This application is a national stage application under 35 U.S.C. 371 of PCT Application No. PCT/GB2007/004870 having an international filing date of 18 Dec. 2007, which designated the United States, which PCT application claimed the benefit of Great Britain Application No. 0625169.8 filed 18 Dec. 2006, the entire disclosure of each of which are hereby incorporated herein by reference.
This invention relates to the field of autoinjectors for the administration of liquid medication, for example, interferon.
An autoinjector is an automatic injection device designed to facilitate delivery of a dose of medicament to a patient through a hypodermic needle, the injection usually being administered by the patient themselves. An autoinjector works, for example, by delivering an injection automatically upon actuation by the patient pressing a button, moving a lever or part of a housing etc. This is in contrast to a conventional manual syringe where the patient themselves needs to directly depress a plunger into a barrel containing medicament in order to effect the injection. The terms “autoinjector” and “injection device” are used interchangeably in the following description.
One typical known autoinjector is described in WO00/09186 (Medi-Ject Corporation) for “Needle assisted jet injector” and this document gives a useful summary of other prior art devices.
Another autoinjector is described in our co-pending international patent application, published under number WO 2005/070481. Some of the reference numerals in the present application correspond with the equivalent components in the device described in WO 2005/070481. This device requires that the needle is moved axially so that it can appear beyond the end of the nozzle for the duration of the injection, after which the needle retracts automatically, so that it is never in sight of the user. The device also requires that the plunger is moved axially so that medicament is ejected. The overall complexity of the autoinjector is significantly reduced by both of these requirements being effected by one component, namely an inner housing and the device has the significant advantage that it can be built around a conventional or standard syringe presentation.
The injection device of WO 2005/070481 is designed to be used in conjunction with a standard drug presentation e.g. a syringe comprising a needle, barrel preloaded with medicament and a plunger. The present invention is relevant to any injection device for use in conjunction with a syringe (whether preloaded or not and whether single-use or reusable), not only the device described in WO 2005/070481.
In the known device described in our co-pending patent application no WO 2005/070481, the syringe is supported within the injection device by a barrel or syringe holder 9. The syringe holder is sometimes referred to as a “syringe support means”. The syringe holder 9 comprises an elongate housing which closely surrounds the glass barrel of the syringe. An improved syringe holder is described in our co-pending UK patent application number 0620163.6 filed 12 Oct. 2006. During delivery of an injection, the syringe holder and syringe contained therein are moveable along an axial path, substantially parallel with the longitudinal axis of the autoinjector.
A potential problem arises when the needle cover of an autoinjector is removed, in preparation for delivering an injection. An autoinjector is usually supplied to the patient with the needle of the syringe embedded in a rubber or other elastomeric sheath. The rubber sheath is in turn closely surrounded by a rigid needle cover which protects the needle from damage. Both the rubber sheath and rigid needle cover need to be removed before an injection can be delivered. Actuation of the autoinjector to deliver an injection occurs by actuating the main energy source (usually a spring) of the autoinjector. Prior to that, removal of the rubber sheath and rigid needle cover is usually achieved by providing some kind of gripping means on the interior of the autoinjector's end-cap, so that when the patient pulls the end-cap off the device, the rubber sheath and rigid needle cover are simultaneously removed with the end-cap. In a device such as that described in WO 2005/070481, even when ready to deliver an injection, the unsheathed needle is not exposed to the patient because it is located wholly within the autoinjector's housing.
As the rubber sheath is pulled from the needle, the needle is subjected to a forward axial force which in turn pulls the syringe (to which the needle is attached), moving it slightly axially forward. When the needle comes free of the rubber sheath, the forward axial force is suddenly removed and the needle and syringe can “bounce back” against other internal components of the autoinjector to its original axial position.
It is therefore an object of the present invention to provide an improved autoinjector which seeks to alleviate the above-described problems.
According to a first aspect of the invention, there is provided an autoinjector comprising
Preferably the blocking means are capable of abutting the forwardmost part of the syringe or the syringe holder and/or said blocking means are moveable between a first blocking position in which said blocking means abut the syringe or syringe holder so as to block their axial path and a second, non-blocking position in which said blocking means do not block the axial path of the syringe or syringe holder.
