The present invention is drawn to the field of illumination, and more particularly, to a novel rechargeable lamp system.
Candles may be moved and placed to provide illumination and/or ambience. While their utilitarian and aesthetic advantages are well-known, candles suffer from an undesirable self-consumption, needing to be replaced when used-up; produce smoke especially when snuffed, which may foul the air; require vigilant attendance to mitigate an ever-present fire hazard; are susceptible to being extinguished by gusts of air when used outdoors or moved around; and may give rise to undesirable wax build-up, which in many instances needs removed from candle support members or underlying structures. Moreover, the more lumens that are desired for a particular setting, the greater is the number of candles that need to be deployed, further magnifying the risks and other disadvantages of candle use.
There is thus a need to provide a rechargeable lamp system that enjoys the many utilitarian and aesthetic advantages of candles but is not subject to their disadvantages.
It is accordingly a general object of the present invention to disclose a rechargeable lamp system that provides candle-like lighting for indoor or outdoor use that avoids the problems associated with candles.
In accordance therewith, the autoilluminating rechargeable lamp system of the present invention includes a recharging platter adapted to receive a set of luminaries including a first circuit coupled to each luminary of said set of luminaries received thereon operative in response to supplied AC power to provide a charge signal to each luminary of said set of luminaries received thereon; and a set of luminaries each having a light emitting element connected to a rechargeable battery pack via a second circuit operative in one mode to charge said rechargeable battery pack in response to said charge signal when each luminary of said set of luminaries is received on said recharging platter and operative in another mode to activate said light emitting element in response to the absence of said signal, whereby, each said luminary lights if removed from said recharging platter and lights if no AC power is supplied to said recharging platter when received therein.
In the presently preferred embodiments, the set of luminaries includes one or more luminaries each of which is inductively coupled to the first circuit of the recharging platter. The inductive coupling provides automatic, hands-free recharging of the rechargeable battery pack of a luminary upon its receipt by the recharging platter, and provides automatic, hands-free actuation of a luminary when it is removed therefrom.
In the presently preferred embodiments, each luminary of the set of luminaries is self-standing and includes a diffusor that may be shaped to resemble a candle releasably mounted to a base member supporting said light emitting element therewithin.
In further accordance therewith, the autoilluminating rechargeable lamp system of the present invention includes a wall mountable charging base adapted to support a set of luminaries including a first circuit coupled to each luminary of said set of luminaries supported thereon operative in response to supplied AC power to provide a charge signal to each luminary of said set of luminaries supported thereon; and a set of luminaries each having a light emitting element connected to a rechargeable battery pack via a second circuit operative in one mode to charge said rechargeable battery pack in response to said charge signal when each luminary of said set of luminaries is supported thereon and operative in another mode to activate said light emitting element in response to the absence of said signal, whereby, each said luminary lights if removed from said wall mountable charging base and lights if no AC power is supplied to said wall mountable charging base when supported thereon.
In the presently preferred embodiments, the wall mountable charging base may be plugged directly into an AC wall outlet and/or mounted adjacent an AC wall outlet by any suitable mounting hardware.
In further accordance therewith, the autoilluminating rechargeable lamp system of the present invention includes a charging base adapted to support a set of luminaries including a first circuit coupled to each luminary of said set of luminaries supported thereon operative in response to supplied AC power to provide a charge signal to each luminary of said set of luminaries supported thereon; a sensor to provide a seat signal representative that each luminary of said set of luminaries is supported on said charging base; and a set of luminaries each having a light emitting element connected to a rechargeable battery pack via a second circuit operative in one mode to charge said rechargeable battery pack in response to said charge signal when each luminary of said set of luminaries is supported thereon and operative in another mode to activate said light emitting element in response to the absence of said seat signal, whereby, each said luminary lights if removed from said charging base and does not light if no AC power is supplied to said charging base when supported thereon.
In the presently preferred embodiments, the charging base may be provided with a removable cover that protects the luminaries during charging, storage, and a handle that aids in transit.
