention, a conventional camera and an array camera module are mounted a fixed distance apart and form a pair of stereo array cameras. In many embodiments, the distance between the array camera module and conventional camera is known with reference to one or more locations on the array. In addition, the locations of each camera within array camera module are known. Therefore, the baseline (distance between any two cameras) between any camera in the array camera module and conventional camera is known or can be determined.


Distance Measurement Using an Array Camera Module and Conventional Camera


Images of a scene captured by different cameras in an array camera have differences due to the different points of view resulting from the different locations of the cameras, an effect known as parallax. These differences, referred to as disparity, provide information that can be used to measure depth of objects within a scene. Systems and methods for detecting disparity and calculating depth maps for an image are discussed in U.S. Pat. No. 8,619,082 entitled “Systems and Methods for Parallax Detection and Correction in Images Captured Using Array Cameras” to Venkataraman et al., filed Aug. 21, 2012, the disclosure of which is incorporated by reference herein in its entirety.


Parallax in a two camera system is illustrated in FIG. 5. The two cameras 500, 502, include a lens stack 504 and a focal plane 506. Each camera has a back focal length f, and the two cameras are separated by the baseline distance of 2h. The field of view of both cameras encompasses a scene including a foreground object 508 and a background object 510. The disparity introduced by the different fields of view of the two cameras 500, 502, is equal to the difference in location of the foreground object 508 between its location in the image captured by the first camera (represented as an offset of the point on the focal plane of the first camera 500 relative to its optical axis 512 shown as −uL) and its location in the image captured by the separate cameras (represented as an offset of the point on the focal plane of the separate cameras 502 relative to its optical axis 514 is shown as uR).


U.S. Pat. No. 8,619,082 incorporated above discusses depth measurement using the following relationship between disparity and depth with respect to FIG. 5:










Δ
parallax

=



u
R

-

u
L


=


2





hf


z
o







(
1
)







From the above equation and figure, it can be seen that disparity between images captured by the different cameras is along a vector in the direction of the baseline of the two cameras, which can be referred to as the epipolar line between the two cameras. Furthermore, the magnitude of the disparity is directly proportional to the baseline separation of the two cameras and the back focal length of the cameras and is inversely proportional to the distance from the camera to an object appearing in the scene. The distance (or depth) from the two cameras to the foreground object can be obtained by determining the disparity of the foreground object in the two captured images.


One method of determining depth of a pixel or object using images captured by an array camera module involves selecting an initial hypothesized depth or distance for a selected pixel from an image captured from a reference viewpoint/camera, and searching pixel locations in other images along the epipolar line between the reference viewpoint/camera and the camera capturing each of the other images for similar/matching pixels. This process is discussed in the patent incorporated by reference above, and can be modified to utilize an array camera module and conventional camera set farther apart than the cameras in a single array camera module to determine depth to a higher precision as will be discussed further below.


Techniques such as those disclosed in the patent application incorporated above are typically used to generate a depth map from a reference viewpoint. The reference viewpoint can be from the viewpoint of one of the cameras in an array camera module. Alternatively, the reference viewpoint can be an arbitrary virtual viewpoint. A depth map indicates the distance of the surfaces of scene objects from a reference viewpoint. Although a process for calculating depth using disparity is discussed above, any of a variety of techniques for calculating depth can be utilized in accordance with embodiments of the invention. Processes for depth measurement using a stereo system including an array camera module and a conventional camera are discussed below.


Enhanced Distance Measurement Using a Stereo System Including an Array Camera Module and a Conventional Camera


The closer that an object is to an array camera module, the larger the disparity that will be observed in the object's location in different images captured by different cameras in the array. A representative graph of object distance with observed disparity is illustrated in FIG. 6. It can be seen in the graph that as the object distance approaches zero (i.e., comes closer to the camera), the disparity increases dramatically. Conversely, as the object distance increases, the disparity decreases. It can also be seen that the rate of change in disparity decreases as object distance increases. A representative graph of object distance with depth error is illustrated in FIG. 7. The graph assumes a 4×4 array camera module where the baseline between any two adjacent cameras is 2.3 mm, the pixel size is 1.75 μm, and the focal length is about 2 mm. The depth error is calculated as the percentage of depth resolution over object distance, where depth resolution indicates the resolution of the depth (the distance by which two objects should be separated for the array camera module to distinguish between the objects as two separate depths) at a given object distance. It can be seen that depth error increases with object distance.


The further a camera is from the reference viewpoint, the larger the disparity that will be observed. Typically larger shifts enable depth to be determined with greater precision. Increasing the baseline (distance between cameras) increases the observed disparity accordingly. Therefore, using a camera that captures an image from a reference viewpoint and the cameras that are further away from that camera to determine depth information can improve precision.


In many embodiments of the invention, an array camera module and a conventional camera are set apart at a known distance in a stereo camera configuration and image data from the array camera module and the conventional camera are used to generate depth information for an object observed. A process for measuring depth using a stereo system including an array camera module and a conventional camera in accordance with embodiments of the invention is illustrated in FIG. 8. The process 800 includes determining (810) image capture settings for the array camera module and the conventional camera. Image capture settings can include calibration for nonlinearities or nonconformities in the lenses (e.g., by incorporating scene-independent geometric shifts as appropriate).


A first set of image data is captured (820) using the array camera module. Typically, each individual camera collects image data that can be used to form an image from the point of view of the individual camera. In array camera modules, often one camera is designated a reference camera and the image data captured by that camera is referred to as being captured from a reference viewpoint. In many embodiments of the invention, image data that is captured includes image data from a reference camera. In several embodiments, the active cameras capturing the image data are configured with color filters or other mechanisms to limit the spectral band of light captured. The spectral band can be (but is not limited to) red, blue, green, infrared, or extended color. Extended color is a band that includes at least a portion of at the band of wavelengths of least two colors. Systems and methods for capturing and utilizing extended color are disclosed in U.S. Patent Application No. 61/798,602 and U.S. Patent Publication No. 2014/0267762, entitled “Extended Color Processing on Pelican Array Cameras” to Mullis et al., hereby incorporated by reference.


An object of interest is identified (825) in the first set of image data. The identification can be based upon a variety of techniques that include, but are not limited to: user input (e.g., selection on a screen), motion activation, shape recognition, and region(s) of interest. The identification can be made in an image generated from the first set of image data from the cameras in the array camera module. For example, the object of interest can be indicated in a preview image generated from the first set of image data or in a reference image from a reference viewpoint that corresponds to a reference camera in the array camera module. The identification can include selection of a pixel or set of pixels within the image associated with the object.


Using the first set of image data, a depth is determined (830) for the object. Techniques for determining the depth of the object can include those disclosed in U.S. Pat. No. 8,619,082 incorporated by reference and discussed further above. The effects of noise can be reduced by binning or averaging corresponding pixels across images captured by different cameras utilizing techniques such as, but not limited to, those disclosed in U.S. Patent Application Ser. No. 61/783,441, filed Mar. 14, 2013, entitled “Systems and Methods for Reducing Motion Blur in Images or Video in Ultra Low Light with Array Cameras” to Molina and P.C.T. Patent Publication No. WO 2014/159779, filed Mar. 12, 2014, entitled “Systems and Methods for Reducing Motion Blur in Images or Video in Ultra Low Light with Array Cameras” to Molina, the disclosures of which are hereby incorporated in their entirety. In several embodiments of the invention, intermediate images can be formed with pixel values in locations in each image where the pixel values are binned or averaged from corresponding pixels in different images. The intermediate images, which have noise components “averaged out” can then be used in depth calculation.


If the disparity of the object is above a predetermined threshold (440), i.e. is within a predetermined distance from the array camera module, the depth calculated above (830) is accepted as the depth of the object (850). A confidence measure can be given that is based on factors such as lens calibration and/or pixel resolution (the width that a pixel represents based on distance from the camera). The confidence measure can also incorporate information from a confidence map that indicates the reliability of depth measurements for specific pixels as disclosed in U.S. Pat. No. 8,619,082 incorporated by reference above.


If the disparity of the object is below the predetermined threshold (840), then the depth measurement of the object can be refined using a second set of image data from the conventional camera. As discussed further above, a longer baseline between a camera in the array camera module and the conventional camera can provide increased precision, because of increased disparity, when estimating depth to objects further away from the array camera.


A second set of image data is captured (855) using the conventional camera. The object of interest is identified (870) in the second set of image data based upon a variety of techniques that can include those discussed above with respect to identifying the object in the first set of image data or other tracking techniques known in the art. If the system does not assume that the object of interest is visible to the conventional camera, the process can first determine (860) if the object is visible to at least one camera in the second array. Visibility can be determined, for example, by searching for similar pixels as discussed with respect to FIG. 9 in U.S. Pat. No. 8,619,082 incorporated by reference above.


A depth measurement is performed (880) on the object using at least a portion of the first set of image data and at least a portion of the second set of image data. The measurement can include determining the disparity between pixel(s) associated with the object of interest in images captured by one or more cameras in the array camera module and corresponding pixel(s) in the image(s) captured by the conventional camera.


Although specific processes are described above for obtaining depth measurements using multiple array cameras, any of a variety of combinations of two or more array cameras can be utilized to obtain depth measurements based upon the disparity observed between image data captured by cameras within the two array cameras can be utilized as appropriate to specific applications in accordance with embodiments of the invention.


A stereo array configuration can be formed in an ad hoc manner using one array camera and changing the position of the array camera module. In many embodiments of the invention, an ad hoc stereo array camera module includes an array camera module capturing an image of a scene in one position, moving the array camera module to a second position, and capturing a second image with the array camera module in the second position. The two sets of images captured in this way can form an ad hoc stereo pair of sets of images. By correlating the features from the two sets of images with each other and internal sensors such as a gyroscope and/or accelerometer in combination with the matched features, the camera extrinsics (such as camera center of projection and camera viewing direction) can be determined. In several embodiments, additional image data can be captured by a conventional camera to provide a combination of stereo image capture and ad hoc stereo.


Unified Parallax Computation


A stereo system provides additional optimization possibilities in computing parallax disparities as compared to a single array camera. Parallax calculations can be performed using processes such as those disclosed in U.S. Pat. No. 8,619,082 incorporated by reference above. As discussed above with respect to certain embodiments of the invention, parallax calculations can be performed to compute depths using the cameras in an array camera module. In many embodiments, information calculated using the array camera module can be used to accelerate calculation of depths with the conventional camera. For example, in many processes for calculating depth, images are sampled for similar pixels to determine disparity as discussed in U.S. Pat. No. 8,619,082. When pixels and/or objects have a depth that was already calculated by an array camera module, the search for similar pixels in the image captured by the conventional camera can use the depth information for the same pixel/object as a starting point and/or to limit the search to the “expected” portions of the image as predicted by the existing depth information. In several embodiments, the pixel/object can be correspondingly identified in images captured by the second array such that the existing depths can be applied to the proper pixel/object, even when the corresponding pixel/object is not in the same location within the image(s). In many embodiments, correspondence of pixels/objects is not necessarily determined for part or all of an image, but the depths of each pixel in the first image are used for calculating the depth of the pixel in the same location in the second image.


A process for reusing depth information in accordance with embodiments of the invention is illustrated in FIG. 9. The process 900 includes determining (990) if depth was calculated for a pixel using the array camera module. If depth was not calculated, a depth is calculated (992) for the pixel using image data from the array camera module and image data captured by the conventional camera. If depth was estimated for the pixel, a depth is estimated (994) using image data image data from the array camera module and image data captured by the conventional camera taking into consideration the depth information from the array camera module, such as by limiting and/or refining the search for similar pixels as discussed above.


High Resolution Image Synthesis


The image data in low resolution images captured by an array camera module can be used to synthesize a high resolution image using super-resolution processes such as those described in U.S. patent application Ser. No. 12/967,807 entitled “Systems and Methods for Synthesizing High Resolution Images Using Super-Resolution Processes” to Lelescu et al. The disclosure of U.S. Patent Publication No. 2012-0147205 is hereby incorporated by reference in its entirety. A super-resolution (SR) process can be utilized to synthesize a higher resolution (HR) 2D image or a stereo pair of higher resolution 2D images from the lower resolution (LR) images captured by an array camera module. The terms high or higher resolution (HR) and low or lower resolution (LR) are used here in a relative sense and not to indicate the specific resolutions of the images captured by the array camera.


A stereo array camera configuration can also be used to create a HR image by using the cameras from both arrays. While the relatively large baseline between the array camera module and the conventional camera would result in relatively larger occlusion zones (where parallax effects block some content that is captured in one camera from being captured in another camera), in other visible areas from the array camera module and the conventional camera would enhance the final achieved solution. Preferably, each of the array camera module and the conventional camera is complete in its spectral sampling. In several embodiments, the array camera module utilizes a it color filter pattern so that the image that is synthesized using the cameras in array camera module is devoid of parallax artifacts in occlusion zones. In several embodiments, color filters in individual cameras can be used to pattern the cameras in the array camera module with π filter groups as further discussed in U.S. Provisional Patent Application No. 61/641,165 entitled “Camera Modules Patterned with pi Filter Groups”, to Nisenzon et al. filed May 1, 2012, the disclosure of which is incorporated by reference herein in its entirety.


High resolution (HR) images can be used to enhance depth measurement using an array camera module and a conventional camera in processes such as those described further above. In several embodiments of the invention, HR images are generated from image data captured by the array camera module and/or the conventional camera. Each HR image can be generated using images captured by cameras in the array or images captured by the array camera module and the conventional camera. The HR images can then be used as image data in processes for generating depth measurement such as those described above. Measurement can be more robust using HR images because it is typically less sensitive to noise. Creating high resolution depth maps in accordance with embodiments of the invention is discussed below.


High Resolution Depth Map


The image data captured by a stereo system can be used to generate a high resolution depth map whose accuracy is determined by the baseline separation between the array camera module and the conventional camera rather than the baselines of the individual cameras within the array camera module. Depth maps can be generated by any of a variety of processes including those disclosed in U.S. Pat. No. 8,619,082 incorporated by reference above. As discussed further above, the accuracy of depth measurement by an array camera module is reduced at further distances from the array. By using images captured by the cameras in the array camera module in a stereo configuration with one or more images captured by the conventional camera, the baseline between the two cameras is significantly increased over the baseline between two cameras in a single array. Accordingly, depth estimation precision with respect to objects observed at distances from the array camera can be increased relative depth estimates made with images captured by the array camera module alone.