In one embodiment, said blocking means are movable from said first position to said second position upon removal of a needle cover from said needle and/or removal of an end cap from the front end of the autoinjector. This automatic movement has the advantage of not requiring any positive additional action by the user, other than the normal removal of the autoinjector's end cap.
Preferably said blocking means comprise one or more radially-flexible fingers which are radially flexible substantially into and out of the axial path of said syringe or syringe holder.
In one embodiment, in said blocking position, the radially-flexible fingers are flexed inwardly by means of an interference fit with said outer housing and, in said non-blocking position, the radially-flexible fingers are flexed outwardly so as to locate in a recess or aperture in said outer housing.
In another embodiment, in said blocking position, the radially-flexible fingers are flexed inwardly by means of an interference fit with said end cap or said needle cover and, in said non-blocking position, the radially-flexible fingers are flexed outwardly so as to locate in a recess or aperture in said end cap or needle cover.
According to a second aspect of the invention, there is provided an autoinjector comprising
Preferably, the autoinjector is a single-use autoinjector. The simple construction of the autoinjector makes it very appropriate for applications such as emergency use for injecting a large population to control a pandemic, where a large number of cost-effective disposable autoinjectors are required. A single-use autoinjector also provides a very convenient means for patients to administer their own injections, even if lacking in dexterity and/or experience.
Typically, the autoinjector contains an energy source, for example a spring, for moving said plunger axially in the barrel to deliver an injection in less than 30 seconds.
Preferably, the syringe is axially moveable in said housing and is biased so that the needle is normally wholly inside said housing, wherein before injection the syringe is movable axially so as to move at least a part of said needle out of the housing and wherein after injection, the syringe is able to retract in order to retract said part of said needle into the housing. The concealment of the needle both before and after injection makes the autoinjector particularly suitable where the patient has any aversion to injection by needle. Concealment of the needle both before and after injection also eliminates the risk of needle-stick injury.
Further features of the invention are defined in the appended claims.
Preferred embodiments of the present invention will now be more particularly described, by way of example only, with reference to the accompanying drawings in which:
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of the words, for example “comprising” and “comprises”, means “including but not limited to”, and is not intended to (and does not) exclude other components, integers or steps.
Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Throughout the following description, reference to a “forward” direction means the direction which is towards the patient when the injection device is in use. The “forward” end of the injection device is the end nearest the patient's skin when the device is in use. Similarly, reference to a “rearward” direction means the direction which is away from the patient and the “rearward” end of the device is the end furthest from the patient's skin when the injection device is in use.
Features, integers, characteristics or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.
Referring to
The endcap, needle cover and rubber moulding are used to protect the needle end of the autoinjector during transit, storage and before use to deliver an injection. The endcap 4 has the further advantage of preventing accidental or unintended activation of the autoinjector, as it is not possible to fire the autoinjector with the endcap 4 in place.
The needle cover and rubber moulding are firmly fixed on the needle 1 and it is difficult, if not impossible, for a patient to pull them from the needle using his/her fingers alone because of their position inside the nozzle of the autoinjector. The outer endcap 4 is provided not only to improve the aesthetic appearance of the injection device, before use, but also serves the function of facilitating the removal of the nylon sheath and rubber moulding.
The endcap 4 is releasably retained on the front end of the injection device. When it is desired to remove the endcap 4 from the device, the patient grips the endcap and pulls axially in the direction indicated by the arrow. In the illustrated example, tabs 5 are urged against the rear of the needle cover 3 and sufficient force can be applied thereby to disengage the needle 1 from the rubber moulding 2. In this way, the entire moulding 2, needle cover 3 and endcap 4 can be removed from the autoinjector and discarded, so that the autoinjector is then ready to use. Other variants of the same principle are also known.
As mentioned above, a problem is that as the rubber moulding is pulled from the needle, the needle is subjected to an axial force which in turn pulls the syringe (to which the needle is attached) axially forward. When the needle comes free of the rubber sheath, the forward axial force is suddenly removed and the barrel of the syringe can “bounce back” against other internal components of the autoinjector.
