The invention relates to an autoinjector for administering a medicament.
Administering an injection is a process which presents a number of risks and challenges for users and healthcare professionals, both mental and physical injection devices typically fall into two categories—manual devices and autoinjectors. In a conventional manual device, a user must provide force to drive a medicament through a needle. This is typically done by some form of button/plunger that has to be continuously pressed during the injection. There are numerous disadvantages for the user from this approach. For example, if the user stops pressing the button/plunger, the injection will stop and may not deliver an intended dose to a patient. Further, the force required to push the button/plunger may be too high for the user (e.g., if the user is elderly). And, aligning the injection device, administering the injection and keeping the injection device still during the injection may require dexterity which some patients (e.g., elderly patients, children, arthritic patients, etc.) may not have.
Autoinjector devices aim to make self-injection easier for patients. A conventional autoinjector may provide the force for administering the injection by a spring, and trigger button or other mechanism may be used to activate the injection. Autoinjectors may be single-use or reusable devices.
There remains a need for an improved autoinjector.
It is an object of the present invention to provide an improved autoinjector.
In an exemplary embodiment, an autoinjector according to the present invention comprises a case, a chassis slidably arranged in the case, a syringe carrier operably coupled to the chassis, an outer plunger selectively engaged to the chassis, an inner plunger selectively engaged to the outer plunger, and a drive spring applying a biasing force to the outer plunger. The biasing force is applied to the inner plunger when the inner plunger is engaged to the outer plunger. Rotation of the chassis causes the inner plunger to rotate relative to the outer plunger and disengage the outer plunger to remove the biasing force from the drive spring on the inner plunger. When the inner plunger disengages the outer plunger, the biasing force of the drive spring pushes the chassis to retract the syringe carrier relative to the case.
In an exemplary embodiment, the autoinjector further comprises a needle shroud slidably arranged in the case. Axial movement of the needle shroud relative to the case causes rotation of the chassis relative to the needle shroud.
In an exemplary embodiment, the autoinjector further comprises a firing nut rotatably disposed on the chassis. The firing nut engages the outer plunger when in a first angular position and disengages the outer plunger when in a second angular position. The case includes a stem adapted to rotate the firing nut from the first angular position to the second angular position. When the firing nut is in the second angular position, the biasing force of the drive spring pushes the outer plunger in a distal direction (D) relative to the case.
In an exemplary embodiment, the needle shroud includes a guide track adapted to engage a pin on the chassis. The pin moves from an angled portion to an axial portion of the guide track causing rotation of the chassis relative to the needle shroud when the needle shroud translates relative to the case.
In an exemplary embodiment, the autoinjector further comprises a coupling carrier coupled to the syringe carrier and selectively engaged to the inner plunger. The coupling carrier includes resilient arms adapted to releasably engage the inner plunger, and the biasing force of the drive spring causes the inner plunger to deflect the resilient arms when a front stop on the syringe carrier abuts a shroud shoulder on the needle shroud. When the resilient arms disengage the inner plunger, the inner plunger is adapted to push a stopper in a syringe. The chassis includes a resilient clip adapted to engage a stop on the coupling carrier. When the biasing force of the drive spring pushes the chassis, the clip engages the stop and retracts the coupling carrier and the syringe carrier relative to the case.
In an exemplary embodiment, the autoinjector further comprises a control spring axially biasing the needle shroud relative to the case.
In an exemplary embodiment, rotation of the chassis relative to the needle shroud causes rotation of the firing nut to a third angular position in which the firing nut is adapted to advance over the stem.
In an exemplary embodiment, the needle shroud includes a resilient non-return clip adapted to engage the case and prevent translation of the needle shroud relative to the case.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
Corresponding parts are marked with the same reference symbols in all figures.
In an exemplary embodiment, the autoinjector 1 comprises an elongate case 2 comprising a rear case 2.1 coupled to a front case 2.2. A needle shroud 3 is telescopically arranged on the case 2 and may be resiliently coupled to the front case 2.2 by a control spring 10 which applies a biasing force on the needle shroud 3 toward a distal direction D.
A syringe carrier 4 is slidably disposed in the case 2 and is arranged to hold a syringe 5 having a needle 15. As explained further below, the syringe carrier 4 includes an abutment surface 4.1 formed on its distal end that is adapted to abut a shoulder 3.4 formed on the distal portion of the needle shroud 3 when the syringe carrier 4 is moving axially in the distal direction D relative to the needle shroud 3. A distance between a distal face of the needle shroud 3 and the shoulder 3.4 may define the injection depth of the needle 15.