Speed Measurement Using Array Cameras


Motion of an object across the field of view of a digital camera can generally be translated into an angular measurement (or angular velocity with elapsed time information) if the pixel size and back focal length are known, within the tolerance of one pixel and the corresponding angular measure of one pixel. At any given distance d from the camera, the angular measure of one pixel uniquely corresponds to a linear measure. Therefore, given a starting and ending location of an object in two dimensional images captured by a digital camera and the starting and ending distance of the object from the camera, the relative starting and ending locations of the object can be determined in three dimensional space. Provided the time elapsed between the images, the speed (or velocity) of the object can also be calculated. Given one start location and one end location, this can be represented as a linear velocity. Given multiple locations over time, the distance between each pair of consecutive locations (i.e. segment) can be determined and the distances of the segments combined to give a total distance. Additionally, a total average speed can be found by dividing the total distance over the time elapsed or by averaging the speed in each segment (distance divided by time elapsed in that segment) over the total time elapsed.


Conventional digital cameras typically capture two dimensional images without the capability of depth/distance measurement and are thus limited to angular measurement of motion. As discussed further above, array camera modules can be used to determine depth by observing the disparity between multiple images that are captured by different cameras in the array. Formulas and techniques for determining distance relative to pixel disparity as in U.S. Pat. No. 8,619,082 incorporated by reference above can also be used to determine the linear measure that the width of one pixel corresponds to at a given distance from the camera. In addition, one can calculate the time elapsed between the starting and ending frames simply by counting the number of frames between them and observing the frame rate of video capture of the camera.


In many embodiments of the invention, depth information for an object is combined with an angular measure of the object's position to provide a three-dimensional location for the object. In various embodiments of the invention, depth can be calculated using an array camera module and a conventional camera in a stereo configuration as discussed further above. The three-dimension location of an object in two or more images can be used to calculate a speed and direction of the object. A process for measuring speed using an array camera in accordance with embodiments of the invention is illustrated in FIG. 10. The process 1000 includes determining (1010) image capture settings for active cameras in an array camera module and the conventional camera. Image capture settings can include calibration for nonlinearities or nonconformities in the lenses (e.g., by incorporating scene-independent geometric shifts as appropriate). For example, due to physical characteristics of a lens stack, a pixel that is closer to the center line of a camera may differ in the area of a scene captured by the pixel from a pixel that is farther from the center line.


A first set of image data is captured (1020) using active cameras in the array camera module. Typically, each camera collects image data that can be used to form an image from the point of view of the camera. In array camera modules, often one camera is designated a reference camera and the image data captured by that camera is referred to as being captured from a reference viewpoint. In many embodiments of the invention, depth measurements are made with respect to the viewpoint of the reference camera using at least one other camera (alternate view cameras) within the array.


An object of interest is identified (1030) in the first set of image data. The identification can be based upon a variety of techniques that include, but are not limited to: user input (e.g., selection on a screen), motion activation, shape recognition, and region(s) of interest. The identification can be made in an image generated from the first set of image data from the cameras in the array camera module. For example, the object of interest can be indicated in a preview image generated from the first set of image data or in a reference image from a reference viewpoint that corresponds to a reference camera in the first array. The identification can include selection of a pixel or set of pixels within the image associated with the object.


Using the first set of image data, a first depth measure and a first location are determined (1040) for the object. Techniques for determining the depth of the object can include those disclosed in U.S. Pat. No. 8,619,082 incorporated by reference and discussed further above. Depth can be calculated using image data captured by the array camera module and/or conventional camera in a stereo configuration as discussed further above. Using the two-dimensional location of the object in an image (e.g., a reference image) an angular measure can be determined for the location of the object with respect to the camera. Combining the angular measure with the depth measure gives a three-dimensional location of the object with respect to the array camera. Any of a variety of coordinate systems can be utilized in accordance with embodiments of the invention to represent the calculated location of the object. In several embodiments of the invention, the centerline of a camera is treated as the origin.


At some time t after the capture of the first set of image data, a second set of image data is captured (1050) using the cameras in the array camera module. In many embodiments of the invention, the same set of cameras utilized to capture the first set of image data are used to capture the second set of image data. In other embodiments, a second set with a different combination of cameras is used to capture the second set of image data.


The object of interest is identified (1060) in the second set of image data. Identification can be based upon a variety of techniques that can include those discussed above with respect to identifying the object in the first set of image data or other tracking techniques known in the art.


Using the second set of image data, a second depth measure and a second location are determined for the object (1070). Depth can be calculated using techniques discussed further above using a single array camera module; or an array camera module and a conventional camera in a stereo configuration. Location can be calculated using techniques discussed further above and can incorporate known information about the location of the conventional camera in relation to the array camera module (e.g., removing parallax effects).


In different scenarios, an array camera module used to capture sets of image data for speed measurement may be stationary (e.g., tripod mounted) or may be in motion (e.g., handheld or panning across a scene). It can also include an array camera module using multiple image captures from slightly different points of view to get the advantage of a larger baseline and a more accurate depth. In several embodiments of the invention, an array camera module is assumed to be stationary and need not compensate for motion of the array. In other embodiments of the invention, an array camera module includes sensors that collect camera motion information (1080) on up to six degrees of movement of the camera, including motion along and rotation about three perpendicular axes. These sensors can include, but are not limited to, inertial sensors and MEMS gyroscopes. Camera motion information that is collected can be used to incorporate motion compensation when calculating the speed and/or direction of an object of interest (i.e., using the camera as a frame of reference). Motion compensation may be appropriate for functions such as stabilization (when there is jitter from slight movements of the camera such as by hand movement) or tracking an object (panning the camera to keep a moving object within the camera's field of view). In further embodiments of the invention, an array camera module is configurable to switch between an assumption that it is stationary (no motion compensation) and that it is moving or moveable (apply motion compensation).


The speed of the object of interest is calculated (1090) using the first location and second location of the object. The direction can also be calculated from the location information, as well as a vector representing the speed and direction of the object.


A confidence measure can be given that is based on factors such as lens calibration and/or pixel resolution (the width that a pixel represents based on distance from the camera). The confidence measure can also incorporate information from a confidence map that indicates the reliability of depth measurements for specific pixels as disclosed in U.S. Pat. No. 8,619,082 incorporated by reference above.


Additionally, calculating speed in accordance with embodiments of the invention can involve calculating a refined depth measurement using an array camera module and a conventional camera as discussed further above with respect to FIG. 4 or two separate image captures with the same array camera module. The technique of using two different image captures of the same scene with the same array camera module can also be extended to conventional cameras, wherein the conventional camera captures two images from different points of view, and depth and other measurements can be obtained through cross correlation of the images. In further embodiments of the invention, super-resolution processes can be utilized to perform measurements of angular position relative to the reference viewpoint at a higher precision. The super-resolution processes synthesize higher resolution images and the pixels in the synthesized higher resolution image enable measurement of the location of an object relative to an origin point within the image with higher precision. Accordingly, synthesizing a time sequence of higher resolution images using super-resolution processes can facilitate higher precision velocity measurements than measurements obtained using the lower resolution image data captured by the reference camera. Although a specific process for calculating speed is discussed above with respect to FIG. 10, any of a variety of processes for calculating speed can be utilized in accordance with embodiments of the invention. A number of processes that can be utilized to determine the distance at which to focus a camera using depth information obtained by an array of cameras are discussed further below.


Autofocus for a Conventional Camera Using Depth Generated Using Cameras in an Array


As discussed above, the image data from two or more cameras in the array may be used to determine depth information for objects within a scene being captured in the image data. As such, the depth information generated from two or more cameras in the array may be used to determine focus depth that may be used to adjust the actuator of a conventional or first camera to focus the captured image at a desired depth. To do so, some aspects of the system need to be accounted for including, but not limited to, the depth accuracy and depth of field of the array of cameras and the conventional camera; the spatial resolution of the array of cameras as a function of distance to an object; occlusions and field of view of the array of cameras; readout and synchronization of the readout of image data from the cameras in the array and the conventional camera; geometry of the array of cameras; and colocation of a depth map generated for the array camera with a depth map for the conventional camera. A flow diagram of a process for using image data from two or more camera in an array to perform autofocusing of a conventional camera in accordance with an embodiment of the invention is shown in FIG. 11.


Process 1100 includes receiving image data from a first camera (1105). In accordance with some embodiments, this image data is a preview stream of the first camera. The process obtains a focus window that is based upon the image data received from the first camera (1110). In accordance with some embodiments, the focus window is a rectangular area. However, the focus window may be any shape depending on the particular embodiment of the invention. In accordance with many embodiments, the focus window is received as an input of the user, such as the user touching a point of interest on a display of a preview stream from the first camera. In several of these embodiments, the focus window may be sized by an automated process, such us (but not limited to) a process that performs object detection in an area specified by the user. In accordance with some other embodiments, the focus window is provided by a process that detects an object such as, but not limited to, the biggest object (area-wise) in the display and sizes the focus window to include one or more detected objects.


The process 1100 determines a focus window for multiple cameras having alternate viewpoints based upon the focus window of the first camera (1115). To do so, the relative geometry between the array of cameras as well as the depth of objects within the focus typically must be known. In accordance with some embodiments, the relative geometry between the array of cameras and the conventional camera is known and the process assumes that the objects within the focus window span the complete range of depths so as not to exclude any pixels potentially belonging to the focus window from the point of view of the array of cameras. Thus, the focus window of the array of cameras is the set of pixels that correspond to pixels within the focus window of the first camera as if the pixels spanned the entire depth range.


Examples of focus windows in the image data from an array of cameras and a conventional camera in accordance with an embodiment of the invention is shown in FIG. 13. In FIG. 13, image plane 1305 from a first camera has a focus window 1307 that is a small rectangle and the image plane 1310 from an array camera that has focus window 1312 (based on focus window 1307) that is an elongated rectangle. This elongation occurs in an embodiment where the first camera is horizontally displaced from the array of cameras. One skilled in the art will recognize that different geometric relationships between the first camera and camera array will lead to different dilations of the focus window in the array camera.


Referring back to FIG. 11, the process 1100 obtains image data for the focus window for at least two cameras in the array of cameras (1120). In many embodiments, three or more cameras that are spaced in two dimensions (i.e. do not share a common baseline) are utilized to obtain image data for the focus window. One skilled in the art will understand that most conventional digital cameras use a Phase Detect Autofocus process, which realizes a fast autofocus by reading out only the image data for the focus window. To have the same kind of response, the image data for the focus windows of the two or more cameras of the array camera are read out after the focus window is determined. In accordance with some embodiments, the image data from the two more cameras in the array are sequentially readout row by row and camera by camera where the Nth row of each the two or more cameras is readout and then the Nth+1 row of each of the two or more cameras are read out starting from a minimum row including the focus window to a maximum row including the focus window in accordance with some embodiments of the invention. In accordance with some other embodiments, mechanical limitations of the array of cameras may prevent reading out only a portion of the rows of pixels from the cameras in the array sequentially in which case, all of the image data may be readout from a number of the cameras where the number is greater than two. In accordance with some embodiments, the process may then signal to a depth detection process that the required image data has been readout and is available for use. An example of pixel arrays of cameras in an array with the focus windows is shown in FIG. 12. In a system in accordance with the system shown in FIG. 12, each of the cameras 1205-1208 has a focus window 1220. As such, a row of pixels 1225 within focus window 1220 is first read from camera 1205, then cameras 1206,1207, and 1208 respectively and this readout process is repeated until the focus window maximum row is reached. As can readily be appreciated, alternative row readout and camera readout sequences can be utilized as appropriate to the requirements of specific applications. Furthermore, metadata can be inserted into the image data read out from an array camera module to indicate the camera, row and/or column from which image data is being read out.


Referring again back to FIG. 11, the process 1100 determines depth information from the image data for the focus window from the two or more cameras from the array of cameras (1125). Processes similar to those described above for determining depth information can be used to determine the depth information in some embodiments. However, other processes for determining depth information from the image data from the two more cameras may be used without departing from these embodiments.


The process 1100 translates the depth information for the two or more cameras from the arrays of cameras into depth information for the first camera (1130). Examples of the images of the depth information for a first camera and a reference camera in accordance with an embodiment of the invention are shown in FIG. 13. In FIG. 13, depth image 1315 is an image of the depth information for the first camera after translation from the depth information for the two or more cameras and depth image 1320 is the depth information for the two or more cameras. As is expected in a passive system, the computed depth information of depth image 1320 is sparse with well-defined values at object boundaries. Thus, the depth information for depth image 1315 of the first camera is incorrect as an object (the apple) behind another object (the bottle) is visible through the nearer object (the bottle), which is not possible in reality. This occurs because no regularization has been applied to the depth information during the translation in accordance with some embodiments of the invention. As can readily be appreciated, such artifacts can be addressed using regularization processes.


Referring back to FIG. 11, process 1100 determines the focus depth for the first camera using the depth information for the focus window translated from the depth information for the two or more cameras (1135). In accordance with some embodiments, a histogram of depth values is used to determine the focus depth. In accordance with many other embodiments, the closest depth value is used to account for problems of objects that are not visible by the first camera being represented in the depth information. In accordance with a number of embodiments, the closest depth is only chosen if a number of pixels above a threshold of a predefined number of pixels are present at this depth.


Process 1100 may also determine whether a focus depth could be determined from the information (1140). For example, no depth may have the required number of pixels to be selected in accordance with some embodiments of the invention. If a focus depth cannot be determined, process 1100 uses and/or signals that a conventional autofocus process should be performed to determine the focus depth (1145). After the focus depth is determined, the focus depth can be used to adjust an actuator and/or some other appropriate autofocus mechanism within the first camera to provide the desired focus.


Although specific processes for utilizing alternative viewpoint cameras to obtain image data from which autofocus depths can be determined for use in a main camera are described above with reference to FIGS. 11-13, any of a variety of processes for providing an autofocus function for a conventional camera using depth information obtained using an array of cameras may be utilized as appropriate to the requirements of specific applications in accordance with other embodiments of this invention.


Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including various changes in the implementation, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.