The barrel of a syringe is usually glass, since glass has the most favourable storage properties for many drugs. However, glass is notoriously fragile and there is a risk of damage or breakage of the syringe if the forces to which the syringe is subjected are not properly controlled. The applicant has recognised that there is a risk of breakage caused by the “bounce back” described above. Syringe barrels made of materials other than glass, for example polyethylene or cyclic olefin polymers are less brittle when subjected to normal forces during injection, but still would benefit from the invention described herein.
The risk of the syringe breaking is not only inconvenient and costly but is also potentially dangerous. If breakage occurs, it is possible that glass fragments and/or the needle may become detached and exit the front of the device causing injury. Furthermore, there is the risk that the remaining medicament will leak or be ejected from the device in an uncontrolled manner, potentially delivering the wrong dose into the patient, or causing injury e.g. if the medicament contacts the patient's skin or eyes.
One embodiment of the invention is illustrated in
However, the flexible fingers 7 are relatively weak and are not resilient enough to resist the significantly stronger forward axial force supplied by the autoinjector's main energy source (usually a spring). When the autoinjector is actuated for delivery of an injection, the rapidly forward moving barrel 8 and/or syringe support means forces the fingers 7 radially-outwardly, out of their path. Tapering of the abutting surfaces of the fingers 7 and barrel may facilitate this.
A second embodiment of the invention is illustrated in
As with the flexible fingers of the first embodiment, the hooks 10 are strong enough to substantially prevent forward axial movement of the barrel and/or syringe holder caused by pulling the rubber moulding from the needle. However, the hooks 10 are not strong enough to resist the axial force supplied by the autoinjector's main energy source. When the autoinjector is actuated for delivery of an injection, the inner housing 9 moves rapidly forwards together with the syringe holder and therefore hooks 10 do not affect the actuation of the device to deliver an injection. In any case, the hooks 10 are relatively weak and capable of being forced radially-outwardly, out of the axial path of the syringe holder.
In the embodiments illustrated in
A further embodiment is illustrated in
In the specific embodiment of
When the patient is ready to use the autoinjector, he pulls the endcap 4 off the device axially forwards. Simultaneously, the needle cover (not illustrated) is pulled from the needle. Once the needle cover is clear of the needle (and the point at which “bounceback” might occur when forward axial force on the needle is suddenly released has passed), the rib 4a passes over the lever 6a and eventually clears it such that the lever 6a is no longer urged radially inwards and is free to spring radially out of the axial path of the syringe holder 20 as shown in
A further embodiment is illustrated in
Prior to actuating the device to deliver an injection, as shown in
Upon actuating the device to deliver an injection, forward movement of the outer housing 24 relative to the rear housing 22 causes the second section 23b to move into an aperture 24a in the outer housing 24 when the two become aligned transverse the longitudinal axis. Alternatively, the outer housing 24 may have a recess into which the second section 23b can move into. The communicating surfaces of the lever 23 and outer housing 24 may be tapered to facilitate easy movement of the lever 23 into the aperture 24a. Movement of the second section 23b into the aperture 24a causes the lever 23 to flex radially outwards, out of the axial path of the syringe holder 20.
