Preferred structural embodiments and preferred subcomponents of this invention are disclosed in the accompanying drawings in which:
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
A locator transponder 115 is mounted above a doorway 116 so that when the person or individual 112 goes through the doorway 116 the body heat of the person 112 is sensed or detected by the locator transponder 115. A more detailed description of the components of the locator transponder 115 will be given with reference to
The personal transceiver device 114 receives this location code from the locator transponder 115 and retransmits this code along with its own unique identity and status code to a PC command base monitor, generally indicated by reference numeral 120. The PC command base monitor 120 consists of a personal computer 122 running a unique software program and is connected to a receive-capable decoding device or external tansceiver 124 that receives the radio frequency (RF) signals 126 from the personal transceiver device 114. The personal transceiver device 114 can be configured to automatically transmit a signal to the PC command base monitor 120 each time it receives a signal from the locator transponder 115 thereby showing in virtual real-time on the personal computer 122, the location and status of each individual person carrying a personal transceiver device 114.
The command base monitor or unit 120 can exist in many forms. The two most common forms of this invention are first, a stand-alone embedded computer with LCD display and integrated system radio transceiver, and secondly a personal computer (PC) running custom software program communicating with an external system radio transceiver, such as external transceiver 124. The PC software command base monitor 120 manages the radio signals transmitted to and received from the personal transceiver device 114 via the external transceiver unit 124 connected to the port of the PC. This external transceiver 124 receives and decodes the radio signals sending them to the PC for processing by the software program. The software program contains a database of personnel names and identification numbers along with the local-transponder location correlation codes. The external transceiver 124 passes along the decoded radio signals received from the personal transceiver device 114 for further PC processing. The PC then correlates the received data to determine the person's identity, status and location. Each signal received and processed by the PC software is put in a data-log and stored with a time and date stamp. The data-log can then be retrieved later and reviewed showing a history of where personnel have been located and at what time, plus provide the time and location of where an emergency situation or other event occurred. This system feature provides personnel tracking and locating at a given time and automatically records this information for future recall, thus providing accountability of personnel. The PC software can also be used to send and receive text messages to and from personal transceiver device 114, and monitor and record the text messages sent and received between personal transceiver device 114 and other similar transceiver devices.
The person 112 wearing the personal transceiver device 114 passes by the locator transponder 115. The transponder 115 detects their presence, in this instance by passive-infrared body heat or by one of the other methods described. As a result of detecting the person's presence, the locator transponder 115 begins transmitting a burst of low-power RF signals having a limited and controlled propagation range. These low-power RF signals contain data specifically representative of the local-transponder's location. The personal transceiver device 114 receives the low power RF signals and the personal transceiver device 114 can then retransmit this location data along with its personal identification and status data back to the command base monitor 120. The command base monitor 120 will then display the person by name, identification number and show their status and location plus display and record the time and date stamp as this occurs. An example would be recording the path a person takes while moving throughout a building identifying the locations they were at and when they were there.
With reference to
The microcontroller 224 then turns on the low power radio frequency (RF) transmitter 230 and modulates the RF signal according to the encrypted data stream. The RF signal 118 is propagated out of the locator transponder 115 using an antenna 232. The microcontroller 224 sets the RF output power level to limit the receivable range or detection zone 117 of the RF signal 118 by the personal transceiver device 114 carried by the person 112 passing by the locator transponder 115.
The mechanical construction of the locator transponder 115 is illustrated in
As an example of the operation of the system 110 reference is now directed to
Different physical locations for installing the locator transponder 115 will require different detection ranges, such as the detection zone 117 illustrated in
In
As the person 112 with a personal transceiver device 114 passes by each locator transponder 115 a new transmitted signal will be sent from the personal transceiver device 114 carried by the individual 112 to the command base monitor 120 showing the location of the person or individual 112. Also, the direction of movement by a person 112 can be determined, such as whether the person 112 is entering or exiting a location. The personal transceiver device 114 can be configured to automatically transmit the location data and other data as the person 112 passes by each local transponder. Thus, the locator system 110 provides instantaneous location and data. In a particular application, the personal transceiver device 114 can be programmed to transmit the location and status data only as needed in an emergency situation such as when a person presses the personal transceiver device 114 panic button or from a lack of movement by the person wearing the personal transceiver device 114. The location and status of a person wearing the personal transceiver device 114 can be requested intentionally or automatically from the command base monitor 120.
The system 110 can also be configured so that location and identification data are only retransmitted at a high RF power level during an emergency condition such as that which would be initiated by pressing the panic button of the personal transceiver device 114 or from the lack-of-motion sensing alarm. In addition, the system 110 can be configured so that an inquiry from the command base monitor 120 causes the personal transceiver device 114 to transmit its identification, status and location information back to the command base monitor 120. It is also a feature of the command base monitor system 120 where the personal transceiver device 114 can be configured to prompt other personal transceiver device 114 units or the command base monitor 120 for the location of other individuals 112 wearing the personal transceiver device 114. The virtual real-time status and location of personnel 112 wearing the personal transceiver device 114 can be determined and displayed at the command base monitor 120 using this method.
The locator transponder 115 contains the passive-infrared sensor 214 and an adjustable RF transmit power level feature that facilitates a variable signaling range or distance between the locator transponder 115 and personal transceiver device 114 at which they can communicate. This feature is necessary for setting the transmit distance depending on the physical attributes of the environment. For example, a large hallway or large door entrance point requires the locating transponder 115 to use a slightly higher RF power level in its transmitted signal so that the personal transceiver device 114 can receive the signal. Conversely, locator transponders used at two small doors adjacent to each other would require a lower transmitted RF power level to successfully communicate their location data to the personal transceiver device 114.
