This disclosure relates generally to data processing and, more specifically, to automated adjusting of subscriber policies for a data traffic flow.
The approaches described in this section could be pursued but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Certain network parameters may be monitored for predefined events and conditions. Such monitoring may involve a human operator. Upon detecting the predefined network events and conditions (for example, a threshold throughput of the network), the network operator may decide that certain changes or adjustments need to be applied to network policies to mitigate the predefined network events and conditions.
Monitoring the network can be a complex task with a great number of parameters that require monitoring, such as, for example, global factors (time of the day, show and sport events, planned and unplanned reconfiguration), a network status (resource availability and resource utilization), subscriber group behavior, subscriber individual behavior, dynamics of subscriber behavior, and so forth. Moreover, the more complex (in view of the number of parameters to be monitored) the network is, the faster the network operator needs to react to avoid network congestions and bad user experiences and to react to rapidly changing user or group behavior.
Additionally, manual intervention by the network operator into the network operational process may be a limiting factor in view of a low-speed reaction of the network operator and in view of a human factor in a semi-automated procedure of monitoring. Furthermore, policies that outline rules for the network operational process may be complex and granular, and mitigation of the network events or conditions may require only small changes in the policies to have a significant impact on network behavior. It can be very challenging for the network operator to monitor the network and to apply changes of any magnitude to granular policies.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The present disclosure is related to approaches for adjusting subscriber policies. Specifically, a method for adjusting subscriber policies may include applying traffic enforcement rules to a data traffic associated with a subscriber. The method can further include determining network conditions associated with the data traffic. The method can include modifying, based on the determination of the network conditions, attributes according to attribute adjustment rules to obtain modified attributes. The method can further include modifying the traffic enforcement rules based on the modified attributes to obtain modified traffic enforcement rules.
According to another approach of the present disclosure, there is provided a system for automated adjusting of subscriber policies. The system may comprise a servicing node and a policy management unit. The servicing node can be operable to apply traffic enforcement rules to a data traffic associated with a subscriber. Furthermore, the servicing node can be operable to determine network conditions associated with the data traffic. The servicing node can be operable to modify the traffic enforcement rules based on modified attributes to obtain modified traffic enforcement rules. The policy management unit can be operable to modify attributes based on attribute adjustment rules to obtain the modified attributes. The modifying of the attributes may be performed based on the determination of the network conditions.
According to another approach of the present disclosure, there is provided a system for automated adjustment of subscriber policies. The system may comprise a servicing node that can be operable to apply traffic enforcement rules to a data traffic associated with a subscriber. The servicing node can be further operable to determine network conditions associated with the data traffic. Based on the determination, the servicing node can be operable to modify attributes according to attribute adjustment rules to obtain modified attributes. The servicing node can be further operable to modify the traffic enforcement rules based on the modified attributes to obtain modified traffic enforcement rules.
In further example embodiments of the present disclosure, the method steps are stored on a machine-readable medium comprising instructions which, when implemented by one or more processors, perform the recited steps. In yet further example embodiments, hardware systems or devices can be adapted to perform the recited steps. Other features, examples, and embodiments are described below.
Embodiments are illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, in which like references indicate similar elements.
The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations in accordance with example embodiments. These example embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
The techniques of the embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium such as a disk drive, or computer-readable medium. It should be noted that methods disclosed herein can be implemented by a computer (e.g., a desktop computer, a tablet computer, a laptop computer, and a server), a game console, a handheld gaming device, a cellular phone, a smart phone, a smart television system, and so forth.
The present disclosure relates to methods and systems for automated adjustment of subscriber policies of a network operational process. An example system of the present disclosure may include a policy management unit that may develop and maintain traffic enforcement rules, also referred herein to as policies. The traffic enforcement rules may include rules for processing of data traffic during operation of the network. Network conditions may change and the system may need to react to the changed network conditions to provide an efficient operation of the network. The network conditions may be determined based on attributes (also referred to herein as parameters) of the network, such as a network status, network throughput, resource unitization, bandwidth consumed by active users, and so forth.
The policy management unit may create attribute adjustment rules. The attribute adjustment rules may include rules that are to be applied in response to detection of predetermined attributes (for example, the attributes that are outside threshold values). Making decisions related to a policy modification and, more specifically, a modification of the traffic enforcement rules, may be delegated to a servicing node. Thus, the servicing node, also referred to herein as an enforcing element, can obtain traffic enforcement rules and attribute adjustment rules from a policy management unit. The servicing node may further apply the traffic enforcement rules to the data traffic. Upon applying the traffic enforcement rules, the servicing node can monitor network conditions. Based on the monitoring, the servicing mode may determine that certain attributes of the network need to be modified. For example, a predefined bandwidth limit may be not sufficient to ensure access to a server for active users and, therefore, the predefined bandwidth limit may need to be adjusted. Thus, the servicing node may apply the attribute adjustment rules to the attributes and obtain modified attributes. For example, the bandwidth limit may be increased to allow access to the server for active users. The modified attributes may allow for a normal operation of the network.
Furthermore, the servicing node may modify the traffic enforcement rules based on the modified attributes. Therefore, after modification of the attributes, the modified traffic enforcement rules may be applied to the data traffic of the network. Additionally, the servicing node may notify the policy management unit about modification of the traffic enforcement rules.