The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Number | Date | Country | Kind |
---|---|---|---|
0625169.8 | Dec 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2007/004870 | 12/18/2007 | WO | 00 | 5/27/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/075033 | 6/26/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
60917 | Brown | Jan 1867 | A |
3702608 | Tibbs | Nov 1972 | A |
3756242 | Coss | Sep 1973 | A |
3797489 | Sarnoff | Mar 1974 | A |
3811442 | Maroth | May 1974 | A |
4617016 | Blomberg | Oct 1986 | A |
4913699 | Parsons | Apr 1990 | A |
4923447 | Morgan | May 1990 | A |
4958622 | Selenke | Sep 1990 | A |
4976724 | Nieto et al. | Dec 1990 | A |
5000744 | Hoffman et al. | Mar 1991 | A |
5024656 | Gasaway et al. | Jun 1991 | A |
5042977 | Bechtold et al. | Aug 1991 | A |
5078698 | Stiehl et al. | Jan 1992 | A |
5167632 | Eid et al. | Dec 1992 | A |
5211625 | Sakurai et al. | May 1993 | A |
5300030 | Crossman et al. | Apr 1994 | A |
5320609 | Haber et al. | Jun 1994 | A |
5478316 | Bitdinger et al. | Dec 1995 | A |
5568261 | Wakai et al. | Oct 1996 | A |
5599309 | Marshall et al. | Feb 1997 | A |
5634906 | Haber et al. | Jun 1997 | A |
5658261 | Neer et al. | Aug 1997 | A |
5681291 | Galli | Oct 1997 | A |
5779675 | Reilly et al. | Jul 1998 | A |
5779677 | Frezza | Jul 1998 | A |
6203530 | Stewart, Sr. | Mar 2001 | B1 |
6210369 | Wilmot et al. | Apr 2001 | B1 |
6264629 | Landau | Jul 2001 | B1 |
6270479 | Bergens et al. | Aug 2001 | B1 |
6280421 | Kirchhofer et al. | Aug 2001 | B1 |
6544234 | Gabriel | Apr 2003 | B1 |
6605072 | Struys et al. | Aug 2003 | B2 |
6607510 | Landau | Aug 2003 | B2 |
6620137 | Kirchhofer et al. | Sep 2003 | B2 |
6632198 | Caizza | Oct 2003 | B2 |
6656163 | Marshall et al. | Dec 2003 | B1 |
6689093 | Landau | Feb 2004 | B2 |
6752781 | Landau et al. | Jun 2004 | B2 |
6981499 | Anderson et al. | Jan 2006 | B2 |
7118552 | Shaw et al. | Oct 2006 | B2 |
7156823 | Landau et al. | Jan 2007 | B2 |
7635356 | Stamp | Dec 2009 | B2 |
7645265 | Stamp | Jan 2010 | B2 |
7976499 | Grunhut et al. | Jul 2011 | B2 |
20010005781 | Bergens et al. | Jun 2001 | A1 |
20030105430 | Lavi et al. | Jun 2003 | A1 |
20030236502 | De la Serna et al. | Dec 2003 | A1 |
20040039336 | Amark et al. | Feb 2004 | A1 |
20050027255 | Lavi et al. | Feb 2005 | A1 |
20050165349 | Stamp | Jul 2005 | A1 |
20060100589 | Lin | May 2006 | A1 |
20060270984 | Homman | Nov 2006 | A1 |
20070017533 | Wyrick | Jan 2007 | A1 |
20070173770 | Stamp | Jul 2007 | A1 |
20070265568 | Tsals et al. | Nov 2007 | A1 |
20080195056 | Bishop et al. | Aug 2008 | A1 |
20090012471 | Harrison | Jan 2009 | A1 |
20100069846 | Stamp | Mar 2010 | A1 |
20100130930 | Stamp et al. | May 2010 | A1 |
20100152655 | Stamp | Jun 2010 | A1 |
20120130342 | Cleathero | May 2012 | A1 |
20120136303 | Cleathero | May 2012 | A1 |
Number | Date | Country |
---|---|---|
102004060146 | Aug 2005 | DE |
0453212 | Oct 1991 | EP |
0518416 | Dec 1992 | EP |
0740942 | Nov 1996 | EP |
0864335 | Sep 1998 | EP |
1323447 | Jul 2003 | EP |
2080532 | Jul 2009 | EP |
2899482 | Oct 2007 | FR |
886444 | Jan 1962 | GB |
2443606 | Sep 1994 | GB |
2388033 | Nov 2003 | GB |
2396298 | Jun 2004 | GB |
2397767 | Aug 2004 | GB |
2410188 | Jul 2005 | GB |
2414398 | Nov 2005 | GB |
WO 9421316 | Sep 1994 | WO |
WO 9910030 | Mar 1999 | WO |
9922792 | May 1999 | WO |
WO 0009186 | Feb 2000 | WO |
WO 0193926 | Dec 2001 | WO |
WO 0217996 | Mar 2002 | WO |
WO 0247746 | Jun 2002 | WO |
WO 02070051 | Sep 2002 | WO |
WO 03097133 | Nov 2003 | WO |
WO 03099358 | Dec 2003 | WO |
WO 2004108194 | Dec 2004 | WO |