In further accordance therewith, the autoilluminating rechargeable lamp system of the present invention includes a charger member adapted to be supported by a surface and further adapted to receive a set of luminaries such that each luminary of the set of luminaries is supported on said support and in such a way that the charger at least partially surrounds a part of each luminary of the set of luminaries including a first circuit coupled to each luminary of said set of luminaries received thereby operative in response to supplied AC power to provide a charge signal to each luminary of said set of luminaries received thereby; and a set of luminaries each having a light emitting element connected to a rechargeable battery pack via a second circuit operative in one mode to charge said rechargeable battery pack and to de-light said light emitting element in response to detection of said charge signal when each luminary of said set of luminaries is received thereby and operative in another mode to activate said light emitting element in response to the absence of said signal, whereby, each said luminary lights if removed from said charger and de-lights when received thereby. The charger and luminaries are relatively movable so that the charger may be removed from the set of luminaries while remaining on the support causing each luminary to light.
In one presently preferred embodiment, each luminary of the set of luminaries includes a diffusor releasably mounted to a base. A light support carried by the base allows replacement of the light emitting element and a rechargeable battery compartment carried by the base allows replacement of the rechargeable battery. In the presently preferred embodiments, the light support and battery compartment are adapted to allow manual light element and rechargeable battery replacement, and the diffusor is manually releasably mounted to the base, although light mechanical action could be employed to provide ease of light element and rechargeable battery replacement without departing from the inventive concepts. Multiple light emitting elements and corresponding supports may be provided for light animation effects.
In further accordance therewith, the autoilluminating rechargeable lamp system of the present invention includes a charger module adapted to receive the bottom end of a lantern module, including a first circuit coupled to said received bottom end operative in response to supplied AC power to provide a charge signal to the lantern module received thereby; and a lantern module rotatable about its axis of extension having a bottom end that is received by said charger module including at least one light emitting element connected to a rechargeable battery pack via a second circuit operative in one mode to charge said rechargeable battery pack and to de-light said at least one light emitting element in response to receipt of the lantern module on the charger module and to activate said at least one light emitting element in response to removal of the lantern module from said charger module and operative in another mode to controllably alter the light emitting characteristics of the at least one light emitting element in response to rotation of the lantern module about its axis of rotation.
In one presently preferred embodiment of the autoilluminating rechargeable lamp in accord with the present invention, the second circuit in said other mode controllably dims/increases the intensity of the at least one light emitting element in response to rotation of the lantern module about its axis of extension both when it is received by and when it is removed from the charger module. The lantern module includes a bulbous translucent cover inside which an array of comparatively bright white LED's powered by a 1.2 v NiMH rechargeable battery pack provides from 6-10 hours of illumination depending on the intensity selected. Both the LED array and battery pack are replaceable. A handle at the top end of the lantern module provides easy portability.
These and other objects, advantageous features and inventive aspects of the present invention will be more fully appreciated as the same becomes better understood from the following detailed description of the preferred embodiments when considered in connection with the accompanying drawings, in which:
Referring now to
As shown in
A power cord 24 having an inline power switch 26 and a “wall-block” style transformer provides power to charging stand 12 via ordinary 120-volt household current. In alternate embodiments, the transformer may be dispensed with.
As will be described in greater detail herein, each of modules 110, 111, 112 and 114 is battery-powered and designed to be charged by magnetic induction when placed in a respective one of slots 16, 18, 20 and 22. Modules 110, 111, 112 and 114 are each designed to illuminate when removed from slots 16, 18, 20 and 22, or when AC power is cut off to charging stand 12.
The number of lamp modules (and a corresponding slot for each module) shown in the preferred embodiment is intended to be merely exemplary. It should be understood that the lamp system 10 of the present invention may be constructed with any number of modules.
Referring now to
As shown in
Modules 110, 111 and 112 are identical to module 114. Thus, it will only be necessary to describe module 114 in detail.
As shown in
Diffuser 116 in the exemplary embodiment is formed of blow-molded plastic (or glass) having a frosted outer surface 142. It could also be injection-molded plastic with a frosted, translucent finish. In the exemplary embodiment, diffuser 116 is slender and elongated in shape and includes a mid-section 146 that tapers upwardly to a tip 144 and tapers slightly to a tail 148. This shape is chosen to provide optimal light color and transmission, as well as even diffusion of light from bulb 118. Obviously, numerous alternative shapes for diffuser 116 are possible. However, the internal volume created by diffuser 116 must be sufficient to envelop bulb 118, battery pack 120 and circuit board 122. In addition, because of the heat generated by bulb 118, it is desirable to provide air space between bulb 118 and diffuser 116 to prevent diffuser 118 from melting or deforming.