A proximal end of the needle shroud 3 is adapted to abut a chassis 8 which is slidably disposed in the case 2. A collar 8.1 disposed on a proximal end of the chassis 8 acts as a proximal bearing for a drive spring 6, which bears distally on a shoulder 7.1 on an outer plunger 7 that is telescopically arranged on the chassis 8.
As shown in
Referring back to
The teeth 7.2 of the outer plunger 7 may also engage corresponding teeth 12.1 formed on an inner plunger 12. For example, the inner plunger 12 may include a stem and a transverse element coupled to a proximal portion of the stem, and an outer surface of the transverse element may include the teeth 12.1 for engaging the teeth 7.2 on the outer plunger 7.
As shown in
Referring back to
In an exemplary embodiment, the resilient arms 11.1 are maintained in engagement with the first plunger shoulder 12.2, because the needle shroud 3 abuts the resilient arms 11.1. However, the needle shroud 3 includes first apertures 3.2 which, when aligned with the resilient arms 11.1, allow space for the resilient arms 11.1 to deflect radially and disengage the inner plunger 12.
In an exemplary embodiment, a proximal end of the case 2 includes a stem 2.7 extending in the proximal direction and having a thread adapted to engage a corresponding thread 17.2 formed in the firing nut 17. As explained further below, when the thread on the stem 2.7 engages the thread 17.2 on the firing nut 17, the firing nut 17 rotates relative to the outer plunger 7.
In an exemplary embodiment, a cap (not shown) is removably coupled to the front case 2.2 and/or the needle shroud 3. The cap may be coupled to a needle sheath (not illustrated) arranged on the needle 15, and removal of the cap may remove the needle sheath.
As shown in
As shown in
As shown in
As shown in
As shown in
When the inner plunger 12 disengages the outer plunger 7, the force of the drive spring 6 does not act on the inner plunger 12. Thus, even if the autoinjector 1 is removed from the injection site during the injection, the expulsion of the medicament from the syringe 5 will stop, because there is no force to move the inner plunger 12 (and the stopper 13).
As the insertion depth of the needle 15 is defined by the syringe carrier 4 contacting the needle shroud 3, allowing the needle shroud 3 to re-advance on removal from the injection site could also allow the syringe 5 to advance further. In order to avoid this, one or more resilient clips 8.5 are arranged on the chassis 8 to engage a stop 11.2 on the coupling carrier 11 at the end of the rotation of the chassis 8. The clips 8.5 prevents the coupling carrier 11 (and the syringe carrier 4 coupled thereto and the syringe 5) from advancing in the distal direction D after the autoinjector 1 has been removed from the injection site.
Hooks 3.6 on a distal end of the needle shroud 3 may engage a distal case shoulder 2.4 to limit extension of the needle shroud 3 relative to the case 2 under the force of the control spring 10.
In an exemplary embodiment, a resilient non-return clip (not shown) may be arranged on the needle shroud 3 and adapted to engage the case 2 after the needle shroud 3 has been extended. The non-return clip may prevent the needle shroud 3 from moving in the proximal direction P relative to the case 2 if the autoinjector 1 is pressed against a subsequent injection site or during handling after an injection.
In an exemplary embodiment, a viewing window 16 is arranged in the case 2 for inspecting contents of the syringe 5.
The term “drug” or “medicament”, as used herein, means a pharmaceutical formulation containing at least one pharmaceutically active compound,
wherein in one embodiment the pharmaceutically active compound has a molecular weight up to 1500 Da and/or is a peptide, a proteine, a polysaccharide, a vaccine, a DNA, a RNA, an enzyme, an antibody or a fragment thereof, a hormone or an oligonucleotide, or a mixture of the above-mentioned pharmaceutically active compound,
wherein in a further embodiment the pharmaceutically active compound is useful for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy, thromboembolism disorders such as deep vein or pulmonary thromboembolism, acute coronary syndrome (ACS), angina, myocardial infarction, cancer, macular degeneration, inflammation, hay fever, atherosclerosis and/or rheumatoid arthritis,
wherein in a further embodiment the pharmaceutically active compound comprises at least one peptide for the treatment and/or prophylaxis of diabetes mellitus or complications associated with diabetes mellitus such as diabetic retinopathy,
wherein in a further embodiment the pharmaceutically active compound comprises at least one human insulin or a human insulin analogue or derivative, glucagon-like peptide (GLP-1) or an analogue or derivative thereof, or exendin-3 or exendin-4 or an analogue or derivative of exendin-3 or exendin-4.