Claims
  • 1. An array camera system, comprising: an array camera comprising a plurality of cameras and a separate camera, where: the plurality of cameras capture images of a scene from different viewpoints;the separate camera has a fixed geometric relationship with each of the plurality of cameras in the array camera; andthe separate camera captures an image of the scene from a different viewpoint to the viewpoints of the other cameras in the array camera;a processor; andmemory in communication with the processor storing software;wherein the software directs the processor to: obtain a focus window based upon image data from the separate camera, where: at least one object is detected within an image captured by the separate camera; andthe focus window is a defined region having a set of pixels, where the defined region is within an image captured by the separate camera based upon the location of the at least one object;determine a focus window for the array camera based upon the focus window from the separate camera, where the focus window for the array camera comprises a corresponding set of pixels that corresponds to the set of pixels within the focus window from the separate camera;obtain image data pertaining to the focus window of the array camera from at least two cameras in the plurality of cameras,determine depth information for the focus window of the array camera from the image data from the at least two cameras,colocate the depth information from the focus window of the array camera to the focus window of the separate camera to account for parallax between the separate camera and the plurality of cameras to generate depth information for the focus window of the separate camera,determine a focus depth for the separate camera based upon the depth information for the focus window of the separate camera, andadjust the focus of the separate camera to a desired focus based upon the determined focus depth for the separate camera.
  • 2. The array camera system of claim 1 wherein the focus depth is determined using a histogram of depths in the depth information for the focus window of the separate camera.
  • 3. The array camera system of claim 1 wherein the focus depth is the closest depth to the separate camera in the depth information of the focus window of the separate camera.
  • 4. The array camera system of claim 3 wherein the focus depth is the closest depth in the focus depth information of the focus window of the separate camera that includes a number of pixels that is greater than a threshold of a predefined number of pixels.
  • 5. The array camera system of claim 1 wherein the software further directs the processor to: determine whether the focus depth for the separate camera can be determined from depth information; anddetermine the focus depth for the separate camera using a conventional autofocus process to determine the focus depth in response to a determination that the focus depth cannot be determined from depth information.
  • 6. The array camera system of claim 1 wherein the software directs the processor to obtain the focus window information for the separate camera by: receiving image data from the separate camera; anddetermining the focus window from the image data from the separate camera.
  • 7. The array camera system of claim 6 wherein the focus window is determined by performing object detection on the image data and selecting one or more detected objects.
  • 8. The array camera system of claim 7 where the object detection is performed in an area of the image data input by the user.
  • 9. The array camera system of claim 6 wherein the focus window is determined by an input received from the user.
  • 10. The array camera system of claim 1 wherein the focus window of the array camera is determined by mapping the focus window in the separate camera to the focus window in a reference camera of the array camera while accounting for the parallax between the separate camera and the array camera.
  • 11. The array camera system of claim 1 wherein the colocating of the depth information from the array camera to the depth information for the separate camera occurs in the absence of depth regularization.
  • 12. A method for autofocusing a separate camera in an array camera system including an array camera comprising a plurality of cameras that capture images of a scene from different viewpoints, a separate camera in a fixed geometric relationship with respect to each of the plurality of cameras in the array camera, where the separate camera captures an image of the scene from a different viewpoint to the viewpoints of the other cameras in the array camera; a processor, and memory in communication with the processor storing software, comprising: obtaining a focus window based upon image data from the separate camera using the processor, comprising: detecting at least one object within an image captured by the separate camera; andsetting the focus window as a defined region having a set of pixels, where the defined region is within an image captured by the separate camera based upon the location of the at least one object;determining a focus window for the array camera based upon the focus window from the separate camera using the processor, where the focus window for the array camera comprises a corresponding set of pixels that corresponds to the set of pixels within the focus window from the separate camera,obtaining image data pertaining to the focus window of the array camera from at least two cameras in the plurality of cameras using the processor,determining depth information for the focus window of the array camera from the image data from the at least two cameras using the processor,colocating the depth information from the focus window of the array camera to the focus window of the separate camera to account for parallax between the separate camera and the plurality of cameras to generate depth information for the focus window of the separate camera using the processor,determining a focus depth for the separate camera based upon the depth information for the focus window of the separate camera using the processor, andadjusting the focus of the separate camera to a desired focus based upon the determined focus depth for the separate camera using the processor.
  • 13. The method of claim 12 wherein the focus depth is determined using a histogram of depths in the depth information for the focus window of the separate camera.
  • 14. The method of claim 12 wherein the focus depth is the closest depth to the separate camera in the depth information for the focus window of the separate camera.
  • 15. The method of claim 14 wherein the focus depth is the closest depth in the depth information of the focus window of the separate camera that includes a number of pixels that is greater than a threshold of a predefined number of pixels.
  • 16. The method of claim 12 further comprising: determining whether the focus depth for the separate camera can be determined from depth information using the processor; anddetermining the focus depth for the separate camera using a conventional autofocus process to determine the focus depth using the processor in response to a determination that the focus depth cannot be determined from depth information.
  • 17. The method of claim 12 wherein obtaining the focus window information for the separate camera comprises: receiving image data from the separate camera using the processor; anddetermining the focus window from the image data from the separate camera using the processor.
  • 18. The method of claim 17 wherein the focus window is determined by performing object detection on the image data and selecting one or more detected objects.
  • 19. The method of claim 18 where the object detection is performed in an area of the image data input by the user.
  • 20. The method of claim 17 wherein the focus window of the separate camera is determined by an input received from the user.
  • 21. The method of claim 12 wherein the colocating of the depth information for the focus window of the array camera to the depth information for the focus window of the separate camera occurs in the absence of depth regularization.
  • 22. The method of claim 12 wherein the focus window of the array camera is determined by mapping the focus window in the separate camera to the focus window in a reference camera of the array camera while accounting for the parallax between the separate camera and the array camera.
CROSS-REFERENCE TO RELATED APPLICATIONS

The current application is a Continuation-In-Part application of U.S. patent application Ser. No. 14/593,369, entitled “Array Cameras Including an Array Camera Module Augmented With a Separate Camera” in the name of Venkataraman et al. filed Jan. 9, 2015 which in turn is a Continuation-In-Part application of U.S. patent application Ser. No. 14/216,968, entitled “Systems and Methods for Stereo Imaging With Camera Arrays” in the name of Venkataraman et al. filed Mar. 17, 2014 published as U.S. Patent Publication 2014/0267633 that claims priority to U.S. Provisional Application No. 61/798,673, filed Mar. 15, 2013 and claims priority to U.S. Provisional Application 62/003,015 filed May 26, 2014 entitled “Array Camera Augmented with External Image Senor (Cyclops)” in the name of Venkataraman et al. The disclosures of these applications are hereby incorporated herein by reference in their entirety.