Base 126 comprises a lower portion 128 that provides stable support for module 114 when placed on a level surface or within slot 16. Neck 130 is adapted to removably receive diffuser 116 (to enable access to bulb 118 and battery pack 120). Neck 130 includes tabs 134, 136, 138 and 140 and a lip 135 that cooperate to secure tail 148 of module 114 to neck 130 (see
Battery pack 120 in the exemplary embodiment comprises three “AA” Nickel-Cadmium (Ni-Cad) cells wrapped in PVC shrink-wrap and having a total output of 3.6 Vdc and 500-800 mA. Of course, other types and sizes of rechargeable cells, such as Nickel-Metal-Hydride or Lithium cells, could be substituted for the Ni-Cad cells. Such cells would provide more power, and charge more quickly than Ni-Cads, but are substantially more expensive.
The power requirements for bulb 118 are, of course, chosen to match the power output of battery pack 120. In the exemplary embodiment, bulb 118 is a conventional miniature incandescent bulb, such as Chicago Miniature Lamp, Inc. part # CM1738, having an output of 1 candela and having design power requirements of 2.80V and 60 mA and an expected life of 6,000 hours. Of course, other lamps and types of light sources, such as a light-emitting diode (L.E.D.) may be substituted for bulb 118. The incandescent bulb shown is preferred because of its balance of cost, heat generation, power consumption, expected service life and brightness characteristics.
As shown in
A charging circuit 150 regulates the voltage and current flowing to battery pack 120 from secondary induction coil 124 to prevent damage to battery pack 120. A latch circuit 154 cuts off current to bulb 118 when the voltage output of battery pack 120 drops below 3.1 volts, thus preventing damage to battery pack 120 which could be caused by fully draining battery pack 120. A charge-sensing switch 156 works in cooperation with latch circuit 154 to turn off current to bulb 118 when current is detected in charging circuit 150. A constant current source circuit 152 provides a constant flow of current (65 mA in the exemplary embodiment) to bulb 118. This enables bulb 118 to shine at a constant brightness despite fluctuations in the output current from battery pack 120. In alternate embodiments, a constant voltage source could be employed.
As described above, battery pack 120 is charged by magnetic induction. The magnetic field created by primary induction coil 54 (when current is applied) induces a current in secondary induction coil 124 when secondary induction coil 124 is concentrically located relative to primary induction coil 54. In the present invention, this occurs when module 114 is placed within slot 16 (see
It is preferable to ship battery pack 120 fully charged, as this will increase the shelf life of the Ni-Cad cells. However, shipping battery pack 120 fully charged requires the inclusion of means for electrically isolating battery pack 120 from lamp 118 between the time battery pack 120 is charged and when module 114 is first used by an end consumer. Such means could comprise a Mylar tab (not shown) inserted between two electrical contacts after the initial charging which would be removed by the consumer before first use. Alternatively, such means could comprise a fusible link (not shown). The fusible link would be adapted to close current regulating circuit 152 when current is sensed in charging circuit 150 (i.e., the first time the consumer plugs in charging stand 12).
Operation of lamp system 10 is elegantly straightforward. As described above, bulb 118 is designed to illuminate when no current is sensed in charging circuit 150. Thus, bulb 118 will automatically turn on when module 114 is removed from slot 16. Charging stand 12 and module 114 can also function as a table lamp by leaving module 114 in slot 16 and switching off inline power switch 26. Module 114 also functions as an emergency light—automatically turning on during a power failure.
Referring now to
As shown, the wall mountable charging base 202 comprises projections 206 spaced laterally apart a distance larger than the width of each lamp module 204, and each lamp module 204 comprises an opening thereinthrough generally designated 208 adjacent to its top surface. The projections 206 cooperate with the openings 208 to removably support the lamp modules 204 on the wall mountable charging base 202. Projections 206 and openings 208 are each of generally cylindrical geometry, although projections and openings of another geometry or other removable supporting means may be employed without departing from the inventive concepts.