Insulin analogues are for example Gly(A21), Arg(B31), Arg(B32) human insulin; Lys(B3), Glu(B29) human insulin; Lys(B28), Pro(B29) human insulin; Asp(B28) human insulin; human insulin, wherein proline in position B28 is replaced by Asp, Lys, Leu, Val or Ala and wherein in position B29 Lys may be replaced by Pro; Ala(B26) human insulin; Des(B28-B30) human insulin; Des(B27) human insulin and Des(B30) human insulin.
Insulin derivates are for example B29-N-myristoyl-des(B30) human insulin; B29-N-palmitoyl-des(B30) human insulin; B29-N-myristoyl human insulin; B29-N-palmitoyl human insulin; B28-N-myristoyl LysB28ProB29 human insulin; B28-N-palmitoyl-LysB28ProB29 human insulin; B30-N-myristoyl-ThrB29LysB30 human insulin; B30-N-palmitoyl-ThrB29LysB30 human insulin; B29-N—(N-palmitoyl-Y-glutamyl)-des(B30) human insulin; B29-N—(N-lithocholyl-Y-glutamyl)-des(B30) human insulin; B29-N-(ω-carboxyheptadecanoyl)-des(B30) human insulin and B29-N-(ω-carboxyheptadecanoyl) human insulin.
Exendin-4 for example means Exendin-4(1-39), a peptide of the sequence H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser- Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2.
Exendin-4 derivatives are for example selected from the following list of compounds:
H-(Lys)4-des Pro36, des Pro37 Exendin-4(1-39)-NH2,
H-(Lys)5-des Pro36, des Pro37 Exendin-4(1-39)-NH2,
des Pro36 Exendin-4(1-39),
des Pro36 [Asp28] Exendin-4(1-39),
des Pro36 [IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39); or
des Pro36 [Asp28] Exendin-4(1-39),
des Pro36 [IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14, IsoAsp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Trp(O2)25, IsoAsp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, Asp28] Exendin-4(1-39),
des Pro36 [Met(O)14 Trp(O2)25, IsoAsp28] Exendin-4(1-39),
wherein the group -Lys6-NH2 may be bound to the C-terminus of the Exendin-4 derivative;
or an Exendin-4 derivative of the sequence
des Pro36 Exendin-4(1-39)-Lys6-NH2 (AVE0010),
H-(Lys)6-des Pro36 [Asp28] Exendin-4(1-39)-Lys6-NH2,
des Asp28 Pro36, Pro37, Pro38Exendin-4(1-39)-NH2,
H-(Lys)6-des Pro36, Pro38 [Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36 [Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6-NH2,
H-des Asp28 Pro36, Pro37, Pro38 [Trp(O2)25] Exendin-4(1-39)-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36 [Met(O)14, Asp28] Exendin-4(1-39)-Lys6-NH2,
des Met(O)14 Asp28 Pro36, Pro37, Pro38 Exendin-4(1-39)-NH2,
H-(Lys)6-desPro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-Asn-(Glu)5 des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-Lys6-des Pro36 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-Lys6-NH2,
H-des Asp28 Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25] Exendin-4(1-39)-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Asp28] Exendin-4(1-39)-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-NH2,
des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2,
H-(Lys)6-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(S1-39)-(Lys)6-NH2,
H-Asn-(Glu)5-des Pro36, Pro37, Pro38 [Met(O)14, Trp(O2)25, Asp28] Exendin-4(1-39)-(Lys)6-NH2;
or a pharmaceutically acceptable salt or solvate of any one of the afore-mentioned Exendin-4 derivative.
Hormones are for example hypophysis hormones or hypothalamus hormones or regulatory active peptides and their antagonists as listed in Rote Liste, ed. 2008, Chapter 50, such as Gonadotropine (Follitropin, Lutropin, Choriongonadotropin, Menotropin), Somatropine (Somatropin), Desmopressin, Terlipressin, Gonadorelin, Triptorelin, Leuprorelin, Buserelin, Nafarelin, Goserelin.