WO 2005009515 | Feb 2005 | WO |
WO 2005009520 | Feb 2005 | WO |
WO 2005046765 | May 2005 | WO |
WO 2005070481 | Aug 2005 | WO |
WO 2005097252 | Oct 2005 | WO |
2005115507 | Dec 2005 | WO |
WO 2005115512 | Dec 2005 | WO |
WO 2006052737 | May 2006 | WO |
WO 2006106291 | Oct 2006 | WO |
WO 2006106295 | Oct 2006 | WO |
WO 2006111862 | Oct 2006 | WO |
WO 2007008257 | Jan 2007 | WO |
WO 2007036676 | Apr 2007 | WO |
WO 2007083115 | Jul 2007 | WO |
WO 2007132353 | Nov 2007 | WO |
WO 2008075033 | Jun 2008 | WO |
WO 2008107670 | Sep 2008 | WO |
WO 2008113864 | Sep 2008 | WO |
WO 2010026414 | Mar 2010 | WO |
Entry |
---|
Official Action for U.S. Appl. No. 12/161,776, mailed Oct. 6, 2010, 21 pages. |
Official Action for U.S. Appl. No. 11/387,645, mailed Aug. 25, 2010, 16 pages. |
International Search Report issued by the European Patent Office on Mar. 19, 2008 for International Application No. PCT/GB2007/004870. |
Written Opinion issued by the European Patent Office on Mar. 19, 2008 for International Application No. PCT/GB2007/004870. |
International Preliminary Report on Patentability issued on Jun. 24, 2009 for International Application No. PCT/GB2007/004870. |
Search Report prepared by the United Kingdom Intellectual Property Office on Aug. 26, 2009, for Application No. GB0906973.3, 2 pages. |
Authorized Officer Reinbold, International Search Report for International Application No. PCT/GB2010/050161, dated May 17, 2010, 5 pages. |
Authorized Officer Reinbold, Written Opinion for International Application No. PCT/GB2010/050161, issued Aug. 5, 2011, 5 pages. |
Authorized Officer Mulhausen, International Preliminary Report on Patentability issued on Aug. 9, 2011 for International Application No. PCT/GB2010/050161, 6 pages. |
Official Action for U.S. Appl. No. 12/161,776, mailed Aug. 29, 2012, 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/189,286, mailed Jun. 22, 2012, 6 pages. |
“Relaxed.” Merriam-Webster Dictionary, found on-line at http://www.merriam-webster.com/dictionary/relaxed, Dec. 21, 2011. |
Notice of Allowance for U.S. Appl. No. 12/530,107, mailed Jan. 25, 2012, 8 pages. |
Official Action for U.S. Appl. No. 11/387,645, mailed Dec. 21, 2011, 21 pages. |
Official Action for U.S. Appl. No. 13/189,286, mailed Jan. 4, 2012, 9 pages. |
Restriction Requirement for U.S. Appl. No. 12/623,960, mailed Jan. 5, 2012, 6 pages. |
Official Action for U.S. Appl. No. 12/623,960, mailed Mar. 5, 2012, 11 pages. |
U.S. Appl. No. 13/140,483, filed Jun. 17, 2011, Cleathero. |
U.S. Appl. No. 13/189,286, filed Jul. 22, 2011, Stamp et al. |
Authorized Officer Reinbold, International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/GB2005/000223, mailed Jan. 23, 2006, 6 pages. |
Authorized Officer Reinbold, Written Opinion for International (PCT) Patent Application No. PCT/GB2005/000223, mailed Jun. 22, 2005, 7 pages. |
UK Search Report for Application No. GB0602411.1, dated Apr. 7, 2006, 4 pages. |
Corrected Search Report under Section 17 for Application No. GB0620163.6, dated Nov. 24, 2006, 1 page. |
International Search Report for International (PCT) Patent Application No. PCT/GB2007/000141, mailed May 5, 2007, 2 pages. |
Authorized Officer Bjorklund, Written Opinon for International (PCT) Patent Application No. PCT/GB2007/000141, mailed May 5, 2007, 7 pages. |
Authorized Officer Mulhausen, International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/GB2007/000141, mailed Jul. 29, 2008, 8 pages. |
Authorized Officer Guidoin, International Search Report for International (PCT) Application No. PCT/GB2008/000741, mailed Dec. 23, 2008, 8 pages. |