Each projection has a free end, and a diffuser 210 is removably or fixedly mounted to the free end over an LED and ambient light sensor mounted thereon not shown, that switches the LED “on” in response to a condition of ambient darkness, Each lamp module 204 has a flat base 212 and a front face diffuser 214 that extends from top to bottom and surrounds the opening 208. The flat base 212 enables to place each lamp module 204 on a shelf or table and the opening 208 allows it to be carried about or hung on a hook to provide illumination in a wide variety of situations.
A power cord 216 having an inline power switch, not shown, provides power to wall mountable charging base 202 via ordinary 120-volt household current. The base 202 may be wall mounted over or spaced in relation to the AC wall outlet by any suitable mounting means, and a recess and/or power cord wrap or other means may be employed to stow any excess cord within the wall mountable charging base 202. In alternate embodiments, the power switch may be dispensed with.
As in the embodiment described above in connection with the description of the
As in the embodiment described above in connection with the description of the
A switch, not shown, may be provided to independently turn each lamp module 204 on/off to conserve charge or to use the light as needed.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
As shown, the charger 332 comprises openings generally designated 336 adapted to receive each lamp module 334 such that each lamp module is supported on surface 338, such as a tabletop, and walls 340 adapted to at least partially surround the base portion of each lamp module 334. The openings 336 and walls 340 are each of generally cylindrical geometry, although another geometry may be employed without departing from the inventive concepts. As illustrated by arrow 342, the charger 332 may be moved upwardly to remove it from the lamp modules 334 while they remain standing on the support 338. An elastomeric material may be provided about the walls 340 and a support tray, not shown, may be employed to carry the charger 332 and/or lamp modules 334.
As in the embodiment described above in connection with the description of the
As in the embodiment described above in connection with the description of the
Referring now to
Referring now to
The charger 402 is adapted to receive the lantern 404 in either orientation. Preferably the charger 402 is shaped as a log upon which the lantern 404 lies in either orientation. The charger 402 includes exposed charging contacts 408 that allow the charging of the lantern 404 by resting the lantern on the contacts without having to plug the lantern into the wall or charging unit. As appears hereinbelow, the corresponding charging contacts carried by the lantern 404 also serve as a modular housing release to enable ready change of the replaceable lights and/or battery pack of the rechargeable lantern 404.
The lantern 404 includes an elongated portable case 410 with translucent sides; preferably, the case 410 is fabricated of a polycarbonate material. The case 410 of the portable, rechargeable lantern 404 is preferably so flattened as to be comfortably received in the palm of the hand as shown generally at 412 in
Referring now to
The diffuser/clock assembly 432 includes a flared lens 452 adapted to fit into flare 420 that is fastened to the snap-release diffuser 438 as by threaded fasteners 453. The flared lens 452 serves to secure the clock 406 at the bottom face of the lantern 404. The clock 406 includes an LCD 454 and a back light assembly 456. Preferably, the clock 406 includes a mirror backed LCD with dual printed circuit board mounted side-emitting amber LED back lights.
The contact release assembly 434 includes electrical contacts 458 mounted on spring-loaded rocker arms 460 carried by a socket 462 sandwiched between the snap-release diffuser 438 and a printed circuit board assembly 464 that is fastened to the snap-release diffuser 438 as by threaded fasteners 466. The fasteners 468 serve to attach the rocker arms 460 in the socket 462.
Referring now to
When the power button 486 is pressed and released, it overrides any other mode that the system may be in. When pressed and released, it turns the lantern's lights and back lights “on” and “off,” preferably with a soft transition. When the power button is pressed, and held for a predetermined time period, such as two (2) seconds, the lamp system goes into sleep mode, which disables all of the control functions enabling safe package as in a suitcase and/or safe transport.