A polysaccharide is for example a glucosaminoglycane, a hyaluronic acid, a heparin, a low molecular weight heparin or an ultra low molecular weight heparin or a derivative thereof, or a sulphated, e.g. a poly-sulphated form of the above-mentioned polysaccharides, and/or a pharmaceutically acceptable salt thereof. An example of a pharmaceutically acceptable salt of a poly-sulphated low molecular weight heparin is enoxaparin sodium.
Antibodies are globular plasma proteins (˜150 kDa) that are also known as immunoglobulins which share a basic structure. As they have sugar chains added to amino acid residues, they are glycoproteins. The basic functional unit of each antibody is an immunoglobulin (Ig) monomer (containing only one Ig unit); secreted antibodies can also be dimeric with two Ig units as with IgA, tetrameric with four Ig units like teleost fish IgM, or pentameric with five Ig units, like mammalian IgM.
The Ig monomer is a “Y”-shaped molecule that consists of four polypeptide chains; two identical heavy chains and two identical light chains connected by disulfide bonds between cysteine residues. Each heavy chain is about 440 amino acids long; each light chain is about 220 amino acids long. Heavy and light chains each contain intrachain disulfide bonds which stabilize their folding. Each chain is composed of structural domains called Ig domains. These domains contain about 70-110 amino acids and are classified into different categories (for example, variable or V, and constant or C) according to their size and function. They have a characteristic immunoglobulin fold in which two β sheets create a “sandwich” shape, held together by interactions between conserved cysteines and other charged amino acids.
There are five types of mammalian Ig heavy chain denoted by α, δ, ε, γ, and μ. The type of heavy chain present defines the isotype of antibody; these chains are found in IgA, IgD, IgE, IgG, and IgM antibodies, respectively.
Distinct heavy chains differ in size and composition; α and γ contain approximately 450 amino acids and δ approximately 500 amino acids, while μ and ε have approximately 550 amino acids. Each heavy chain has two regions, the constant region (CH) and the variable region (VH). In one species, the constant region is essentially identical in all antibodies of the same isotype, but differs in antibodies of different isotypes. Heavy chains γ, α and δ have a constant region composed of three tandem Ig domains, and a hinge region for added flexibility; heavy chains μ and ε have a constant region composed of four immunoglobulin domains. The variable region of the heavy chain differs in antibodies produced by different B cells, but is the same for all antibodies produced by a single B cell or B cell clone. The variable region of each heavy chain is approximately 110 amino acids long and is composed of a single Ig domain.
In mammals, there are two types of immunoglobulin light chain denoted by λ and κ. A light chain has two successive domains: one constant domain (CL) and one variable domain (VL). The approximate length of a light chain is 211 to 217 amino acids. Each antibody contains two light chains that are always identical; only one type of light chain, κ or λ, is present per antibody in mammals.
Although the general structure of all antibodies is very similar, the unique property of a given antibody is determined by the variable (V) regions, as detailed above. More specifically, variable loops, three each the light (VL) and three on the heavy (VH) chain, are responsible for binding to the antigen, i.e. for its antigen specificity. These loops are referred to as the Complementarity Determining Regions (CDRs). Because CDRs from both VH and VL domains contribute to the antigen-binding site, it is the combination of the heavy and the light chains, and not either alone, that determines the final antigen specificity.
An “antibody fragment” contains at least one antigen binding fragment as defined above, and exhibits essentially the same function and specificity as the complete antibody of which the fragment is derived from. Limited proteolytic digestion with papain cleaves the Ig prototype into three fragments. Two identical amino terminal fragments, each containing one entire L chain and about half an H chain, are the antigen binding fragments (Fab). The third fragment, similar in size but containing the carboxyl terminal half of both heavy chains with their interchain disulfide bond, is the crystalizable fragment (Fc). The Fc contains carbohydrates, complement-binding, and FcR-binding sites. Limited pepsin digestion yields a single F(ab′)2 fragment containing both Fab pieces and the hinge region, including the H-H interchain disulfide bond. F(ab′)2 is divalent for antigen binding. The disulfide bond of F(ab′)2 may be cleaved in order to obtain Fab′. Moreover, the variable regions of the heavy and light chains can be fused together to form a single chain variable fragment (scFv).