US Referenced Citations (831)
Number Name Date Kind
4124798 Thompson Nov 1978 A
4198646 Alexander et al. Apr 1980 A
4323925 Abell et al. Apr 1982 A
4460449 Montalbano Jul 1984 A
4467365 Murayama et al. Aug 1984 A
4652909 Glenn Mar 1987 A
4899060 Lischke Feb 1990 A
5005083 Grage Apr 1991 A
5070414 Tsutsumi Dec 1991 A
5144448 Hornbaker Sep 1992 A
5157499 Oguma et al. Oct 1992 A
5325449 Burt Jun 1994 A
5327125 Iwase et al. Jul 1994 A
5488674 Burt Jan 1996 A
5629524 Stettner et al. May 1997 A
5793900 Nourbakhsh et al. Aug 1998 A
5808350 Jack et al. Sep 1998 A
5832312 Rieger et al. Nov 1998 A
5880691 Fossum et al. Mar 1999 A
5911008 Niikura et al. Jun 1999 A
5933190 Dierickx et al. Aug 1999 A
5973844 Burger Oct 1999 A
6002743 Telymonde Dec 1999 A
6005607 Uomori et al. Dec 1999 A
6034690 Gallery Mar 2000 A
6069351 Mack May 2000 A
6069365 Chow et al. May 2000 A
6097394 Levoy et al. Aug 2000 A
6124974 Burger Sep 2000 A
6130786 Osawa et al. Oct 2000 A
6137100 Fossum et al. Oct 2000 A
6137535 Meyers Oct 2000 A
6141048 Meyers Oct 2000 A
6160909 Melen Dec 2000 A
6163414 Kikuchi et al. Dec 2000 A
6172352 Liu et al. Jan 2001 B1
6175379 Uomori et al. Jan 2001 B1
6205241 Melen Mar 2001 B1
6239909 Hayashi et al. May 2001 B1
6292713 Jouppi et al. Sep 2001 B1
6340994 Margulis et al. Jan 2002 B1
6358862 Ireland et al. Mar 2002 B1
6373518 Sogawa Apr 2002 B1
6443579 Myers Sep 2002 B1
6476805 Shum et al. Nov 2002 B1
6477260 Shimomura Nov 2002 B1
6502097 Chan et al. Dec 2002 B1
6525302 Dowski, Jr. et al. Feb 2003 B2
6563537 Kawamura et al. May 2003 B1
6571466 Glenn et al. Jun 2003 B1
6603513 Berezin Aug 2003 B1
6611289 Yu Aug 2003 B1
6627896 Hashimoto et al. Sep 2003 B1
6628330 Lin Sep 2003 B1
6635941 Suda Oct 2003 B2
6639596 Shum et al. Oct 2003 B1
6647142 Beardsley Nov 2003 B1
6657218 Noda Dec 2003 B2
6671399 Berestov Dec 2003 B1
6750904 Lambert Jun 2004 B1
6765617 Tangen et al. Jul 2004 B1
6771833 Edgar Aug 2004 B1
6774941 Boisvert et al. Aug 2004 B1
6788338 Dinev Sep 2004 B1
6795253 Shinohara Sep 2004 B2
6801653 Wu et al. Oct 2004 B1
6819328 Moriwaki et al. Nov 2004 B1
6819358 Kagle et al. Nov 2004 B1
6833863 Clemens Dec 2004 B1
6879735 Portniaguine et al. Apr 2005 B1
6897454 Sasaki et al. May 2005 B2
6903770 Kobayashi et al. Jun 2005 B1
6909121 Nishikawa Jun 2005 B2
6927922 George et al. Aug 2005 B2
6958862 Joseph Oct 2005 B1
7015954 Foote et al. Mar 2006 B1
7085409 Sawhney et al. Aug 2006 B2
7161614 Yamashita et al. Jan 2007 B1
7199348 Olsen et al. Apr 2007 B2
7206449 Raskar et al. Apr 2007 B2
7235785 Hornback et al. Jun 2007 B2
7262799 Suda Aug 2007 B2
7292735 Blake et al. Nov 2007 B2
7295697 Satoh Nov 2007 B1
7333651 Kim et al. Feb 2008 B1
7369165 Bosco et al. May 2008 B2
7391572 Jacobowitz et al. Jun 2008 B2
7408725 Sato Aug 2008 B2
7425984 Chen Sep 2008 B2
7496293 Shamir et al. Feb 2009 B2
7564019 Olsen Jul 2009 B2
7606484 Richards et al. Oct 2009 B1
7620265 Wolff Nov 2009 B1
7633511 Shum et al. Dec 2009 B2
7639435 Chiang et al. Dec 2009 B2
7646549 Zalevsky et al. Jan 2010 B2
7657090 Omatsu et al. Feb 2010 B2
7675080 Boettiger Mar 2010 B2
7675681 Tomikawa et al. Mar 2010 B2
7706634 Schmitt et al. Apr 2010 B2
7723662 Levoy et al. May 2010 B2
7738013 Galambos et al. Jun 2010 B2
7741620 Doering et al. Jun 2010 B2
7782364 Smith Aug 2010 B2
7826153 Hong Nov 2010 B2
7840067 Shen et al. Nov 2010 B2
7912673 Hébert et al. Mar 2011 B2
7965314 Miller et al. Jun 2011 B1
7973834 Yang Jul 2011 B2
7986018 Rennie Jul 2011 B2
7990447 Honda et al. Aug 2011 B2
8000498 Shih et al. Aug 2011 B2
8013904 Tan et al. Sep 2011 B2
8027531 Wilburn et al. Sep 2011 B2
8044994 Vetro et al. Oct 2011 B2
8077245 Adamo et al. Dec 2011 B2
8089515 Chebil Jan 2012 B2
8098297 Crisan et al. Jan 2012 B2
8098304 Pinto et al. Jan 2012 B2
8106949 Tan et al. Jan 2012 B2
8126279 Marcellin et al. Feb 2012 B2
8130120 Kawabata et al. Mar 2012 B2
8131097 Lelescu et al. Mar 2012 B2
8149323 Li Apr 2012 B2
8164629 Zhang Apr 2012 B1
8169486 Corcoran et al. May 2012 B2
8180145 Wu et al. May 2012 B2
8189065 Georgiev et al. May 2012 B2
8189089 Georgiev May 2012 B1
8194296 Compton Jun 2012 B2
8212914 Chiu Jul 2012 B2
8213711 Tam Jul 2012 B2
8231814 Duparre Jul 2012 B2
8242426 Ward et al. Aug 2012 B2
8244027 Takahashi Aug 2012 B2
8244058 Intwala et al. Aug 2012 B1
8254668 Mashitani et al. Aug 2012 B2
8279325 Pitts et al. Oct 2012 B2
8280194 Wong et al. Oct 2012 B2
8289409 Chang Oct 2012 B2
8289440 Pitts et al. Oct 2012 B2
8290358 Georgiev Oct 2012 B1
8294099 Blackwell, Jr. Oct 2012 B2
8294754 Jung et al. Oct 2012 B2
8305456 McMahon Nov 2012 B1
8315476 Georgiev et al. Nov 2012 B1
8345144 Georgiev et al. Jan 2013 B1
8360574 Ishak et al. Jan 2013 B2
8400555 Georgiev Mar 2013 B1
8406562 Bassi et al. Mar 2013 B2
8411146 Twede Apr 2013 B2
8446492 Nakano et al. May 2013 B2
8456517 Mor et al. Jun 2013 B2
8493496 Freedman et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8541730 Inuiya Sep 2013 B2
8542933 Venkataraman et al. Sep 2013 B2
8553093 Wong et al. Oct 2013 B2
8559756 Georgiev et al. Oct 2013 B2
8565547 Strandemar Oct 2013 B2
8576302 Yoshikawa Nov 2013 B2
8577183 Robinson Nov 2013 B2
8581995 Lin et al. Nov 2013 B2
8619082 Ciurea et al. Dec 2013 B1
8648918 Kauker et al. Feb 2014 B2
8655052 Spooner et al. Feb 2014 B2
8682107 Yoon et al. Mar 2014 B2
8687087 Pertsel et al. Apr 2014 B2
8692893 McMahon Apr 2014 B2
8773536 Zhang Jul 2014 B1
8780113 Ciurea et al. Jul 2014 B1
8804255 Duparre Aug 2014 B2
8830375 Ludwig Sep 2014 B2
8831367 Venkataraman et al. Sep 2014 B2
8842201 Tajiri Sep 2014 B2
8854462 Herbin et al. Oct 2014 B2
8861089 Duparre Oct 2014 B2
8866912 Mullis Oct 2014 B2
8866920 Venkataraman et al. Oct 2014 B2
8866951 Keelan Oct 2014 B2
8878950 Lelescu et al. Nov 2014 B2
8885059 Venkataraman et al. Nov 2014 B1
8885922 Ito et al. Nov 2014 B2
8896594 Xiong et al. Nov 2014 B2
8896719 Venkataraman et al. Nov 2014 B1
8902321 Venkataraman et al. Dec 2014 B2
8928793 McMahon Jan 2015 B2
8977038 Tian et al. Mar 2015 B2
9001226 Ng et al. Apr 2015 B1
9019426 Han et al. Apr 2015 B2
9030528 Pesach et al. May 2015 B2
9041824 Lelescu et al. May 2015 B2
9123117 Ciurea et al. Sep 2015 B2
9123118 Ciurea et al. Sep 2015 B2
9124831 Mullis Sep 2015 B2
9124864 Mullis Sep 2015 B2
9128228 Duparre Sep 2015 B2
9129377 Ciurea et al. Sep 2015 B2
9143711 McMahon Sep 2015 B2
9147254 Ciurea et al. Sep 2015 B2
9185276 Rodda et al. Nov 2015 B2
9197821 McMahon Nov 2015 B2
9210392 Nisenzon et al. Dec 2015 B2
9235900 Ciurea et al. Jan 2016 B2
9240049 Ciurea et al. Jan 2016 B2
9256974 Hines Feb 2016 B1
9264592 Rodda et al. Feb 2016 B2
9264610 Duparre Feb 2016 B2
9361662 Lelescu et al. Jun 2016 B2
9412206 McMahon et al. Aug 2016 B2
9413953 Maeda Aug 2016 B2
9426343 Rodda et al. Aug 2016 B2
9438888 Venkataraman et al. Sep 2016 B2
9445003 Lelescu et al. Sep 2016 B1
9456196 Kim et al. Sep 2016 B2
9497429 Mullis et al. Nov 2016 B2
9516222 Duparre et al. Dec 2016 B2
9521319 Rodda et al. Dec 2016 B2
9521416 McMahon et al. Dec 2016 B1
9578237 Duparre et al. Feb 2017 B2
9578259 Molina Feb 2017 B2
9633442 Venkataraman et al. Apr 2017 B2
20010005225 Clark et al. Jun 2001 A1
20010019621 Hanna et al. Sep 2001 A1
20010028038 Hamaguchi et al. Oct 2001 A1
20010038387 Tomooka et al. Nov 2001 A1
20020012056 Trevino Jan 2002 A1
20020015536 Warren Feb 2002 A1
20020027608 Johnson Mar 2002 A1
20020028014 Ono et al. Mar 2002 A1
20020039438 Mori et al. Apr 2002 A1
20020057845 Fossum May 2002 A1
20020063807 Margulis May 2002 A1
20020075450 Aratani Jun 2002 A1
20020087403 Meyers et al. Jul 2002 A1
20020089596 Suda Jul 2002 A1
20020094027 Sato et al. Jul 2002 A1
20020101528 Lee Aug 2002 A1
20020113867 Takigawa et al. Aug 2002 A1
20020113888 Sonoda et al. Aug 2002 A1
20020118113 Oku et al. Aug 2002 A1
20020120634 Min et al. Aug 2002 A1
20020122113 Foote et al. Sep 2002 A1
20020163054 Suda et al. Nov 2002 A1
20020167537 Trajkovic Nov 2002 A1
20020177054 Saitoh et al. Nov 2002 A1
20020190991 Efran et al. Dec 2002 A1
20020195548 Dowski, Jr. et al. Dec 2002 A1
20030025227 Daniell Feb 2003 A1
20030086079 Barth et al. May 2003 A1
20030124763 Fan et al. Jul 2003 A1
20030140347 Varsa Jul 2003 A1
20030179418 Wengender et al. Sep 2003 A1
20030188659 Merry et al. Oct 2003 A1
20030190072 Adkins et al. Oct 2003 A1
20030198377 Ng et al. Oct 2003 A1
20030211405 Venkataraman Nov 2003 A1
20040003409 Berstis et al. Jan 2004 A1
20040008271 Hagimori et al. Jan 2004 A1
20040012689 Tinnerino Jan 2004 A1
20040027358 Nakao Feb 2004 A1
20040047274 Amanai Mar 2004 A1
20040050104 Ghosh et al. Mar 2004 A1
20040056966 Schechner et al. Mar 2004 A1
20040061787 Liu et al. Apr 2004 A1
20040066454 Otani et al. Apr 2004 A1
20040071367 Irani et al. Apr 2004 A1
20040075654 Hsiao et al. Apr 2004 A1
20040096119 Williams May 2004 A1
20040100570 Shizukuishi May 2004 A1
20040105021 Hu et al. Jun 2004 A1
20040114807 Lelescu et al. Jun 2004 A1
20040141659 Zhang Jul 2004 A1
20040151401 Sawhney et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040169617 Yelton et al. Sep 2004 A1
20040170340 Tipping et al. Sep 2004 A1
20040174439 Upton Sep 2004 A1
20040179008 Gordon et al. Sep 2004 A1
20040179834 Szajewski Sep 2004 A1
20040207836 Chhibber et al. Oct 2004 A1
20040213449 Safaee-Rad et al. Oct 2004 A1
20040218809 Blake et al. Nov 2004 A1
20040234873 Venkataraman Nov 2004 A1
20040239885 Jaynes et al. Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20040251509 Choi Dec 2004 A1
20040264806 Herley Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050007461 Chou et al. Jan 2005 A1
20050009313 Suzuki et al. Jan 2005 A1
20050010621 Pinto et al. Jan 2005 A1
20050012035 Miller Jan 2005 A1
20050036778 DeMonte Feb 2005 A1
20050047678 Jones et al. Mar 2005 A1
20050048690 Yamamoto Mar 2005 A1
20050068436 Fraenkel et al. Mar 2005 A1
20050084179 Hanna Apr 2005 A1
20050128509 Tokkonen et al. Jun 2005 A1
20050128595 Shimizu Jun 2005 A1
20050132098 Sonoda et al. Jun 2005 A1
20050134698 Schroeder Jun 2005 A1
20050134699 Nagashima Jun 2005 A1
20050134712 Gruhlke et al. Jun 2005 A1
20050147277 Higaki et al. Jul 2005 A1
20050151759 Gonzalez-Banos et al. Jul 2005 A1
20050175257 Kuroki Aug 2005 A1
20050185711 Pfister et al. Aug 2005 A1
20050205785 Hornback et al. Sep 2005 A1
20050219363 Kohler Oct 2005 A1
20050224843 Boemler Oct 2005 A1
20050225654 Feldman et al. Oct 2005 A1
20050265633 Piacentino et al. Dec 2005 A1
20050275946 Choo et al. Dec 2005 A1
20050286612 Takanashi Dec 2005 A1
20050286756 Hong et al. Dec 2005 A1
20060002635 Nestares et al. Jan 2006 A1
20060007331 Izumi et al. Jan 2006 A1
20060013318 Webb et al. Jan 2006 A1
20060018509 Miyoshi Jan 2006 A1
20060023197 Joel Feb 2006 A1
20060023314 Boettiger et al. Feb 2006 A1
20060028476 Sobel et al. Feb 2006 A1
20060029270 Berestov et al. Feb 2006 A1
20060029271 Miyoshi et al. Feb 2006 A1
20060033005 Jerdev et al. Feb 2006 A1
20060034003 Zalevsky Feb 2006 A1
20060034531 Poon et al. Feb 2006 A1
20060035415 Wood Feb 2006 A1
20060038891 Okutomi et al. Feb 2006 A1
20060039611 Rother Feb 2006 A1
20060046204 Ono et al. Mar 2006 A1
20060049930 Zruya et al. Mar 2006 A1
20060054780 Garrood et al. Mar 2006 A1
20060054782 Olsen et al. Mar 2006 A1
20060055811 Frtiz et al. Mar 2006 A1
20060069478 Iwama Mar 2006 A1
20060072029 Miyatake et al. Apr 2006 A1
20060087747 Ohzawa et al. Apr 2006 A1
20060098888 Morishita May 2006 A1
20060103754 Wenstrand et al. May 2006 A1
20060125936 Gruhike et al. Jun 2006 A1
20060138322 Costello et al. Jun 2006 A1
20060152803 Provitola Jul 2006 A1
20060157640 Perlman et al. Jul 2006 A1
20060159369 Young Jul 2006 A1
20060176566 Boettiger et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060197937 Bamji et al. Sep 2006 A1
20060203100 Ajito et al. Sep 2006 A1
20060203113 Wada et al. Sep 2006 A1
20060210146 Gu Sep 2006 A1
20060210186 Berkner Sep 2006 A1
20060214085 Olsen Sep 2006 A1
20060221250 Rossbach et al. Oct 2006 A1
20060239549 Kelly et al. Oct 2006 A1
20060243889 Farnworth et al. Nov 2006 A1
20060251410 Trutna Nov 2006 A1
20060274174 Tewinkle Dec 2006 A1
20060278948 Yamaguchi et al. Dec 2006 A1
20060279648 Senba et al. Dec 2006 A1
20060289772 Johnson et al. Dec 2006 A1
20070002159 Olsen et al. Jan 2007 A1
20070008575 Yu et al. Jan 2007 A1
20070009150 Suwa Jan 2007 A1
20070024614 Tam Feb 2007 A1
20070030356 Yea et al. Feb 2007 A1
20070035707 Margulis Feb 2007 A1
20070036427 Nakamura et al. Feb 2007 A1
20070040828 Zalevsky et al. Feb 2007 A1
20070040922 McKee et al. Feb 2007 A1
20070041391 Lin et al. Feb 2007 A1
20070052825 Cho Mar 2007 A1
20070083114 Yang et al. Apr 2007 A1
20070085917 Kobayashi Apr 2007 A1
20070092245 Bazakos et al. Apr 2007 A1
20070102622 Olsen et al. May 2007 A1
20070126898 Feldman Jun 2007 A1
20070127831 Venkataraman Jun 2007 A1
20070139333 Sato et al. Jun 2007 A1
20070146503 Shiraki Jun 2007 A1
20070146511 Kinoshita et al. Jun 2007 A1
20070153335 Hosaka Jul 2007 A1
20070158427 Zhu et al. Jul 2007 A1
20070159541 Sparks et al. Jul 2007 A1
20070160310 Tanida et al. Jul 2007 A1
20070165931 Higaki Jul 2007 A1
20070171290 Kroger Jul 2007 A1
20070182843 Shimamura et al. Aug 2007 A1
20070201859 Sarrat et al. Aug 2007 A1
20070206241 Smith et al. Sep 2007 A1
20070211164 Olsen et al. Sep 2007 A1
20070216765 Wong et al. Sep 2007 A1