As in the other embodiments described hereinabove, the circuitry causes the lantern to illuminate when not received on the charger and to de-light when received thereon. The back light for the alarm and clock LEDs are controlled thereby to operate similarly. Preferably, both the lantern's lights and back lights turn on/off with soft transition. In an alternative embodiment, the tilt switch or other orientation responsive circuitry is responsible for illuminating the lantern and LED's when the lantern is up-ended in a predetermined orientation and to de-light the same when down-ended in a predetermined orientation. In one presently preferred embodiment, the tilt switch is used to cause the lantern and the back light to go “on” and “off” for the orientation's generally designated 488 in
Referring now to
The lantern module 504 autoilluminates when removed from the charging base 502 or when no AC power is supplied to the charging base and it de-lights when replaced on the charging base 502. The lantern module preferably lights to one half intensity when removed and is turned off when replaced on the charging base. When removed, the half intensity is progressively dimmed in response to turning the lantern module about its axis counterclockwise till it de-lights when turned through (forty-five) 45° or more and the half intensity is progressively brightened in response to turning the lantern module about its axis until it has been turned through forty-five degrees (45°) or more clockwise when it remains at maximum intensity. When turned when seated, it lights to half intensity. The half intensity is progressively dimmed in response to turning the lantern module about its axis counterclockwise till it de-lights when turned through (forty-five) 45° or more and the half intensity is progressively brightened in response to turning the lantern module about its axis until it has been turned through forty-five degrees (45°) or more clockwise when it remains at maximum intensity. If rotated about its axis less than the 45° angular rotation threshold, it remains at the intensity it last exhibited whether on or off the charging base 502 till it is once more removed or replaced, which de-lights it when replaced no matter what intensity it had off the base and which lights it to half maximum no matter what intensity is had on the charging base. As will be readily appreciated by those of skill in the art, the priority of the autoilluminating mode to reset the brightness to half maximum intensity and to de-light no matter what intensity achieved in rotodimming mode of the presently preferred embodiment is exemplary only, as other relations between modes and other modal parameters are possible, and it will be further appreciated that the rotodimming mode of the presently preferred embodiment is exemplary only, as lighting protocols other than dimming/brightening, such as randomly generated and/or dynamically changing light or intensity sequencing, and other modal parameters are possible in response to clockwise and counterclockwise rotation of the lantern module about its axis of elongation.
Referring now to
The lantern module 506 includes a bulbous translucent cover 520, preferably blow molded, having a hallow interior and an open bottom 522, a rechargeable light subassembly generally designated 524 mounted for rotation with the transparent cover 520 and an annular foot piece 526 rotatably mounted to the translucent cover 520 of the lantern module 506. As best seen in FIG. 36, the translucent cover 520 and annular foot piece 526 are relatively rotatable about the axis of extension of the lantern module 504. A handle 528 is attached at the top of the translucent cover 510 which provides for ease of transport and handling of the lamp module 506.
The rechargeable light subassembly 524 that provides ease of light and rechargeable battery replacement includes a diffuser 530 manually releasable from LED assembly 532 as by manually deflecting the diffuser relative to the LED assembly. The LED assembly has a plurality of white LED's, preferably thirty six (36) in number, and is mounted on posts 534 carried by, preferably injection molded, snap release base member generally designated 536; the posts provide for air cooling of the exposed underside of the LED assembly 532. The rechargeable lantern module 504 provides comparatively high luminosity, up to about fifty (50) lumens for six (6) hours before needing to be recharged in the presently preferred embodiment. Other at least one light elements such as florescent lamps selected to provide comparatively long-lasting and bright illumination may be employed.
A rechargeable battery 538 is manually releasable from base member 536 by releasing the door of the snap release base member 536. The snap release base member 536 is fastened to a cup shaped electrical housing 540 that carries a circuit board 542 operatively connected to the rechargeable battery pack 538 and to the LED assembly 532. The electrical housing 540 includes an annular flange 544 that is fastened to an annular flange 546 disposed about the open mouth 522 of the translucent cover 520 thereby mounting it for rotation therewith. The annular foot piece 526 is journaled for rotation to the electrical housing 540 and thereby for rotation relative to the translucent cover 520 about the axis of extension of the lantern module 506. A potentiometer 548 is mounted to the electrical connector housing 540 with its spindle mounted for rotation with the annular foot piece 526; the potentiometer 548 provides a signal representative of the relative rotation of the translucent cover 520 and annular foot piece 526 about the axis of extension of the lantern module 506.