Pharmaceutically acceptable salts are for example acid addition salts and basic salts. Acid addition salts are e.g. HCl or HBr salts. Basic salts are e.g. salts having a cation selected from alkali or alkaline, e.g. Na+, or K+, or Ca2+, or an ammonium ion N+(R1)(R2)(R3)(R4), wherein R1 to R4 independently of each other mean: hydrogen, an optionally substituted C1-C6-alkyl group, an optionally substituted C2-C6-alkenyl group, an optionally substituted C6-C10-aryl group, or an optionally substituted C6-C10-heteroaryl group. Further examples of pharmaceutically acceptable salts are described in “Remington's Pharmaceutical Sciences” 17. ed. Alfonso R. Gennaro (Ed.), Mark Publishing Company, Easton, Pa., U.S.A., 1985 and in Encyclopedia of Pharmaceutical Technology.
Pharmaceutically acceptable solvates are for example hydrates.
Those of skill in the art will understand that modifications (additions and/or removals) of various components of the apparatuses, methods and/or systems and embodiments described herein may be made without departing from the full scope and spirit of the present invention, which encompass such modifications and any and all equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
11194775 | Dec 2011 | EP | regional |
The present application is a continuation of U.S. patent application Ser. No. 15/821,166, filed Nov. 22, 2017, which is a continuation of U.S. patent application Ser. No. 14/366,868, filed Jun. 19, 2014, now U.S. Pat. No. 9,827,381, which is a U.S. National Phase Application pursuant to 35 U.S.C. § 371 of International Application No. PCT/EP2012/076097, filed Dec. 19, 2012, which claims priority to European Patent Application No. 11194775.0, filed Dec. 21, 2011. The entire disclosure contents of these applications are herewith incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
4964866 | Szwarc | Oct 1990 | A |
5478316 | Bitdinger et al. | Dec 1995 | A |
5480387 | Gabriel et al. | Jan 1996 | A |
5559309 | Zabler et al. | Sep 1996 | A |
5599309 | Marshall et al. | Feb 1997 | A |
6004297 | Steenfeldt-Jensen et al. | Dec 1999 | A |
6277099 | Strowe et al. | Aug 2001 | B1 |
6371939 | Bergens et al. | Apr 2002 | B2 |
6454743 | Weber | Sep 2002 | B1 |
6620137 | Kirchhofer et al. | Sep 2003 | B2 |
6743205 | Nolan, Jr. et al. | Jun 2004 | B2 |
7195616 | Diller et al. | Mar 2007 | B2 |
7291132 | DeRuntz et al. | Nov 2007 | B2 |
7297135 | Jeffrey | Nov 2007 | B2 |
7341575 | Rice et al. | Mar 2008 | B2 |
7597685 | Olson | Oct 2009 | B2 |
7678085 | Graf | Mar 2010 | B2 |
7717877 | Lavi et al. | May 2010 | B2 |
7771398 | Knight et al. | Aug 2010 | B2 |
7976494 | Kohlbrenner et al. | Jul 2011 | B2 |
8038649 | Kronestedt | Oct 2011 | B2 |
8048037 | Kohlbrenner et al. | Nov 2011 | B2 |
8062255 | Brunnberg et al. | Nov 2011 | B2 |
8083711 | Enggaard | Dec 2011 | B2 |
8313465 | Harrison | Nov 2012 | B2 |
8323238 | Cronenberg et al. | Dec 2012 | B2 |
8357125 | Grunhut et al. | Jan 2013 | B2 |
8361025 | Lawlis et al. | Jan 2013 | B2 |
8366680 | Raab | Feb 2013 | B2 |
8376993 | Cox et al. | Feb 2013 | B2 |
8376997 | Hogdahl et al. | Feb 2013 | B2 |
8403883 | Fayyaz et al. | Mar 2013 | B2 |