20070228256 Mentzer Oct 2007 A1
20070236595 Pan et al. Oct 2007 A1
20070247517 Zhang et al. Oct 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070258006 Olsen et al. Nov 2007 A1
20070258706 Raskar et al. Nov 2007 A1
20070263113 Baek et al. Nov 2007 A1
20070263114 Gurevich et al. Nov 2007 A1
20070268374 Robinson Nov 2007 A1
20070296832 Ota et al. Dec 2007 A1
20070296835 Olsen Dec 2007 A1
20070296847 Chang et al. Dec 2007 A1
20070297696 Hamza Dec 2007 A1
20080006859 Mionetto et al. Jan 2008 A1
20080019611 Larkin Jan 2008 A1
20080024683 Damera-Venkata et al. Jan 2008 A1
20080025649 Liu et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030597 Olsen et al. Feb 2008 A1
20080043095 Vetro et al. Feb 2008 A1
20080043096 Vetro et al. Feb 2008 A1
20080054518 Ra et al. Mar 2008 A1
20080056302 Erdal et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080079805 Takagi et al. Apr 2008 A1
20080080028 Bakin et al. Apr 2008 A1
20080084486 Enge et al. Apr 2008 A1
20080088793 Sverdrup et al. Apr 2008 A1
20080095523 Schilling-Benz et al. Apr 2008 A1
20080099804 Venezia et al. May 2008 A1
20080106620 Sawachi et al. May 2008 A1
20080112059 Choi et al. May 2008 A1
20080112635 Kondo et al. May 2008 A1
20080118241 Tekolste et al. May 2008 A1
20080131019 Ng Jun 2008 A1
20080131107 Ueno Jun 2008 A1
20080151097 Chen et al. Jun 2008 A1
20080152215 Horie et al. Jun 2008 A1
20080152296 Oh et al. Jun 2008 A1
20080156991 Hu et al. Jul 2008 A1
20080158259 Kempf et al. Jul 2008 A1
20080158375 Kakkori et al. Jul 2008 A1
20080158698 Chang et al. Jul 2008 A1
20080165257 Boettiger et al. Jul 2008 A1
20080174670 Olsen et al. Jul 2008 A1
20080187305 Raskar et al. Aug 2008 A1
20080193026 Horie et al. Aug 2008 A1
20080211737 Kim et al. Sep 2008 A1
20080218610 Chapman et al. Sep 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20080239116 Smith Oct 2008 A1
20080240598 Hasegawa Oct 2008 A1
20080247638 Tanida et al. Oct 2008 A1
20080247653 Moussavi et al. Oct 2008 A1
20080272416 Yun Nov 2008 A1
20080273751 Yuan et al. Nov 2008 A1
20080278591 Barna et al. Nov 2008 A1
20080278610 Boettiger et al. Nov 2008 A1
20080284880 Numata Nov 2008 A1
20080291295 Kato et al. Nov 2008 A1
20080298674 Baker et al. Dec 2008 A1
20080310501 Ward et al. Dec 2008 A1
20090027543 Kanehiro et al. Jan 2009 A1
20090050946 Duparre et al. Feb 2009 A1
20090052743 Techmer Feb 2009 A1
20090060281 Tanida et al. Mar 2009 A1
20090086074 Li et al. Apr 2009 A1
20090091645 Trimeche et al. Apr 2009 A1
20090091806 Inuiya Apr 2009 A1
20090096050 Park Apr 2009 A1
20090102956 Georgiev Apr 2009 A1
20090109306 Shan et al. Apr 2009 A1
20090128644 Camp et al. May 2009 A1
20090128833 Yahav May 2009 A1
20090129667 Ho et al. May 2009 A1
20090140131 Utagawa et al. Jun 2009 A1
20090147919 Goto et al. Jun 2009 A1
20090152664 Klem et al. Jun 2009 A1
20090167922 Perlman et al. Jul 2009 A1
20090167923 Safaee-Rad et al. Jul 2009 A1
20090175349 Ye et al. Jul 2009 A1
20090179142 Duparre et al. Jul 2009 A1
20090180021 Kikuchi et al. Jul 2009 A1
20090200622 Tai et al. Aug 2009 A1
20090201371 Matsuda et al. Aug 2009 A1
20090207235 Francini et al. Aug 2009 A1
20090219435 Yuan et al. Sep 2009 A1
20090225203 Tanida et al. Sep 2009 A1
20090237520 Kaneko et al. Sep 2009 A1
20090245573 Saptharishi et al. Oct 2009 A1
20090256947 Ciurea et al. Oct 2009 A1
20090263017 Tanbakuchi Oct 2009 A1
20090268192 Koenck et al. Oct 2009 A1
20090268970 Babacan et al. Oct 2009 A1
20090268983 Stone Oct 2009 A1
20090274387 Jin Nov 2009 A1
20090284651 Srinivasan Nov 2009 A1
20090297056 Lelescu et al. Dec 2009 A1
20090302205 Olsen et al. Dec 2009 A9
20090317061 Jung et al. Dec 2009 A1
20090322876 Lee et al. Dec 2009 A1
20090323195 Hembree et al. Dec 2009 A1
20090323206 Oliver et al. Dec 2009 A1
20090324118 Maslov et al. Dec 2009 A1
20100002126 Wenstrand et al. Jan 2010 A1
20100002313 Duparre et al. Jan 2010 A1
20100002314 Duparre Jan 2010 A1
20100007714 Kim et al. Jan 2010 A1
20100013927 Nixon Jan 2010 A1
20100044815 Chang et al. Feb 2010 A1
20100045809 Packard Feb 2010 A1
20100053342 Hwang Mar 2010 A1
20100053415 Yun Mar 2010 A1
20100053600 Tanida et al. Mar 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100073463 Momonoi et al. Mar 2010 A1
20100074532 Gordon et al. Mar 2010 A1
20100085425 Tan Apr 2010 A1
20100086227 Sun et al. Apr 2010 A1
20100091389 Henriksen et al. Apr 2010 A1
20100097491 Farina et al. Apr 2010 A1
20100103259 Tanida et al. Apr 2010 A1
20100103308 Butterfield et al. Apr 2010 A1
20100111444 Coffman May 2010 A1
20100118127 Nam May 2010 A1
20100128145 Pitts et al. May 2010 A1
20100133230 Henriksen et al. Jun 2010 A1
20100133418 Sargent et al. Jun 2010 A1
20100141802 Knight et al. Jun 2010 A1
20100142839 Lakbecker Jun 2010 A1
20100157073 Kondo Jun 2010 A1
20100165152 Lim Jul 2010 A1
20100166410 Chang et al. Jul 2010 A1
20100171866 Brady et al. Jul 2010 A1
20100177411 Hegde et al. Jul 2010 A1
20100182406 Benitez et al. Jul 2010 A1
20100194901 van Hoorebeke et al. Aug 2010 A1
20100195716 Klein et al. Aug 2010 A1
20100201834 Maruyama et al. Aug 2010 A1
20100202054 Niederer Aug 2010 A1
20100202683 Robinson Aug 2010 A1
20100208100 Olsen et al. Aug 2010 A9
20100220212 Perlman et al. Sep 2010 A1
20100223237 Mishra et al. Sep 2010 A1
20100225740 Jung et al. Sep 2010 A1
20100231285 Boomer et al. Sep 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100244165 Lake Sep 2010 A1
20100259610 Petersen et al. Oct 2010 A1
20100265346 Iizuka Oct 2010 A1
20100265381 Yamamoto et al. Oct 2010 A1
20100265385 Knight Oct 2010 A1
20100281070 Chan et al. Nov 2010 A1
20100289941 Ito et al. Nov 2010 A1
20100290483 Park et al. Nov 2010 A1
20100302423 Adams, Jr. et al. Dec 2010 A1
20100309292 Ho Dec 2010 A1
20100309368 Choi et al. Dec 2010 A1
20100321595 Chiu et al. Dec 2010 A1
20100321640 Yeh et al. Dec 2010 A1
20110001037 Tewinkle Jan 2011 A1
20110018973 Takayama Jan 2011 A1
20110019243 Constant, Jr. et al. Jan 2011 A1
20110031381 Tay et al. Feb 2011 A1
20110032341 Ignatov et al. Feb 2011 A1
20110032370 Ludwig Feb 2011 A1
20110033129 Robinson Feb 2011 A1
20110043661 Podoleanu Feb 2011 A1
20110043665 Ogasahara Feb 2011 A1
20110043668 McKinnon et al. Feb 2011 A1
20110044502 Liu et al. Feb 2011 A1
20110051255 Lee et al. Mar 2011 A1
20110055729 Mason et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110069189 Venkataraman et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110085028 Samadani et al. Apr 2011 A1
20110090217 Mashitani et al. Apr 2011 A1
20110108708 Olsen et al. May 2011 A1
20110115886 Nguyen May 2011 A1
20110121421 Charbon et al. May 2011 A1
20110122308 Duparre May 2011 A1
20110128393 Tavi et al. Jun 2011 A1
20110128412 Milnes et al. Jun 2011 A1
20110129165 Lim et al. Jun 2011 A1
20110141309 Nagashima et al. Jun 2011 A1
20110149408 Hahgholt et al. Jun 2011 A1
20110149409 Haugholt et al. Jun 2011 A1
20110153248 Gu et al. Jun 2011 A1
20110157321 Nakajima et al. Jun 2011 A1
20110169994 DiFrancesco et al. Jul 2011 A1
20110176020 Chang Jul 2011 A1
20110181797 Galstian et al. Jul 2011 A1
20110206291 Kashani et al. Aug 2011 A1
20110211068 Yokota Sep 2011 A1
20110211824 Georgiev et al. Sep 2011 A1
20110221599 Högasten Sep 2011 A1
20110221658 Haddick et al. Sep 2011 A1
20110221939 Jerdev Sep 2011 A1
20110221950 Oostra Sep 2011 A1
20110228142 Brueckner Sep 2011 A1
20110228144 Tian et al. Sep 2011 A1
20110234825 Liu et al. Sep 2011 A1
20110234841 Akeley et al. Sep 2011 A1
20110241234 Duparre Oct 2011 A1
20110242342 Goma et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110242356 Aleksic Oct 2011 A1
20110255592 Sung et al. Oct 2011 A1
20110255745 Hodder et al. Oct 2011 A1
20110261993 Weiming et al. Oct 2011 A1
20110267348 Lin et al. Nov 2011 A1
20110273531 Ito et al. Nov 2011 A1
20110274366 Tardif Nov 2011 A1
20110279705 Kuang et al. Nov 2011 A1
20110279721 McMahon Nov 2011 A1
20110285866 Bhrugumalla et al. Nov 2011 A1
20110285910 Bamji et al. Nov 2011 A1
20110292216 Fergus et al. Dec 2011 A1
20110298898 Jung Dec 2011 A1
20110298917 Yanagita Dec 2011 A1
20110300929 Tardif et al. Dec 2011 A1
20110310980 Mathew Dec 2011 A1
20110316968 Taguchi et al. Dec 2011 A1
20110317766 Lim et al. Dec 2011 A1
20120012748 Pain et al. Jan 2012 A1
20120013748 Stanwood et al. Jan 2012 A1
20120019700 Gaber Jan 2012 A1
20120023456 Sun et al. Jan 2012 A1
20120026297 Sato Feb 2012 A1
20120026342 Yu et al. Feb 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120026451 Nystrom Feb 2012 A1
20120039525 Tian et al. Feb 2012 A1
20120044249 Mashitani et al. Feb 2012 A1
20120044372 Côté et al. Feb 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057040 Park et al. Mar 2012 A1
20120062697 Treado et al. Mar 2012 A1
20120062702 Jiang et al. Mar 2012 A1
20120062756 Tian Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120081519 Goma Apr 2012 A1
20120105691 Waqas et al. May 2012 A1
20120113232 Joblove May 2012 A1
20120113318 Galstian et al. May 2012 A1
20120113413 Miahczylowicz-Wolski et al. May 2012 A1
20120147139 Li et al. Jun 2012 A1
20120147205 Lelescu et al. Jun 2012 A1
20120153153 Chang et al. Jun 2012 A1
20120154551 Inoue Jun 2012 A1
20120155830 Sasaki et al. Jun 2012 A1
20120163672 Mckinnon Jun 2012 A1
20120169433 Mullins Jul 2012 A1
20120170134 Bolis et al. Jul 2012 A1
20120176479 Mayhew et al. Jul 2012 A1
20120176481 Lukk et al. Jul 2012 A1
20120188235 Wu et al. Jul 2012 A1
20120188341 Klein Gunnewiek et al. Jul 2012 A1
20120188389 Lin et al. Jul 2012 A1
20120188420 Black et al. Jul 2012 A1
20120188634 Kubala et al. Jul 2012 A1
20120198677 Duparre Aug 2012 A1
20120200669 Lai Aug 2012 A1
20120200726 Bugnariu Aug 2012 A1
20120200734 Tang Aug 2012 A1
20120206582 DiCarlo et al. Aug 2012 A1
20120219236 Ali et al. Aug 2012 A1
20120224083 Jovanovski et al. Sep 2012 A1
20120229602 Chen et al. Sep 2012 A1
20120229628 Ishiyama et al. Sep 2012 A1
20120237114 Park et al. Sep 2012 A1
20120249550 Akeley et al. Oct 2012 A1
20120249750 Izzat et al. Oct 2012 A1
20120249836 Ali et al. Oct 2012 A1
20120249853 Krolczyk et al. Oct 2012 A1
20120262601 Choi et al. Oct 2012 A1
20120262607 Shimura et al. Oct 2012 A1
20120268574 Gidon et al. Oct 2012 A1
20120287291 McMahon et al. Nov 2012 A1
20120293695 Tanaka Nov 2012 A1
20120307093 Miyoshi Dec 2012 A1
20120307099 Yahata et al. Dec 2012 A1
20120314033 Lee et al. Dec 2012 A1
20120314937 Kim et al. Dec 2012 A1
20120327222 Ng et al. Dec 2012 A1
20130002828 Ding et al. Jan 2013 A1
20130003184 Duparre Jan 2013 A1
20130010073 Do Jan 2013 A1
20130016245 Yuba Jan 2013 A1
20130016885 Tsujimoto et al. Jan 2013 A1
20130022111 Chen et al. Jan 2013 A1
20130027580 Olsen et al. Jan 2013 A1
20130033579 Wajs Feb 2013 A1
20130033585 Li et al. Feb 2013 A1
20130038696 Ding et al. Feb 2013 A1
20130050504 Safaee-Rad et al. Feb 2013 A1
20130050526 Keelan Feb 2013 A1
20130057710 McMahon Mar 2013 A1
20130070060 Chatterjee Mar 2013 A1
20130076967 Brunner et al. Mar 2013 A1
20130077859 Stauder et al. Mar 2013 A1
20130077880 Venkataraman et al. Mar 2013 A1
20130077882 Venkataraman et al. Mar 2013 A1
20130083172 Baba Apr 2013 A1
20130088489 Schmeitz et al. Apr 2013 A1
20130088637 Duparre Apr 2013 A1
20130093842 Yahata Apr 2013 A1
20130107061 Kumar et al. May 2013 A1
20130113899 Morohoshi et al. May 2013 A1
20130113939 Strandemar May 2013 A1
20130120605 Georgiev et al. May 2013 A1
20130121559 Hu May 2013 A1
20130128068 Georgiev et al. May 2013 A1
20130128069 Georgiev et al. May 2013 A1
20130128087 Georgiev et al. May 2013 A1
20130128121 Agarwala et al. May 2013 A1
20130147979 McMahon et al. Jun 2013 A1
20130176394 Tian et al. Jul 2013 A1
20130208138 Li Aug 2013 A1
20130215108 McMahon et al. Aug 2013 A1
20130215231 Hiramoto et al. Aug 2013 A1
20130222556 Shimada Aug 2013 A1
20130223759 Nishiyama et al. Aug 2013 A1
20130229540 Farina et al. Sep 2013 A1
20130230237 Schlosser et al. Sep 2013 A1
20130250123 Zhang et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130259317 Gaddy Oct 2013 A1
20130265459 Duparre et al. Oct 2013 A1
20130274596 Azizian et al. Oct 2013 A1
20130274923 By et al. Oct 2013 A1
20130293760 Nisenzon et al. Nov 2013 A1
20140002674 Duparre et al. Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140037137 Broaddus et al. Feb 2014 A1
20140037140 Benhimane et al. Feb 2014 A1
20140043507 Wang et al. Feb 2014 A1
20140076336 Clayton et al. Mar 2014 A1
20140078333 Miao Mar 2014 A1
20140079336 Venkataraman et al. Mar 2014 A1
20140081454 Nuyujukian et al. Mar 2014 A1
20140092281 Nisenzon et al. Apr 2014 A1
20140098267 Tian et al. Apr 2014 A1
20140104490 Hsieh et al. Apr 2014 A1
20140118493 Sali et al. May 2014 A1
20140118584 Lee et al. May 2014 A1
20140132810 McMahon May 2014 A1
20140146201 Knight et al. May 2014 A1
20140176592 Wilburn et al. Jun 2014 A1
20140186045 Poddar et al. Jul 2014 A1
20140192154 Jeong et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140198188 Izawa Jul 2014 A1
20140204183 Lee et al. Jul 2014 A1
20140218546 McMahon Aug 2014 A1
20140232822 Venkataraman et al. Aug 2014 A1
20140240528 Venkataraman et al. Aug 2014 A1
20140240529 Venkataraman et al. Aug 2014 A1
20140253738 Mullis Sep 2014 A1
20140267243 Venkataraman et al. Sep 2014 A1
20140267286 Duparre Sep 2014 A1
20140267633 Venkataraman et al. Sep 2014 A1
20140267762 Mullis et al. Sep 2014 A1