Contacts, not shown, operatively connected to the circuit board 542 are mounted to the connector housing 540 to couple the charge signal from the charging base 502 to the rechargeable battery pack 538; a spring loaded contact, not shown, operatively connected to the circuit board 542 is mounted to the connector housing 540 to provide a signal representative that the lantern module 506 is seated on the charging base 502; and a keying arrangement, not shown, is provided between the hollow cover 514 of the charging base and the rotatable annular foot piece 526 of the lantern module to prevent relative rotation of the annular foot piece 526 of the lantern and the hollow cover 514 of the charging base when the lantern is seated thereon, while allowing the translucent cover 520 to rotate relative to the annular foot piece 526.
Referring now to
The present invention in its broader aspects is not limited to the described embodiments, and departures may be made therefrom without departing from the principles of the invention and without sacrificing its primary advantages. Obviously, numerous modifications may be made to the present invention. Thus, the invention may be practiced otherwise than as specifically described herein. One feature of one embodiment may be employed in another disclosed embodiment. The power cord may be made removable to base placement without cord limitations. Other modifications will be readily apparent to one of skill in the art without departing from the scope of the present invention.
The present invention is a continuation-in-part (CIP) of non-provisional U.S. utility application Ser. No. 11/161,689, filed Aug. 12, 2005, which is a continuation-in-part (CIP) of non-provisional U.S. utility application Ser. No. 10/989,199, filed Nov. 15, 2004, which is a CIP of U.S. utility patent application Ser. No. 10/292,007 filed Nov. 09, 2002, now U.S. Pat. No. 6,819,080, which is a CIP of U.S. utility patent application Ser. No. 09/885,848, filed Jun. 20, 2001, now U.S. Pat. No. 6,479,965, each of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3277358 | Nicholl | Oct 1966 | A |
3373274 | Kott | Mar 1968 | A |
3418552 | Holmes | Dec 1968 | A |
3517185 | Moore et al. | Jun 1970 | A |
3576990 | Johnson et al. | May 1971 | A |
3641336 | Boin | Feb 1972 | A |
3746877 | Seiter et al. | Jul 1973 | A |
3781631 | Nelson et al. | Dec 1973 | A |
3809882 | Wetmore | May 1974 | A |
3840785 | Roszyk et al. | Oct 1974 | A |
3885211 | Gutai | May 1975 | A |
3876986 | Zabroski | Aug 1976 | A |
4029954 | Moyer | Jun 1977 | A |
4150302 | Roche | Apr 1979 | A |
4177500 | Nicholl et al. | Dec 1979 | A |
4214185 | Breeze | Jul 1980 | A |
4223232 | Bulat | Sep 1980 | A |
4244011 | Hammel et al. | Jan 1981 | A |
4374354 | Petrovic et al. | Feb 1983 | A |
4383212 | Ballman | May 1983 | A |
4463283 | Penney et al. | Jul 1984 | A |
4605993 | Zelina, Jr. | Aug 1986 | A |
4647831 | O'Malley et al. | Mar 1987 | A |
4716352 | Hurn et al. | Dec 1987 | A |
4739242 | McCarty et al. | Apr 1988 | A |
4754376 | Winslow | Jun 1988 | A |
4764853 | Thomas et al. | Aug 1988 | A |
4827245 | Lipman | May 1989 | A |
5010454 | Hopper | Apr 1991 | A |
5039929 | Veistroffer et al. | Aug 1991 | A |
5055986 | Johnson | Oct 1991 | A |
5124532 | Hafey et al. | Jun 1992 | A |
5233271 | Huang | Aug 1993 | A |
5365145 | Fields | Nov 1994 | A |
5392162 | Glucksman | Feb 1995 | A |