8409141 | Johansen et al. | Apr 2013 | B2 |
8409148 | Fiechter et al. | Apr 2013 | B2 |
8439864 | Galbraith et al. | May 2013 | B2 |
8491538 | Kohlbrenner et al. | Jul 2013 | B2 |
8568359 | Carrel et al. | Oct 2013 | B2 |
8617109 | Kronestedt et al. | Dec 2013 | B2 |
8617124 | Wieselblad et al. | Dec 2013 | B2 |
8632507 | Bartha | Jan 2014 | B2 |
8647299 | Stamp | Feb 2014 | B2 |
8684969 | Moller et al. | Apr 2014 | B2 |
8708973 | Holmqvist | Apr 2014 | B2 |
8734402 | Sharp et al. | May 2014 | B2 |
8758292 | Tschirren et al. | Jun 2014 | B2 |
8808250 | Ekman et al. | Aug 2014 | B2 |
8808251 | Raab et al. | Aug 2014 | B2 |
8821451 | Daniel | Sep 2014 | B2 |
8834431 | Kohlbrenner et al. | Sep 2014 | B2 |
8840591 | Raab et al. | Sep 2014 | B2 |
8882723 | Smith et al. | Nov 2014 | B2 |
8911411 | Nielsen | Dec 2014 | B2 |
8939934 | Brereton et al. | Jan 2015 | B2 |
8945063 | Wotton et al. | Feb 2015 | B2 |
8956331 | Johansen et al. | Feb 2015 | B2 |
8961473 | Heald | Feb 2015 | B2 |
8968256 | Raab | Mar 2015 | B2 |
8968258 | Nzike et al. | Mar 2015 | B2 |
8992484 | Radmer et al. | Mar 2015 | B2 |
8992487 | Eich et al. | Mar 2015 | B2 |
9005160 | Karlsson et al. | Apr 2015 | B2 |
9011386 | Kronestedt et al. | Apr 2015 | B2 |
9011387 | Ekman et al. | Apr 2015 | B2 |
9022982 | Karlsson et al. | May 2015 | B2 |
9022991 | Moeller | May 2015 | B1 |
9022993 | Dasbach et al. | May 2015 | B2 |
9022994 | Moser et al. | May 2015 | B2 |
9044548 | Miller et al. | Jun 2015 | B2 |
9044553 | James et al. | Jun 2015 | B2 |
9057369 | Kohlbrenner et al. | Jun 2015 | B2 |
9061104 | Daniel | Jun 2015 | B2 |
9067024 | Roberts et al. | Jun 2015 | B2 |
9072838 | Hogdahl | Jul 2015 | B2 |
9089652 | Nzike et al. | Jul 2015 | B2 |
9108002 | Markussen | Aug 2015 | B2 |
9125988 | Karlsson | Sep 2015 | B2 |
9132235 | Holmqvist | Sep 2015 | B2 |
9132236 | Karlsson et al. | Sep 2015 | B2 |
9199038 | Daniel | Dec 2015 | B2 |
9205199 | Kemp et al. | Dec 2015 | B2 |
9233214 | Kemp et al. | Jan 2016 | B2 |
9233215 | Hourmand et al. | Jan 2016 | B2 |
9242044 | Markussen | Jan 2016 | B2 |
9272098 | Hourmand et al. | Mar 2016 | B2 |
9283326 | Kemp et al. | Mar 2016 | B2 |
9283327 | Hourmand et al. | Mar 2016 | B2 |
9283328 | Dasbach | Mar 2016 | B2 |
9308327 | Marshall et al. | Apr 2016 | B2 |
9333304 | Brereton et al. | May 2016 | B2 |
9339607 | Langley et al. | May 2016 | B2 |
9352088 | Ekman et al. | May 2016 | B2 |
9358345 | Brereton et al. | Jun 2016 | B2 |
9358351 | Ekman et al. | Jun 2016 | B2 |
9393368 | Nzike et al. | Jul 2016 | B2 |
9408976 | Olson et al. | Aug 2016 | B2 |
9408977 | Butler et al. | Aug 2016 | B2 |
9408979 | Veasey et al. | Aug 2016 | B2 |
9415165 | Cowe | Aug 2016 | B2 |
9421336 | Ekman et al. | Aug 2016 | B2 |
9427525 | Barrow-Williams et al. | Aug 2016 | B2 |
9427527 | Dasbach et al. | Aug 2016 | B2 |
9446195 | Kramer et al. | Sep 2016 | B2 |
9446196 | Hourmand et al. | Sep 2016 | B2 |
9446201 | Holmqvist | Sep 2016 | B2 |
9457149 | Kemp et al. | Oct 2016 | B2 |
9457152 | Raab et al. | Oct 2016 | B2 |
9492622 | Brereton et al. | Nov 2016 | B2 |
9662452 | Daniel | May 2017 | B2 |