Authorized Officer Urack, Written Opinon for International (PCT) Patent Application No. PCT/GB2008/00741, mailed Dec. 23, 2008, 15 pages. |
Authorized Officer Mulhausen, International Preliminary Report on Patentability for International (PCT) Application No. PCT/GB2008/000741, mailed Sep. 17, 2009, 13 pages. |
UK Search Report for Application No. GB0804021.4, dated Jul. 1, 2008, 4 pages. |
UK Search Report for Application No. GB0704351.6, dated Jun. 7, 2007, 4 pages. |
Authorized Officer Bjorklund, International Search Report issued by the European Patent Office for International (PCT) Application No. PCT/GB2009/051716, mailed May 19, 2010, 5 pages. |
Authorized Officer Mulhausen, International Preliminary Report on Patentability for International (PCT) Application No. PCT/GB2009/051716, mailed Jun. 23, 2011, 9 pages. |
Official Action for U.S. Appl. No. 10/767,859, mailed Feb. 24, 2006, 8 pages. |
Official Action for U.S. Appl. No. 10/767,859, mailed Sep. 12, 2006, 10 pages. |
Official Action for U.S. Appl. No. 10/767,859, mailed Jun. 5, 2007, 8 pages. |
Official Action for U.S. Appl. No. 10/767,859, mailed Dec. 28, 2007, 8 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Mar. 14, 2006, 8 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Aug. 22, 2006, 8 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Dec. 15, 2006, 3 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Apr. 10, 2007, 7 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Sep. 24, 2007, 9 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Jan. 11, 2008, 8 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Jun. 12, 2008, 6 pages. |
Advisiory Action for U.S. Appl. No. 10/767,860, mailed Sep. 5, 2008, 3 pages. |
Official Action for U.S. Appl. No. 10/767,860, mailed Dec. 2, 2008, 5 pages. |
Interview Summary for U.S. Appl. No. 10/767,860, mailed Feb. 2, 2009, 4 pages. |
Notice of Allowance for U.S. Appl. No. 10/767,860, mailed Aug. 27, 2009, 8 pages. |
Restriction Requirement for U.S. Appl. No. 11/387,645, mailed May 28, 2009, 7 pages. |
Official Action for U.S. Appl. No. 11/387,645, mailed Feb. 11, 2011, 29 pages. |
Official Action for U.S. Appl. No. 11/387,645, mailed Jul. 14, 2011, 19 pages. |
Official Action for U.S. Appl. No. 10/597,379, mailed Jul. 31, 2008, 12 pages. |
Official Action for U.S. Appl. No. 10/597,379, mailed Feb. 23, 2009, 9 pages. |
Notice of Allowance for U.S. Appl. No. 10/597,379, mailed Sep. 2, 2009, 11 pages. |
Official Action for U.S. Appl. No. 12/161,776, mailed May 11, 2011, 11 pages. |
Official Action for U.S. Appl. No. 12/530,107, mailed Apr. 14, 2011, 10 pages. |
Official Action for U.S. Appl. No. 11/387,645, mailed Sep. 17, 2010, 29 pages. |
Communication pursuant to Article 94(3) EPC for European Patent Application No. 07704923.7, dated Aug. 2, 2011, 7 pages. |
Official Action for U.S. Appl. No. 12/530,107, mailed Aug. 4, 2011, 9 pages. |
Formalities Officer Sulis, Communication pursuant to Rule 114(2) EPC for European Patent Application No. 07704923.4, mailed Sep. 29, 2010, 9 pages. |
Official Action for U.S. Appl. No. 13/147,568 mailed Sep. 6, 2013, 10 pages. |
Notice of Allowance for U.S. Appl. No. 12/161,776, mailed Jun. 7, 2013, 9 pages. |
Official Action for U.S. Appl. No. 13/265,801, mailed Jun. 21, 2013, 8 pages. |
Official Action for U.S. Appl. No. 11/387,645, mailed Nov. 12, 2013, 13 pages. |
Notice of Allowance for U.S. Appl. No. 12/161,776, mailed Oct. 15, 2013, 10 pages. |
Official Action for U.S. Appl. No. 13/147,568 mailed Oct. 23, 2013, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20110282278 A1 | Nov 2011 | US |