5399089 | Eichman et al. | Mar 1995 | A |
5426347 | Nilssen | Jun 1995 | A |
5471129 | Mann | Nov 1995 | A |
5473517 | Blackman | Dec 1995 | A |
5535108 | Logsdon | Jul 1996 | A |
5550452 | Shirai et al. | Aug 1996 | A |
5558429 | Cain | Sep 1996 | A |
5662406 | Mattice et al. | Sep 1997 | A |
5734229 | Bavaro et al. | Mar 1998 | A |
5748080 | Clay | May 1998 | A |
5754124 | Daggett et al. | May 1998 | A |
5801513 | Smith et al. | Sep 1998 | A |
5900715 | Roberts | May 1999 | A |
5908233 | Heskett et al. | Jun 1999 | A |
6000811 | Bordak | Dec 1999 | A |
6016046 | Kaite et al. | Jan 2000 | A |
6034505 | Arthur et al. | Mar 2000 | A |
6040680 | Toya et al. | Mar 2000 | A |
6040780 | Lucas | Mar 2000 | A |
6102549 | Thomas et al. | Aug 2000 | A |
6107744 | Bavaro et al. | Aug 2000 | A |
6179438 | Parker | Jan 2001 | B1 |
6186641 | Parker | Feb 2001 | B1 |
RE37092 | Sharrah et al. | Mar 2001 | E |
6238061 | McKenzie | May 2001 | B1 |
6243276 | Neumann | Jun 2001 | B1 |
6268027 | Wu | Jul 2001 | B1 |
6479965 | Barbeau et al. | Nov 2002 | B2 |
6536917 | Aperocho et al. | Mar 2003 | B1 |
6554445 | Jacoby | Apr 2003 | B1 |
6599001 | Johnson | Jul 2003 | B2 |
6605900 | Chien | Aug 2003 | B2 |
6633152 | Sharrah et al. | Oct 2003 | B2 |
6634768 | McKenzie et al. | Oct 2003 | B2 |
6652115 | Sharrah | Nov 2003 | B2 |
6659621 | Sharrah et al. | Dec 2003 | B2 |
D485390 | Stancik et al. | Jan 2004 | S |
D486787 | Krieger et al. | Feb 2004 | S |
D495819 | Krieger et al. | Sep 2004 | S |
6819080 | Barbeau et al. | Nov 2004 | B2 |
6851820 | Choi et al. | Feb 2005 | B2 |
6900595 | Cojocary | May 2005 | B2 |
6909260 | Parker | Jun 2005 | B2 |
6911917 | Higgs | Jun 2005 | B2 |
6945664 | Frieling et al. | Sep 2005 | B1 |
6986589 | Evans et al. | Jan 2006 | B2 |
7006002 | Shomali | Feb 2006 | B2 |
7011426 | Gabor | Mar 2006 | B2 |
7029146 | Kitchen | Apr 2006 | B2 |
7071625 | Ceng et al. | Jul 2006 | B2 |
7125145 | Gardner et al. | Oct 2006 | B2 |
20020064041 | Parker | May 2002 | A1 |
20030090892 | Su | May 2003 | A1 |
20030141819 | Cojocary | Jul 2003 | A1 |
20030142501 | Exilien | Jul 2003 | A1 |
20040037069 | Blackbourn | Feb 2004 | A1 |
20040160769 | Currie et al. | Aug 2004 | A1 |
20040184273 | Reynolds et al. | Sep 2004 | A1 |
20040252492 | Peterson | Dec 2004 | A1 |
20050194930 | Barbeau et al. | Sep 2005 | A1 |
20050196716 | Haab et al. | Sep 2005 | A1 |
20050239007 | Dell'Aquila et al. | Oct 2005 | A1 |
20050264261 | Barbeau et al. | Dec 2005 | A1 |
20050284856 | Cafaro et al. | Dec 2005 | A1 |
20060034078 | Kovacik et al. | Feb 2006 | A1 |
20060062019 | Young | Mar 2006 | A1 |
20060072306 | Woodyard | Apr 2006 | A1 |
20060082988 | Riblett et al. | Apr 2006 | A1 |
20060103543 | Chen et al. | May 2006 | A1 |
20060120069 | West | Jun 2006 | A1 |
20060133089 | Reid et al. | Jun 2006 | A1 |
20060139927 | Kovacik et al. | Jun 2006 | A1 |
20060171143 | Yuen | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
3938532 | May 1991 | DE |
4113442 | Oct 1992 | DE |
4220148 | Dec 1993 | DE |
2278428 | Nov 1994 | GB |
05168175 | Feb 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20060262525 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11161689 | Aug 2005 | US |
Child | 11460512 | US | |
Parent | 10989199 | Nov 2004 | US |
Child | 11161689 | US | |
Parent | 10292007 | Nov 2002 | US |
Child | 10989199 | US | |
Parent | 09885848 | Jun 2001 | US |
Child | 10292007 | US |