20140267890 Lelescu et al. Sep 2014 A1
20140285675 Mullis Sep 2014 A1
20140313315 Shoham et al. Oct 2014 A1
20140321712 Ciurea et al. Oct 2014 A1
20140333731 Venkataraman et al. Nov 2014 A1
20140333764 Venkataraman et al. Nov 2014 A1
20140333787 Venkataraman et al. Nov 2014 A1
20140340539 Venkataraman et al. Nov 2014 A1
20140347509 Venkataraman et al. Nov 2014 A1
20140347748 Duparre Nov 2014 A1
20140354773 Venkataraman et al. Dec 2014 A1
20140354843 Venkataraman et al. Dec 2014 A1
20140354844 Venkataraman et al. Dec 2014 A1
20140354853 Venkataraman et al. Dec 2014 A1
20140354854 Venkataraman et al. Dec 2014 A1
20140354855 Venkataraman et al. Dec 2014 A1
20140355870 Venkataraman et al. Dec 2014 A1
20140368662 Venkataraman et al. Dec 2014 A1
20140368683 Venkataraman et al. Dec 2014 A1
20140368684 Venkataraman et al. Dec 2014 A1
20140368685 Venkataraman et al. Dec 2014 A1
20140368686 Duparre Dec 2014 A1
20140369612 Venkataraman et al. Dec 2014 A1
20140369615 Venkataraman et al. Dec 2014 A1
20140376825 Venkataraman et al. Dec 2014 A1
20140376826 Venkataraman et al. Dec 2014 A1
20150002734 Lee Jan 2015 A1
20150003752 Venkataraman et al. Jan 2015 A1
20150003753 Venkataraman et al. Jan 2015 A1
20150009353 Venkataraman et al. Jan 2015 A1
20150009354 Venkataraman et al. Jan 2015 A1
20150009362 Venkataraman et al. Jan 2015 A1
20150015669 Venkataraman et al. Jan 2015 A1
20150035992 Mullis Feb 2015 A1
20150036014 Lelescu et al. Feb 2015 A1
20150036015 Lelescu et al. Feb 2015 A1
20150042766 Ciurea et al. Feb 2015 A1
20150042767 Ciurea et al. Feb 2015 A1
20150042833 Lelescu et al. Feb 2015 A1
20150049915 Ciurea et al. Feb 2015 A1
20150049916 Ciurea et al. Feb 2015 A1
20150049917 Ciurea et al. Feb 2015 A1
20150055884 Venkataraman et al. Feb 2015 A1
20150085174 Shabtay et al. Mar 2015 A1
20150091900 Yang et al. Apr 2015 A1
20150104101 Bryant et al. Apr 2015 A1
20150122411 Rodda et al. May 2015 A1
20150124113 Rodda et al. May 2015 A1
20150124151 Rodda et al. May 2015 A1
20150243480 Yamada et al. Aug 2015 A1
20150296137 Duparre et al. Oct 2015 A1
20150326852 Duparre et al. Nov 2015 A1
20150373261 Rodda et al. Dec 2015 A1
20160037097 Duparre Feb 2016 A1
20160044252 Molina Feb 2016 A1
20160057332 Ciurea et al. Feb 2016 A1
20160165106 Duparre Jun 2016 A1
20160165134 Lelescu et al. Jun 2016 A1
20160165147 Nisenzon et al. Jun 2016 A1
20160165212 Mullis Jun 2016 A1
20160195733 Lelescu et al. Jul 2016 A1
20160249001 McMahon Aug 2016 A1
20160255333 Nisenzon et al. Sep 2016 A1
20160266284 Duparre et al. Sep 2016 A1
20160267672 Ciurea et al. Sep 2016 A1
20160269626 McMahon Sep 2016 A1
20160269627 McMahon Sep 2016 A1
20160316140 Nayar et al. Oct 2016 A1
20170048468 Pain et al. Feb 2017 A1
20170053382 Lelescu et al. Feb 2017 A1
20180048879 Venkataraman et al. Feb 2018 A1
Foreign Referenced Citations (130)
Number Date Country
1839394 Sep 2006 CN
101010619 Aug 2007 CN
101064780 Oct 2007 CN
101102388 Jan 2008 CN
101147392 Mar 2008 CN
101427372 May 2009 CN
101606086 Dec 2009 CN
101883291 Nov 2010 CN
102037717 Apr 2011 CN
102375199 Mar 2012 CN
0677821 Oct 1995 EP
840502 May 1998 EP
1201407 May 2002 EP
1355274 Oct 2003 EP
1734766 Dec 2006 EP
2026563 Feb 2009 EP
2104334 Sep 2009 EP
2244484 Oct 2010 EP
2336816 Jun 2011 EP
2381418 Oct 2011 EP
2973476 Jan 2016 EP
2482022 Jan 2012 GB
59025483 Feb 1984 JP
64037177 Feb 1989 JP
02285772 Nov 1990 JP
06129851 May 1994 JP
07015457 Jan 1995 JP
09171075 Jun 1997 JP
09181913 Jul 1997 JP
10253351 Sep 1998 JP
11142609 May 1999 JP
11223708 Aug 1999 JP
11325889 Nov 1999 JP
2000209503 Jul 2000 JP
2001008235 Jan 2001 JP
2001194114 Jul 2001 JP
2001264033 Sep 2001 JP
2001277260 Oct 2001 JP
2001337263 Dec 2001 JP
2002195910 Jul 2002 JP
2002205310 Jul 2002 JP
2002250607 Sep 2002 JP
2002252338 Sep 2002 JP
2003094445 Apr 2003 JP
2003139910 May 2003 JP
2003163938 Jun 2003 JP
2003298920 Oct 2003 JP
2004221585 Aug 2004 JP
2005116022 Apr 2005 JP
2005181460 Jul 2005 JP
2005295381 Oct 2005 JP
2005354124 Dec 2005 JP
2006033228 Feb 2006 JP
2006033493 Feb 2006 JP
2006047944 Feb 2006 JP
2006258930 Sep 2006 JP
2007520107 Jul 2007 JP
2007259136 Oct 2007 JP
2008039852 Feb 2008 JP
2008055908 Mar 2008 JP
2008507874 Mar 2008 JP
2008258885 Oct 2008 JP
2009132010 Jun 2009 JP
2009300268 Dec 2009 JP
2010139288 Jun 2010 JP
2011017764 Jan 2011 JP
2011030184 Feb 2011 JP
2011109484 Jun 2011 JP
2011203238 Oct 2011 JP
2013526801 Jun 2013 JP
2014521117 Aug 2014 JP
1020110097647 Aug 2011 KR
200828994 Jul 2008 TW
200939739 Sep 2009 TW
2005057922 Jun 2005 WO
2007013250 Feb 2007 WO
2007083579 Jul 2007 WO
2007134137 Nov 2007 WO
2008045198 Apr 2008 WO
2008050904 May 2008 WO
2008108271 Sep 2008 WO
2008108926 Sep 2008 WO
2008150817 Dec 2008 WO
2009073950 Jun 2009 WO
2009151903 Dec 2009 WO
2009157273 Dec 2009 WO
2011008443 Jan 2011 WO
2011055655 May 2011 WO
2011063347 May 2011 WO
2011105814 Sep 2011 WO
2011116203 Sep 2011 WO
2011063347 Oct 2011 WO
2011143501 Nov 2011 WO
2012057619 May 2012 WO
2012057620 May 2012 WO
2012057621 May 2012 WO
2012057622 May 2012 WO
2012057623 May 2012 WO
2012057620 Jun 2012 WO
2012074361 Jun 2012 WO
2012078126 Jun 2012 WO
2012082904 Jun 2012 WO
2012155119 Nov 2012 WO
2013003276 Jan 2013 WO
2013043751 Mar 2013 WO
2013043761 Mar 2013 WO
2013049699 Apr 2013 WO
2013055960 Apr 2013 WO
2013119706 Aug 2013 WO
2013126578 Aug 2013 WO
2014052974 Apr 2014 WO
2014032020 May 2014 WO
2014078443 May 2014 WO
2014130849 Aug 2014 WO
2014133974 Sep 2014 WO
2014138695 Sep 2014 WO
2014138697 Sep 2014 WO
2014144157 Sep 2014 WO
2014145856 Sep 2014 WO
2014149403 Sep 2014 WO
2014149902 Sep 2014 WO
2014150856 Sep 2014 WO
2014159721 Oct 2014 WO
2014159779 Oct 2014 WO
2014160142 Oct 2014 WO
2014164550 Oct 2014 WO
2014164909 Oct 2014 WO
2014165244 Oct 2014 WO
2015048694 Apr 2015 WO
2015070105 May 2015 WO
Non-Patent Literature Citations (244)
Entry
US 8,957,977, 02/2015, Venkataraman et al. (withdrawn)
US 8,964,053, 02/2015, Venkataraman et al. (withdrawn)
US 8,965,058, 02/2015, Venkataraman et al. (withdrawn)
Extended European Search Report for European Application EP12835041.0, Report Completed Jan. 28, 2015, dated Feb. 4, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2012/059813, International Filing Date Oct. 11, 2012, Search Completed Apr. 15, 2014, 7 pgs.
International Preliminary Report on Patentability for International Application PCT/US13/56065, Report Issued Feb. 24, 2015, dated Mar. 5, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/027146, Completed Apr. 2, 2013, dated Aug. 26, 2014, 10 pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/039155, report completed Nov. 4, 2014, dated Nov. 13, 2014, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/048772, Report issued Dec. 31, 2014, dated Jan. 8, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/056502, Report Issued Feb. 24, 2015, dated Mar. 5, 2015, 7 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/46002, Search completed Nov. 13, 2013, dated Nov. 29, 2013, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/56065, Search Completed Nov. 25, 2013, dated Nov. 26, 2013, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US13/59991, Search Completed Feb. 6, 2014, dated Feb. 26, 2014, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2011/64921, Report Completed Feb. 25, 2011, dated Mar. 6, 2012, 17 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/024987, Search Completed Mar. 27, 2013, dated Apr. 15, 2013, 14 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/027146, completed Apr. 2, 2013, 12 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/039155, Search completed Jul. 1, 2013, dated Jul. 11, 2013, 11 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/048772, Search Completed Oct. 21, 2013, dated Nov. 8, 2013, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/056502, Search Completed Feb. 18, 2014, dated Mar. 19, 2014, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2013/069932, International Filing Date Nov. 13, 2013, Search Completed Mar. 14, 2014, dated Apr. 14, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US11/36349, dated Aug. 22, 2011, 11 pgs.
International Search Report and Written Opinion for International Application PCT/US13/62720, report completed Mar. 25, 2014, dated Apr. 21, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/024903 report completed Jun. 12, 2014, dated Jun. 27, 2014, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US14/17766, Report completed May 28, 2014, dated Jun. 18, 2014, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US14/18084, Report completed May 23, 2014, dated Jun. 10, 2014, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US14/18116, report completed May 13, 2014, dated Jun. 2, 2014, 12 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/22118, report completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US14/24407, report completed Jun. 11, 2014, dated Jul. 8, 2014, 9 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25100, report completed Jul. 7, 2014, dated Aug. 7, 2014 5 Pgs.
International Search Report and Written Opinion for International Application PCT/US14/25904 report completed Jun. 10, 2014, dated Jul. 10, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2009/044687, completed Jan. 5, 2010, 13 pgs.
International Search Report and Written Opinion for International Application PCT/US2010/057661, completed Mar. 9, 2011, 14 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/044014, completed Oct. 12, 2012, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/056151, completed Nov. 14, 2012, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/059813, Report completed Dec. 17, 2012, 8 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/37670, dated Jul. 18, 2012, Report Completed Jul. 5, 2012, 9 pgs.
International Search Report and Written Opinion for International Application PCT/US2012/58093, Report completed Nov. 15, 2012, 12 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022123, report completed Jun. 9, 2014, dated Jun. 25, 2014, 5 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/024947, Report Completed Jul. 8, 2014, dated Aug 5, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/028447, report completed Jun. 30, 2014, dated Jul. 21, 2014, 8 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/030692, report completed Jul. 28, 2014, dated Aug. 27, 2014, 7 Pages.
International Search Report and Written Opinion for International Application PCT/US2014/067740, Report Completed Jan. 29, 2015, dated Mar. 3, 2015, 10 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/23762, Report Completed May 30, 2014, dated Jul. 3, 2014, 6 Pgs.
Office Action for U.S. Appl. No. 12/952,106, dated Aug. 16, 2012, 12 pgs.
Baker et al., “Limits on Super-Resolution and How to Break Them”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2002, vol. 24, No. 9, pp. 1167-1183.
Bertero et al., “Super-resolution in computational imaging”, Micron, 2003, vol. 34, Issues 6-7, 17 pgs.
Bishop et al., “Full-Resolution Depth Map Estimation from an Aliased Plenoptic Light Field”, ACCV 2010, Part II, LNCS 6493, pp. 186-200.
Bishop et al., “Light Field Superresolution”, Retrieved from http://home.eps.hw.ac.uk/˜sz73/ICCP09/LightFieldSuperresolution.pdf, 9 pgs.
Bishop et al., “The Light Field Camera: Extended Depth of Field, Aliasing, and Superresolution”, IEEE Transactions on Pattern Analysis and Machine Intelligence, May 2012, vol. 34, No. 5, pp. 972-986.
Borman, “Topics in Multiframe Superresolution Restoration”, Thesis of Sean Borman, Apr. 2004, 282 pgs.
Borman et al, “Image Sequence Processing”, Source unknown, Oct. 14, 2002, 81 pgs.
Borman et al., “Block-Matching Sub-Pixel Motion Estimation from Noisy, Under-Sampled Frames—An Empirical Performance Evaluation”, Proc SPIE, Dec. 1998, 3653, 10 pgs.
Borman et al., “Image Resampling and Constraint Formulation for Multi-Frame Super-Resolution Restoration”, Proc. SPIE, Jun. 2003, 5016, 12 pgs.
Krishnamurthy et al., “Compression and Transmission of Depth Maps for Image-Based Rendering”, Image Processing, 2001, pp. 828-831.
Kutulakos et al., “Occluding Contour Detection Using Affine Invariants and Purposive Viewpoint Control”, Proc., CVPR 94, 8 pgs.
Lai et al., “A Large-Scale Hierarchical Multi-View RGB-D Object Dataset”, source and date unknown, 8 pgs.
Lensvector, “How LensVector Autofocus Works”, printed Nov. 2, 2012 from http://www.lensvector.com/overview.html, 1 pg.
Levin et al., “A Closed Form Solution to Natural Image Matting”, Pattern Analysis and Machine Intelligence, Feb. 2008, vol. 30, 8 pgs.
Levoy, “Light Fields and Computational Imaging”, IEEE Computer Society, Aug. 2006, pp. 46-55.
Levoy et al., “Light Field Rendering”, Proc. ADM SIGGRAPH '96, pp. 1-12.
Li et al., “A Hybrid Camera for Motion Deblurring and Depth Map Super-Resolution”, Jun. 23-28, 2008, IEEE Conference on Computer Vision and Pattern Recognition, 8 pgs. Retrieved from www.eecis.udel.edu/˜jye/lab_research/08/deblur-feng.pdf on Feb. 5, 2014.
Liu et al., “Virtual View Reconstruction Using Temporal Information”, 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 115-120.
Lo et al., “Stereoscopic 3D Copy & Paste”, ACM Transactions on Graphics, vol. 29, No. 6, Article 147, Dec. 2010, pp. 147:1-147:10.