9717851 | Fabien et al. | Aug 2017 | B2 |
9724472 | Hourmand et al. | Aug 2017 | B2 |
9867940 | Holmqvist et al. | Jan 2018 | B2 |
9895492 | Fabien et al. | Feb 2018 | B2 |
10420898 | Daniel | Sep 2019 | B2 |
10500337 | Fabien et al. | Dec 2019 | B2 |
RE47903 | Hourmand et al. | Mar 2020 | E |
10729853 | Hourmand et al. | Aug 2020 | B2 |
RE48593 | Hourmand et al. | Jun 2021 | E |
11400217 | Hourmand et al. | Aug 2022 | B2 |
11458252 | Hourmand et al. | Oct 2022 | B2 |
11471601 | Hourmand et al. | Oct 2022 | B1 |
11607495 | Hourmand et al. | Mar 2023 | B1 |
11612691 | Hourmand et al. | Mar 2023 | B2 |
20020007154 | Hansen et al. | Jan 2002 | A1 |
20020095120 | Larsen et al. | Jul 2002 | A1 |
20030105430 | Lavi et al. | Jun 2003 | A1 |
20040039336 | Amark et al. | Feb 2004 | A1 |
20050101919 | Brunnberg | May 2005 | A1 |
20050222539 | Gonzales et al. | Oct 2005 | A1 |
20060153693 | Fiechter et al. | Jul 2006 | A1 |
20060224124 | Scherer | Oct 2006 | A1 |
20060258990 | Weber | Nov 2006 | A1 |
20060270985 | Hommann et al. | Nov 2006 | A1 |
20060287630 | Hommann | Dec 2006 | A1 |
20070027430 | Hommann | Feb 2007 | A1 |
20070129686 | Daily et al. | Jun 2007 | A1 |
20080262427 | Hommann | Oct 2008 | A1 |
20080262438 | Bollenbach et al. | Oct 2008 | A1 |
20080312591 | Harrison | Dec 2008 | A1 |
20090012471 | Harrison | Jan 2009 | A1 |
20090088688 | Barrow-Williams et al. | Apr 2009 | A1 |
20090292246 | Slate et al. | Nov 2009 | A1 |
20090312705 | Grunhut et al. | Dec 2009 | A1 |
20100049125 | James et al. | Feb 2010 | A1 |
20100152659 | Streit et al. | Jun 2010 | A1 |
20100185178 | Sharp et al. | Jul 2010 | A1 |
20100256570 | Maritan | Oct 2010 | A1 |
20100262083 | Grunhut et al. | Oct 2010 | A1 |
20100268170 | Carrel et al. | Oct 2010 | A1 |
20100312195 | Johansen et al. | Dec 2010 | A1 |
20110213315 | Sweeney | Sep 2011 | A1 |
20110270161 | Harrison et al. | Nov 2011 | A1 |
20120010575 | Jones et al. | Jan 2012 | A1 |
20120041387 | Bruggemann et al. | Feb 2012 | A1 |
20120053528 | Bollenbach et al. | Mar 2012 | A1 |
20120116319 | Grunhut | May 2012 | A1 |
20120172817 | Bruggemann et al. | Jul 2012 | A1 |
20130035647 | Veasey et al. | Feb 2013 | A1 |
20130041328 | Daniel | Feb 2013 | A1 |
20130123710 | Ekman et al. | May 2013 | A1 |
20130131595 | Ekman | May 2013 | A1 |
20130261556 | Jones et al. | Oct 2013 | A1 |
20130274662 | Hourmand et al. | Oct 2013 | A1 |
20130274666 | Brereton et al. | Oct 2013 | A1 |
20130274677 | Ekman et al. | Oct 2013 | A1 |
20130281942 | Teucher et al. | Oct 2013 | A1 |
20130289525 | Kemp et al. | Oct 2013 | A1 |
20130310757 | Brereton et al. | Nov 2013 | A1 |
20130317428 | Brereton et al. | Nov 2013 | A1 |
20130324925 | Brereton et al. | Dec 2013 | A1 |
20130345643 | Hourmand et al. | Dec 2013 | A1 |
20140336590 | Hourmand et al. | Nov 2014 | A1 |
20140343508 | Hourmand et al. | Nov 2014 | A1 |
20150100029 | Cowe et al. | Apr 2015 | A1 |
20150133872 | Smith et al. | May 2015 | A1 |
20150273157 | Kohlbrenner et al. | Oct 2015 | A1 |
20160051767 | Higgins et al. | Feb 2016 | A1 |
20160058950 | Marsh et al. | Mar 2016 | A1 |
20160067415 | Bayer et al. | Mar 2016 | A1 |