Furthermore, when there is a received polling signal, this indicates a person is on the scene and it can be determined that they are present and have entered the premises. With the system 110 installed in a building, it can be determined that a person has passed through an entrance area. As noted, the received signal at the command base monitor 120 is decoded and recoded with a time-date stamp in a data-log and stored. When the polling signal is no longer received from the personal transceiver device 114, and there is a received signal indicating the person has passed through an exit area, it can be determined the person has left the premises. This method facilitates an automated accountability by knowing who is present, where they are located and what is their safety status.
As shown in
With reference to
A typical fire incident involves several fire fighters 661, 662, 663 and 664 and many times fire fighters from different stations and departments. As the fire fighter 664 arrives on scene, his personal transceiver TPAS S 614 is in the “off” state, meaning the motion-sensing feature 444 of the personal transceiver TPASS 614 is not yet active. The display of the personal computer 622 at the command base monitor 620 indicates that fire fighter 664 is “off”. It also displays that the TPASS 612 for fire fighter 662 is “on” meaning that fire fighter 662 is fighting the fire and not on the fire truck or at the station. Additionally, the display of the personal computer 622 at the command base monitor 620 indicates that the TPASS 613 for fire fighter 663 is “on” meaning that fire fighter 663 is fighting the fire and not on the fire truck or at the station. As for fire fighter 661, his TPASS 611 sends a signal to the personal computer 622 at the command base monitor 620 to indicate that TPASS 611 for fire fighter 661 is “on” meaning that fire fighter 661 is fighting the fire and not on the fire truck or at the station. Also, this fire fighter is down, so his TPASS 611 sounds an alarm and sends a signal that his TPASS alarm is “on.” Thus, the command base monitor 620 can immediately send help for fire fighter 661.
As described previously, the TPASS is a motion sensing man-down alarm device containing a radio transceiver, such as transceiver 114, that is used by fire fighters and other personnel as a safety device to alert others their location, identification, and status, such as on the truck, at the scene or even that they are in danger. The TPASS is also used to send a fire fighter an evacuate signal to notify them of impending danger such as the imminent collapse of a building. As the fire fighters arrive on the scene, their TPASS devices transmit a periodic polling signal indicating they are present at the incident. As previously described, this polling signal may indicate a presence of the person and that the TPASS device is turned off, or not in the automatic motion sensing mode, for example fire fighter 664. The details of the computer screen indicate the presence of all the fire fighters 661, 662, 663 and 664 on scene. As the fire fighter 663 leaves the truck 665 an activation key 666 is removed from the TPASS device. This puts the TPASS in the “on” state. Putting the TPASS device in the “on” state causes it to transmit an RF signal that is received by the system transceiver 624 which passes this decoded signal to the PC 622 for further processing by the software where it is displayed on the PC screen. This action verifies that the fire fighters are present, their TPASS device is turned “on” and being monitored by the command base monitor 620. In addition to monitoring the status of fire fighters on scene, the system also contains the capability to indicate when a fire fighter has turned off their TPASS device and left the incident.
The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and, accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
U.S. Pat. No. 5,317,305 patented May 31, 1994, entitled PERSONAL ALARM DEVICE WITH VIGRATING ACCELEROMETER MOTION DETECTOR AND PLANAR PIEZOELECTRIC HI-LEVEL SOUND GENERATOR, discloses alarm and lights which include a vibrating accelerator for motion detectors and a planar, low profile sealed, piezo hi-level sound generating transducer structurally and functionally coordinated with a resonating chamber casing structure to provide a hi-level audio alarm. U.S. Pat. No. 6,016,099 patented Jan. 18, 2000, entitled AUTOMATICALLY ACTIVE PERSONAL ALERT SAFETY SYSTEM, discloses a small, lightweight personal alert safety system (Acronym is PASS) which has a self-contained battery powered electrical and electronic circuit, among other components, in a small casing for use by personnel working in dangerous environments, e.g., fire fighters and rescue workers and the like. U.S. Pat. No. 6,756,901 patented Jun. 29, 2004, entitled MULTI FUNCTION ELECTRONIC PERSONAL MONITOR AND RADIO TELEMETRY CELL SYSTEM, discloses a small, multi-function electronic personal monitor and radio telemetry system under the control of a microprocessor. There is a personal communicator and monitor with communications consisting of duplex spread spectrum radio telemetry, under water sonar, acoustic ranging and signaling, infrared communications and visible light communications. A transceiver is part of the system and the transceiver is for transmitting and receiving at several different radiated power levels, defined as P.sub.1, P.sub.2, P.sub.3, P.sub.4, P.sub.5, through P.sub.n that vary in signal strength from 1 microwatt through 1 watt. Each power level P.sub.1, P.sub.2, P.sub.3, P.sub.4, P.sub.5, through P.sub.n being transmitted and received with encoded data and a personal ID uniquely assigned to the transceiver of the cell system. Also, the transceivers transmit and receive data being contained within a time frame and having digital instructions and coded format sectors. The power level ID varying in field strength defines a distance at which the transceiver detects the transmitted and received signal from another of the transceivers and the signal is indicative of the distance the transceiver is from the other transceivers. The system 110 of the present invention utilizes the transceiver of U.S. Pat. No. 6,756,901 with some modifications for use in the present invention as hereinafter described and with specific reference to FIG. 4. These inventions are hereinafter incorporated by reference therein.