Muehlebach, “Camera Auto Exposure Control for VSLAM Applications”, Studies on Mechatronics, Swiss Federal Institute of Technology Zurich, Autumn Term 2010 course, 67 pgs.
Nayar, “Computational Cameras: Redefining the Image”, IEEE Computer Society, Aug. 2006, pp. 30-38.
Ng, “Digital Light Field Photography”, Thesis, Jul. 2006, 203 pgs.
Ng et al., “Super-Resolution Image Restoration from Blurred Low-Resolution Images”, Journal of Mathematical Imaging and Vision, 2005, vol. 23, pp. 367-378.
Nguyen et al., “Image-Based Rendering with Depth Information Using the Propagation Algorithm”, Nguyen et al., Image-Based Rendering With Depth Information Using the Propagation Algorithm, 2005, IEEE, ICASSP, pp. 1-41-1-44.
Nitta et al., “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method”, Applied Optics, May 1, 2006, vol. 45, No. 13, pp. 2893-2900.
Nomura et al., “Scene Collages and Flexible Camera Arrays”, Proceedings of Eurographics Symposium on Rendering, 2007, 12 pgs.
Park et al., “Super-Resolution Image Reconstruction”, IEEE Signal Processing Magazine, May 2003, pp. 21-36.
Perwass et al., “Single Lens 3D-Camera with Extended Depth-of-Field”, printed from www.raytrix.de, 15 pgs.
Pham et al., “Robust Super-Resolution without Regularization”, Journal of Physics: Conference Series 124, 2008, pp. 1-19.
Polight, “Designing Imaging Products Using Reflowable Autofocus Lenses”, http://www.polight.no/tunable-polymer-autofocus-lens-html--11.html.
Protter et al., “Generalizing the Nonlocal-Means to Super-Resolution Reconstruction”, IEEE Transactions on Image Processing, Jan. 2009, vol. 18, No. 1, pp. 36-51.
Radtke et al., “Laser lithographic fabrication and characterization of a spherical artificial compound eye”, Optics Express, Mar. 19, 2007, vol. 15, No. 6, pp. 3067-3077.
Rander et al., “Virtualized Reality: Constructing Time-Varying Virtual Worlds From Real World Events”, Proc. of IEEE Visualization '97, Phoenix, Arizona, Oct. 19-24, 1997, pp. 277-283, 552.
Rhemann et al, “Fast Cost-Volume Filtering for Visual Correspondence and Beyond”, IEEE Trans. Pattern Anal. Mach. Intell, 2013, vol. 35, No. 2, pp. 504-511.
Robertson et al., “Dynamic Range Improvement Through Multiple Exposures”, In Proc. of the Int. Conf. on Image Processing, 1999, 5 pgs.
Robertson et al., “Estimation-theoretic approach to dynamic range enhancement using multiple exposures”, Journal of Electronic Imaging, Apr. 2003, vol. 12, No. 2, pp. 219-228.
Roy et al., “Non-Uniform Hierarchical Pyramid Stereo for Large Images”, Computer and Robot Vision, 2007, pp. 208-215.
Sauer et al., “Parallel Computation of Sequential Pixel Updates in Statistical Tomographic Reconstruction”, ICIP 1995, pp. 93-96.
Seitz et al., “Plenoptic Image Editing”, International Journal of Computer Vision 48, 2, pp. 115-129.
Shum et al., “Pop-Up Light Field: an Interactive Image-Based Modeling and Rendering System”, Apr. 2004, ACM Transactions on Graphics, vol. 23, No. 2, pp. 143-162. Retrieved from http://131.107.65.14/en-us/um/people/jiansun/papers/PopupLightField_TOG.pdf on Feb. 5.
Stollberg et al., “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects”, Optics Express, Aug. 31, 2009, vol. 17, No. 18, pp. 15747-15759.
Sun et al., “Image Super-Resolution Using Gradient Profile Prior”, Source and date unknown, 8 pgs.
Takeda et al., “Super-resolution Without Explicit Subpixel Motion Estimation”, IEEE Transaction on Image Processing, Sep. 2009, vol. 18, No. 9, pp. 1958-1975.
Tallon et al., “Upsampling and Denoising of Depth Maps via Joint-Segmentation”, 20th European Signal Processing Conference, Aug 27-31, 2012, 5 pgs.
Tanida et al., “Color imaging with an integrated compound imaging system”, Optics Express, Sep. 8, 2003, vol. 11, No. 18, pp. 2109-2117.
Tanida et al., “Thin observation module by bound optics (TOMBO): concept and experimental verification”, Applied Optics, Apr. 10, 2001, vol. 40, No. 11, pp. 1806-1813.
Taylor, “Virtual camera movement: the way of the future?”, American Cinematographer 77, 9 (Sep.), 93-100.
Vaish et al., “Reconstructing Occluded Surfaces Using Synthetic Apertures: Stereo, Focus and Robust Measures”, Proceeding, CVPR '06 Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—vol. 2, pp. 2331-2338.
Vaish et al., “Synthetic Aperture Focusing Using a Shear-Warp Factorization of the Viewing Transform”, IEEE Workshop on A3DISS, CVPR, 2005, 8 pgs.
Vaish et al., “Using Plane + Parallax for Calibrating Dense Camera Arrays”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2004, 8 pgs.
Veilleux, “CCD Gain Lab: The Theory”, University of Maryland, College Park—Observational Astronomy (ASTR 310), Oct. 19, 2006, pp. 1-5 (online], [retrieved on May 13, 2014]. Retrieved from the Internet <URL: http://www.astro.umd.edu/˜veilleux/ASTR310/fal106/ccd_theory.pdf, 5 pgs.
Vuong et al., “A New Auto Exposure and Auto White-Balance Algorithm to Detect High Dynamic Range Conditions Using CMOS Technology”, Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008, Oct. 22-24, 2008.
Wang, “Calculation of Image Position, Size and Orientation Using First Order Properties”, 10 pgs.
Wetzstein et al., “Computational Plenoptic Imaging”, Computer Graphics Forum, 2011, vol. 30, No. 8, pp. 2397-2426.
Wheeler et al., “Super-Resolution Image Synthesis Using Projections Onto Convex Sets in the Frequency Domain”, Proc. SPIE, 2005, 5674, 12 pgs.
Wikipedia, “Polarizing Filter (Photography)”, http://en.wikipedia.org/wiki/Polarizing_filter_(photography), 1 pg.
Wilburn, “High Performance Imaging Using Arrays of Inexpensive Cameras”, Thesis of Bennett Wilburn, Dec. 2004, 128 pgs.
Wilburn et al., “High Performance Imaging Using Large Camera Arrays”, ACM Transactions on Graphics, Jul. 2005, vol. 24, No. 3, pp. 1-12.
Wilburn et al., “High-Speed Videography Using a Dense Camera Array”, Proceeding, CVPR'04 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 294-301.
Wilburn et al., “The Light Field Video Camera”, Proceedings of Media Processors 2002, SPIE Electronic Imaging, 2002, 8 pgs.
Wippermann et al., “Design and fabrication of a chirped array of refractive ellipsoidal micro-lenses for an apposition eye camera objective”, Proceedings of SPIE, Optical Design and Engineering II, Oct. 15, 2005, 59622C-1-59622C11.
Yang et al., “A Real-Time Distributed Light Field Camera”, Eurographics Workshop on Rendering (2002), pp. 1-10.
Yang et al., “Superresolution Using Preconditioned Conjugate Gradient Method”, Source and date unknown, 8 pgs.
Zhang et al., “Depth estimation, spatially variant image registration, and super-resolution using a multi-lenslet camera”, Proceedings of SPIE, vol. 7705, Apr. 23, 2010, pp. 770505-770505-8, XP055113797 ISSN: 0277-786X, DOI: 10.1117/12.852171.
Zhang et al., “A Self-Reconfigurable Camera Array”, Eurographics Symposium on Rendering, 2004, 12 pgs.
Zomet et al., “Robust Super-Resolution”, IEEE, 2001, pp. 1-6.
Borman et al., “Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying PSF”, Proc. SPIE, May 2004, vol. 5299, 12 pgs.
Borman et al., “Nonlinear Prediction Methods for Estimation of Clique Weighting Parameters in NonGaussian Image Models”, Proc. SPIE, 1998. 3459, 9 pgs.
Borman et al., “Simultaneous Multi-Frame Map Super-Resolution Video Enhancement Using Spatio-Temporal Priors”, Image Processing, 1999, ICIP 99 Proceedings, vol. 3, pp. 469-473.
Borman et al., “Super-Resolution from Image Sequences—A Review”, Circuits & Systems, 1998, pp. 374-378.
Bose et al., “Superresolution and Noise Filtering Using Moving Least Squares”, IEEE Transactions on Image Processing, date unknown, 21 pgs.
Boye et al., “Comparison of Subpixel Image Registration Algorithms”, Proc. of SPIE—IS&T Electronic Imaging, vol. 7246, pp. 72460X-1-72460X-9.
Bruckner et al., “Artificial compound eye applying hyperacuity”, Optics Express, Dec. 11, 2006, vol. 14, No. 25, pp. 12076-12084.
Bruckner et al., “Driving microoptical imaging systems towards miniature camera applications”, Proc. SPIE, Micro-Optics, 2010, 11 pgs.
Bruckner et al., “Thin wafer-level camera lenses inspired by insect compound eyes”, Optics Express, Nov. 22, 2010, vol. 18, No. 24, pp. 24379-24394.
Capel, “Image Mosaicing and Super-resolution”, [online], Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL:<http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 0.1.1.226.2643&rep=rep1 &type=pdf>, Title pg., abstract, table of contents, pp. 1-263 (269 total pages).
Chan et al., “Extending the Depth of Field in a Compound-Eye Imaging System with Super-Resolution Reconstruction”, Proceedings—International Conference on Pattern Recognition, 2006, vol. 3, pp. 623-626.
Chan et al., “Investigation of Computational Compound-Eye Imaging System with Super-Resolution Reconstruction”, IEEE, ISASSP 2006, pp. 1177-1180.
Chan et al., “Super-resolution reconstruction in a computational compound-eye imaging system”, Multidim Syst Sign Process, 2007, vol. 18, pp. 83-101.
Chen et al., “Interactive deformation of light fields”, In Proceedings of SIGGRAPH I3D 2005, pp. 139-146.
Chen et al., “KNN Matting”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Sep. 2013, vol. 35, No. 9, pp. 2175-2188.
Drouin et al., “Fast Multiple-Baseline Stereo with Occlusion”, Proceedings of the Fifth International Conference on 3-D Digital Imaging and Modeling, 2005, 8 pgs.
Drouin et al., “Geo-Consistency for Wide Multi-Camera Stereo”, Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 8 pgs.
Drouin et al., “Improving Border Localization of Multi-Baseline Stereo Using Border-Cut”, International Journal of Computer Vision, Jul. 2009, vol. 83, Issue 3, 8 pgs.
Duparre et al., “Artificial apposition compound eye fabricated by micro-optics technology”, Applied Optics, Aug. 1, 2004, vol. 43, No. 22, pp. 4303-4310.
Duparre et al., “Artificial compound eye zoom camera”, Bioinspiration & Biomimetics, 2008, vol. 3, pp. 1-6.
Duparre et al., “Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors”, MOEMS and Miniaturized Systems IV, Proc. SPIE 5346, Jan. 2004, pp. 89-100.
Duparre et al., “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence”, Optics Express, Dec. 26, 2005, vol. 13, No. 26, pp. 10539-10551.
Duparre et al., “Micro-optical artificial compound eyes”, Bioinspiration & Biomimetics, 2006, vol. 1, pp. R1-R16.
Duparre et al., “Microoptical artificial compound eyes—from design to experimental verification of two different concepts”, Proc. of SPIE, Optical Design and Engineering II, vol. 5962, pp. 59622A-1-59622A-12.
Duparre et al., “Microoptical Artificial Compound Eyes—Two Different Concepts for Compact Imaging Systems”, 11th Microoptics Conference, Oct. 30-Nov. 2, 2005, 2 pgs.
Duparre et al., “Microoptical telescope compound eye”, Optics Express, Feb. 7, 2005, vol. 13, No. 3, pp. 889-903.
Duparre et al., “Micro-optically fabricated artificial apposition compound eye”, Electronic Imaging—Science and Technology, Prod. SPIE 5301, Jan. 2004, pp. 25-33.
Duparre et al., “Novel Optics/Micro-Optics for Miniature Imaging Systems”, Proc. of SPIE, 2006, vol. 6196, pp. 619607-1-619607-15.
Duparre et al., “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices”, Optical Systems Design, Proc. SPIE 5249, Sep. 2003, pp. 408-418.
Duparre et al., “Thin compound-eye camera”, Applied Optics, May 20, 2005, vol. 44, No. 15, pp. 2949-2956.
Duparre et al., “Ultra-Thin Camera Based on Artificial Apposistion Compound Eyes”, 10th Microoptics Conference, Sep. 1-3, 2004, 2 pgs.
Fanaswala, “Regularized Super-Resolution of Multi-View Images”, Retrieved on Nov. 10, 2012 (Nov. 10, 2012). Retrieved from the Internet at URL<http://www.site.uottawa.ca/˜edubois/theses/Fanaswala_thesis.pdf>, 163 pgs.
Farrell et al., “Resolution and Light Sensitivity Tradeoff with Pixel Size”, Proceedings of the SPIE Electronic Imaging 2006 Conference, 2006, vol. 6069, 8 pgs.
Farsiu et al., “Advances and Challenges in Super-Resolution”, International Journal of Imaging Systems and Technology, 2004, vol. 14, pp. 47-57.
Farsiu et al., “Fast and Robust Multiframe Super Resolution”, IEEE Transactions on Image Processing, Oct. 2004, vol. 13, No. 10, pp. 1327-1344.
Farsiu et al., “Multiframe Demosaicing and Super-Resolution of Color Images”, IEEE Transactions on Image Processing, Jan. 2006, vol. 15, No. 1, pp. 141-159.
Feris et al., “Multi-Flash Stereopsis: Depth Edge Preserving Stereo with Small Baseline Illumination”, IEEE Trans on PAMI, 2006, 31 pgs.
Fife et al., “A 3D Multi-Aperture Image Sensor Architecture”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE, pp. 281-284.
Fife et al., “A 3MPixel Multi-Aperture Image Sensor with 0.7Mu Pixels in 0.11Mu CMOS”, ISSCC 2008, Session 2, Image Sensors & Technology, 2008, pp. 48-50.
Fischer et al. “Optical System Design”, 2nd Edition, SPIE Press, pp. 191-198.
Fischer et al. “Optical System Design”, 2nd Edition, SPIE Press, pp. 49-58.
Goldman et al., “Video Object Annotation, Navigation, and Composition”, In Proceedings of UIST 2008, pp. 3-12.
Gortler et al., “The Lumigraph”, In Proceedings of SIGGRAPH 1996, pp. 43-54.
Hacohen et al., “Non-Rigid Dense Correspondence with Applications for Image Enhancement”, ACM Transactions on Graphics, 30, 4, 2011, pp. 70:1 70:10.