20160067418 | Morris et al. | Mar 2016 | A1 |
20160089498 | Daniel | Mar 2016 | A1 |
20160144129 | Mosebach et al. | May 2016 | A1 |
20160144133 | Kemp | May 2016 | A1 |
20160151585 | Kemp | Jun 2016 | A1 |
20170326298 | Hourmand et al. | Nov 2017 | A1 |
20180064875 | Holmqvist | Mar 2018 | A1 |
20200316298 | Hourmand et al. | Oct 2020 | A1 |
20220211947 | Hourmand et al. | Jul 2022 | A1 |
20220218906 | Hourmand et al. | Jul 2022 | A1 |
20220313915 | Hourmand et al. | Oct 2022 | A1 |
20230019806 | Hourmand et al. | Jan 2023 | A1 |
20230086760 | Hourmand et al. | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
101678167 | Mar 2008 | CN |
19819409 | Nov 1999 | DE |
202007000578 | Mar 2007 | DE |
102005052502 | May 2007 | DE |
102007013836 | Sep 2008 | DE |
0516473 | May 1992 | EP |
0666084 | Aug 1995 | EP |
0824923 | Feb 1998 | EP |
0991441 | Dec 2003 | EP |
2399630 | Dec 2011 | EP |
2399634 | Dec 2011 | EP |
2438947 | Apr 2012 | EP |
2468334 | Jun 2012 | EP |
2468335 | Jun 2012 | EP |
2438592 | Dec 2007 | GB |
2001-521792 | Nov 2001 | JP |
2002-528182 | Sep 2002 | JP |
2008-521482 | Jun 2008 | JP |
2008-229344 | Oct 2008 | JP |
2010-520786 | Jun 2010 | JP |
2010-540059 | Dec 2010 | JP |
WO 1999022790 | May 1999 | WO |
WO 1999022792 | May 1999 | WO |
WO 1999053979 | Oct 1999 | WO |
WO 2000024441 | May 2000 | WO |
WO 2002047746 | Jun 2002 | WO |
WO 2003062672 | Jul 2003 | WO |
WO 2005097238 | Oct 2005 | WO |
WO 2005115507 | Dec 2005 | WO |
WO 2006057604 | Jun 2006 | WO |
WO 2007083115 | Jul 2007 | WO |
WO 2007099044 | Sep 2007 | WO |
WO 2007129324 | Nov 2007 | WO |
WO 2008059385 | May 2008 | WO |
WO 2008112472 | Sep 2008 | WO |
WO 2008113864 | Sep 2008 | WO |
WO 2008116688 | Oct 2008 | WO |
WO 2009040602 | Apr 2009 | WO |
WO 2009040607 | Apr 2009 | WO |
WO 2009040672 | Apr 2009 | WO |
WO 2009062508 | May 2009 | WO |
WO 2010035060 | Apr 2010 | WO |
WO 2010063707 | Jun 2010 | WO |
WO 2011012903 | Feb 2011 | WO |
WO 2011101375 | Aug 2011 | WO |
WO 2011101379 | Aug 2011 | WO |
WO 2011101383 | Aug 2011 | WO |
WO 2011109205 | Sep 2011 | WO |
WO 2011111006 | Sep 2011 | WO |
WO 2011117592 | Sep 2011 | WO |
WO 2011126439 | Oct 2011 | WO |
WO 2012045350 | Apr 2012 | WO |
WO 2012085021 | Jun 2012 | WO |
WO 2012085024 | Jun 2012 | WO |
WO 2013092670 | Jun 2013 | WO |
WO 2021008839 | Jan 2021 | WO |
Entry |
---|
International Preliminary Report on Patentability in International Application No. PCT/EP2012/076097, dated Jun. 24, 2014, 8 pages. |
International Search Report in International Application No. PCT/EP2012/076097, dated Apr. 17, 2013. |
Written Opinion in International Application No. PCT/EP2012/076097, dated Apr. 17, 2013. |
International Preliminary Report on Patentability in International Appln. No. PCT/EP2011/073502, dated Jun. 25, 2013, 7 pages. |
International Search Report and Written Opinion in International Appln. No. PCT/EP2011/073502, dated Mar. 19, 2012, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20200261661 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15821166 | Nov 2017 | US |
Child | 16848524 | US | |
Parent | 14366868 | US | |
Child | 15821166 | US |