Hamilton, “JPEG File Interchange Format, Version 1.02”, Sep. 1, 1992, 9 pgs.
Hardie, “A Fast Image Super-Algorithm Using an Adaptive Wiener Filter”, IEEE Transactions on Image Processing, Dec. 2007, vol. 16, No. 12, pp. 2953-2964.
Hasinoff et al., “Search-and-Replace Editing for Personal Photo Collections”, Computational Photography (ICCP) 2010, pp. 1-8.
Horisaki et al., “Irregular Lens Arrangement Design to Improve Imaging Performance of Compound-Eye Imaging Systems”, Applied Physics Express, 2010, vol. 3, pp. 022501-1-022501-3.
Horisaki et al., “Superposition Imaging for Three-Dimensionally Space-Invariant Point Spread Functions”, Applied Physics Express, 2011, vol. 4, pp. 112501-1-112501-3.
Horn et al., “LightShop: Interactive Light Field Manipulation and Rendering”, In Proceedings of I3D 2007, pp. 121-128.
Isaksen et al., “Dynamically Reparameterized Light Fields”, In Proceedings of SIGGRAPH 2000, pp. 297-306.
Jarabo et al., “Efficient Propagation of Light Field Edits”, In Proceedings of SIACG 2011, pp. 75-80.
Joshi, et al. “Synthetic Aperture Tracking: Tracking Through Occlusions”, ICCV IEEE 11th International Conference on Computer Vision; Publication.[online]. Oct. 2007 [retrieved Jul. 28, 2014]. Retrieved from the Internet:.http:I/ieeexplore.ieee.org/stamp/stamp.jsp?tp=84arnumber=44090328(isnumber=4408819; pp. 1-8.
Kang et al., “Handling Occlusions inn Dense Multi-View Stereo”, Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 1-103-1-110.
Kitamura et al., “Reconstruction of a high-resolution image on a compound-eye image-capturing system”, Applied Optics, Mar. 10, 2004, vol. 43, No. 8, pp. 1719-1727.
“Light fields and computational photography”, Stanford Computer Graphics Laboratory, Retrieved from: http://graphics.stanford.edu/projects/lighffield/, Earliest publication online: Feb. 10, 1997, 3 pgs.
Fecker et al., “Depth Map Compression for Unstructured Lumigraph Rendering”, Proc. SPIE 6077, Proceedings Visual Communications and Image Processing 2006, Jan. 18, 2006, pp. 60770B-1-60770B-8.
Georgeiv et al., “Light Field Camera Design for Integral View Photography”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Georgiev et al., “Light-Field Capture by Multiplexing in the Frequency Domain”, Adobe Systems Incorporated, Adobe Technical Report, 2003, 13 pgs.
Kubota et al., “Reconstructing Dense Light Field From Array of Multifocus Images for Novel View Synthesis”, IEEE Transactions on Image Processing, vol. 16, No. 1, Jan. 2007, pp. 269-279.
Li et al., “Fusing Images With Different Focuses Using Support Vector Machines”, IEEE Transactions on Neural Networks, vol. 15, No. 6, Nov. 8, 2004, pp. 1555-1561.
Ng et al., Light Field Photography with a Hand-held Plenoptic Camera, Stanford Tech Report CTSR 2005-02, Apr. 20, 2005, pp. 1-11.
Stober, “Stanford researchers developing 3-D camera with 12,616 lenses”, Stanford Report, Mar. 19, 2008, Retrieved from: http://news.stanford.edu/news/2008/march19/camera-031908.html, 5 pgs.
Taguchi et al., “Rendering-Oriented Decoding for a Distributed Multiview Coding System Using a Coset Code”, Hindawi Publishing Corporation, EURASIP Journal on Image and Video Processing, vol. 2009, Article ID 251081, Online: Apr. 22, 2009, 12 pages.
Vetro et al., “Coding Approaches for End-To-End 3D TV Systems”, Mitsubishi Electric Research Laboratories, Inc., TR2004-137, Dec. 2004, 6 pgs.
Wieringa et al., “Remote Non-invasive Stereoscopic Imaging of Blood Vessels: First In-vivo Results of a New Multispectral Contrast Enhancement Technology”, Annals of Biomedical Engineering, vol. 34, No. 12, Dec. 2006, pp. 1870-1878, Published online Oct. 12, 2006.
Xu, “Real-Time Realistic Rendering and High Dynamic Range Image Display and Compression”, Dissertation, School of Computer Science in the College of Engineering and Computer Science at the University of Central Florida, Orlando, Florida, Fall Term 2005, 192 pgs.
Van Der Wal et al., “The Acadia Vision Processor”, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception, Sep. 13, 2000, Padova, Italy, pp. 31-40.
International Preliminary Report on Patentability for International Application PCT/US2014/024947, dated Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025100, dated Sep. 15, 2015, dated Sep. 24, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/025904, dated Sep. 15, 2015, dated Sep. 24, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/028447, dated Sep. 15, 2015, dated Sep. 24, 2015, 7 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/030692, dated Sep. 15, 2015, dated Sep. 24, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/064693, dated May 10, 2016, dated May 19, 2016, 14 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/066229, dated May 24, 2016, dated Jun. 2, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/067740, dated May 31, 2016, dated Jun. 9, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2015/019529, dated Sep. 13, 2016, dated Sep. 22, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/062720, dated Mar. 31, 2015, dated Apr. 9, 2015, 8 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/019529, completed May 5, 2015, dated Jun. 8, 2015, 10 Pgs.
International Search Report and Written Opinion for International Application No. PCT/US2015/032467, Search completed Jul. 27, 2015, dated Aug. 19, 2015, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/021439, completed Jun. 5, 2014, dated Jun. 20, 2014, 10 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/022774 report completed Jun. 9, 2014, dated Jul. 14, 2014, 6 Pgs.
International Search Report and Written Opinion for International Application PCT/US2014/064693, Completed Mar. 7, 2015, dated Apr. 2, 2015, 15 pgs.
International Search Report and Written Opinion for International Application PCT/US2014/066229, Completed Mar. 6, 2015, dated Mar. 19, 2015, 9 Pgs.
Notice of Allowance Received, Application No. 12/935,504, dated Jul. 18, 2014, 12 pgs.
Supplementary European Search Report for EP Application No. 13831768.0, Search completed May 18, 2016, dated May 30, 2016, 13 Pgs.
“File Formats Version 6”, Alias Systems, 2004, 40 pgs.
“Notice of Allowance Received”, Notice of Allowance Received, U.S. Appl. No. 12/952,134, dated Jul. 24, 2014, 8 pgs.
Aufderheide et al., “A MEMS-based Smart Sensor System for Estimation of Camera Pose for Computer Vision Applications”, Research and Innovation Conference 2011, Jul. 29, 2011, pp. 1-10.
Bennett et al., “Multispectral Bilateral Video Fusion”, 2007 IEEE Transactions on Image Processing, vol. 16, No. 5, May 2007, published Apr. 16, 2007, pp. 1185-1194.
Bennett et al., “Multispectral Video Fusion”, Computer Graphics (ACM SIGGRAPH Proceedings), Jul. 25, 2006, published Jul. 30, 2006, 1 pg.
Crabb et al., “Real-time foreground segmentation via range and color imaging”, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, Jun. 23-28, 2008, pp. 1-5.
Debevec et al., “Recovering High Dynamic Range Radiance Maps from Photographs”, Computer Graphics (ACM SIGGRAPH Proceedings), Aug. 16, 1997, 10 pgs.
Eng, Wei Yong et al., “Gaze correction for 3D tele-immersive communication system”, IVMSP Workshop, 2013 IEEE 11th. IEEE, Jun. 10, 2013, 4 pages.
Fang et al., “vol. Morphing Methods for Landmark Based 3D Image Deformation”, SPIE vol. 2710, Proc. 1996 SPIE Intl Symposium on Medical Imaging, Newport Beach, CA, Feb. 10, 1996, pp. 404-415.
Hernandez-Lopez et al., “Detecting objects using color and depth segmentation with Kinect sensor”, Procedia Technology, vol. 3, Jan. 1, 2012, pp. 196-204, XP055307680, ISSN: 2212-0173, DOI: 10.1016/j.protcy.2012.03.021.
Lee et al., “Electroactive Polymer Actuator for Lens-Drive Unit in Auto-Focus Compact Camera Module”, ETRI Journal, vol. 31, No. 6, Dec. 2009, pp. 695-702.
Martinez et al., “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis”, Analytical Chemistry (American Chemical Society), vol. 80, No. 10, May 15, 2008, pp. 3699-3707.
Merkle et al., “Adaptation and optimization of coding algorithms for mobile 3DTV”, Mobile3DTV Project No. 216503, Nov. 2008, 55 pgs.
Mitra et al., “Light Field Denoising, Light Field Superresolution and Stereo Camera Based Refocussing using a GMM Light Field Patch Prior”, Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on Jun. 16-21, 2012, pp. 22-28.
Moreno-Noguer et al., “Active Refocusing of Images and Videos”, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH 2007, vol. 26, Issue 3, Jul. 2007, 10 pages.
Park et al., “Multispectral Imaging Using Multiplexed Illumination”, 2007 IEEE 11th International Conference on Computer Vision, Oct. 14-21, 2007, Rio de Janeiro, Brazil, pp. 1-8.
Parkkinen et al., “Characteristic Spectra of Munsell Colors”, Journal of the Optical Society of America A, vol. 6, Issue 2, Feb. 1989, pp. 318-322.
Philips 3D Solutions, “3D Interface Specifications, White Paper”, Feb. 15, 2008, 2005-2008 Philips Electronics Nederland B.V., Philips 3D Solutions retrieved from www.philips.com/3dsolutions, 29 pgs.
Pouydebasque et al., “Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers”, Sensors and Actuators A: Physical, vol. 172, Issue 1, Dec. 2011, pp. 280-286.
Rajan et al., “Simultaneous Estimation of Super Resolved Scene and Depth Map from Low Resolution Defocused Observations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 9, Sep. 8, 2003, pp. 1-16.
Venkataraman et al., “PiCam: an Ultra-Thin High Performance Monolithic Camera Array”, ACM Transactions on Graphics (TOG), ACM, US, vol. 32, no. 6, Nov. 1, 2013, pp. 1-13.
Wang, “Calculation Image Position, Size and Orientation Using First Order Properties”, Dec. 29, 2010, OPTI521 Tutorial, 10 pgs.
Wu et al., “A virtual view synthesis algorithm based on image inpainting”, 2012 Third International Conference on Networking and Distributed Computing, Hangzhou, China, Oct. 21-24, 2012, pp. 153-156.
Yokochi et al., “Extrinsic Camera Parameter Estimation Based-on Feature Tracking and GPS Data”, 2006, Nara Institute of Science and Technology, Graduate School of Information Science, LNCS 3851, pp. 369-378.
Zheng et al., “Balloon Motion Estimation Using Two Frames”, Proceedings of the Asilomar Conference on Signals, Systems and Computers, IEEE, Comp. Soc. Press, US, vol. 2 of 2, Nov. 4, 1991, pp. 1057-1061.
Extended European Search Report for EP Application No. 13810429.4, Completed Jan. 7, 2016, dated Jan. 15, 2016, 6 Pgs.
Extended European Search Report for European Application EP12782935.6, completed Aug. 28, 2014, dated Sep. 4, 2014, 7 Pgs.
Extended European Search Report for European Application EP12804266.0, Report Completed Jan. 27, 2015, dated Feb. 3, 2015, 6 Pgs.
Extended European Search Report for European Application EP13810229.8, Report Completed Apr. 14, 2016, dated Apr. 21, 2016, 7 pgs.
Extended European Search Report for European Application No. 13830945.5, Search completed Jun. 28, 2016, dated Jul. 7, 2016, 14 Pgs.
Extended European Search Report for European Application No. 13841613.6, Search completed Jul. 18, 2016, dated Jul. 26, 2016, 8 Pgs.
Extended European Search Report for European Application No. 14763087.5, Search completed Dec. 7, 2016, dated Dec. 19, 2016, 9 Pgs.
Extended European Search Report for European Application No. 14865463.5, Search completed May 30, 2017, dated Jun. 8, 2017, 6 Pgs.
International Preliminary Report on Patentability for International Application No. PCT/US2013/059991, dated Mar. 17, 2015, dated Mar. 26, 2015, 8 pgs.
International Preliminary Report on Patentability for International Application PCT /US2015/032467, Report dated Nov. 29, 2016, dated Dec. 8, 2016, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/024987, dated Aug. 12, 2014, 13 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/046002, dated Dec. 31, 2014, dated Jan. 8, 2015, 6 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2013/069932, dated May 19, 2015, dated May 28, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/017766, dated Aug. 25, 2015, dated Sep. 3, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018084, dated Aug. 25, 2015, dated Sep. 3, 2015, 11 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/018116, dated Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/021439, dated Sep. 15, 2015, dated Sep. 24, 2015, 9 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022118, dated Sep. 8, 2015, dated Sep. 17, 2015, 4 pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022123, dated Sep. 8, 2015, dated Sep. 17, 2015, 4 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/022774, dated Sep. 22, 2015, dated Oct. 1, 2015, 5 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/023762, dated Mar. 2, 2015, dated Mar. 9, 2015, 10 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024407, dated Sep. 15, 2015, dated Sep. 24, 2015, 8 Pgs.
International Preliminary Report on Patentability for International Application PCT/US2014/024903, dated Sep. 15, 2015, dated Sep. 24, 2015, 12 Pgs.
Related Publications (1)
Number Date Country
20150264337 A1 Sep 2015 US
Provisional Applications (2)
Number Date Country
61798673 Mar 2013 US
62003015 May 2014 US
Continuation in Parts (2)
Number Date Country
Parent 14593369 Jan 2015 US
Child 14724447 US
Parent 14216968 Mar 2014 US
Child 14593369 US