Referring now to the drawings,
The network 110 may include the Internet or any other network capable of communicating data between devices. Suitable networks may include or interface with any one or more of, for instance, a local intranet, a Personal Area Network, a Local Area Network, a Wide Area Network, a Metropolitan Area Network, a virtual private network, a storage area network, a frame relay connection, an Advanced Intelligent Network connection, a synchronous optical network connection, a digital T1, T3, E1 or E3 line, Digital Data Service connection, Digital Subscriber Line connection, an Ethernet connection, an Integrated Services Digital Network line, a dial-up port such as a V.90, V.34 or V.34bis analog modem connection, a cable modem, an Asynchronous Transfer Mode connection, or a Fiber Distributed Data Interface or Copper Distributed Data Interface connection. Furthermore, communications may also include links to any of a variety of wireless networks, including Wireless Application Protocol, General Packet Radio Service, Global System for Mobile Communication, Code Division Multiple Access or Time Division Multiple Access, cellular phone networks, Global Positioning System, cellular digital packet data, Research in Motion, Limited duplex paging network, Bluetooth radio, or an IEEE 802.11-based radio frequency network. The network 110 can further include or interface with any one or more of an RS-232 serial connection, an IEEE-1394 (Firewire) connection, a Fiber Channel connection, an IrDA (infrared) port, a Small Computer Systems Interface connection, a Universal Serial Bus (USB) connection or other wired or wireless, digital or analog interface or connection, mesh or Digi® networking. The network 110 may include a network of data processing nodes that are interconnected for the purpose of data communication.
The policy management unit 140 may be responsible for creating and maintaining a subscriber policy 170. The servicing node 150 may be operable to process the data traffic 160 according to the subscriber policy 170. Furthermore, the servicing node 150 may monitor network conditions 180 established in the network upon applying of the subscriber policy 170. Based on the network conditions 180, the servicing node 150 may decide if the subscriber policy 170 needs to be modified. The servicing node 150 may modify the subscriber policy 170 and send a notification concerning modifications to the policy management unit 140.
The conventional operational process of
However, in view of a plurality of network conditions that require monitoring, the network operator 205 may be overloaded with the tasks of modifying the policies and, therefore, may be unable to react timely to the changing network conditions. Therefore, the network performance may be insufficient to provide the subscriber with access to network services and applications to which the subscriber sends the data traffic.
The method 400 may commence with optional operation 410 of receiving a subscriber policy. In an example embodiment, the subscriber policy includes one or more of the following: attributes, attribute adjustment rules, and traffic enforcement rules. The method 400 may further include applying the traffic enforcement rules to a data traffic associated with a subscriber at operation 420.
The method 400 may continue with operation 430, at which network conditions associated with the data traffic may be determined. In an example embodiment, the network conditions may include one or more of the following: events associated with the network, a network workload, a resource availability, a resource utilization, a subscriber behavior, a user experience, a time, a planned reconfiguration, an unplanned reconfiguration, and so forth.
In some embodiments, the method 400 may optionally include continuous monitoring of the network conditions within the network. The monitoring conditions may be analyzed. Based on the analysis, an occurrence of a critical event may be determined. In an example embodiment, the critical event may include one or more of the following: an absence of one of a predetermined network condition, presence of an additional network condition being absent from the predetermined network conditions, exceeding a predetermined threshold of the one of the predetermined network conditions, and so forth. In response to the occurrence of the critical event, the attributes may be modified.
More specifically, upon determination of the network conditions, the modifying of the attributes may be performed based on attribute adjustment rules at operation 440. Based on the modification, modified attributes may be obtained.
The method 400 may continue with modifying the traffic enforcement rules at operation 450. The traffic enforcement rules may be modified based on the modified attributes. Therefore, modified traffic enforcement rules may be obtained based on the modification of the traffic enforcement rules. The modified traffic enforcement rules may be applied to a further data traffic associated with the subscriber.
At step 620, the network operator 505 may identify that certain network conditions may go beyond predetermined thresholds. For example, a network throughput may exceed a predetermined value (e.g., 70%). Based on such identifying, the network operator 505 may take a decision that policies need to be modified to maintain the identified network conditions so as to not exceed the predetermined thresholds. Based on such decision, the network operator 505 may identify normal condition parameters that need to be modified for the chosen policy template at step 625. Thereafter, the identified normal condition parameters may be modified. After step 625, the process may return to step 615 so that the network operator 505 can continue monitoring the network conditions.
The servicing node 805 may be operable to apply the traffic enforcement rules 830 to a data traffic 835 associated with a subscriber. The servicing node 805 may be further operable to determine network conditions 840 associated with the data traffic 835. The servicing node 805 may send data 850 associated with the network conditions 840 to the policy management unit 810. In an example embodiment, the network conditions 840 may include one or more of the following: events associated with the network, a network workload, a resource availability, a resource utilization, a subscriber behavior, a user experience, a time, a planned reconfiguration, an unplanned reconfiguration, and so forth.
In an example embodiment, the policy management unit 810 may analyze the network conditions 840. Based on the analysis, the policy management unit 810 may determine an occurrence of a critical event. The critical event may include one or more of the following: an absence of one of predetermined network conditions, presence of an additional network condition being absent from the predetermined network conditions, exceeding a predetermined threshold in the one of the predetermined network conditions, and so forth.
Based on the network conditions 840, such as the occurrence of the critical event, the policy management unit 810 may modify the attributes 825 by applying the attribute adjustment rules 820. Therefore, modified attributes (not shown) may be obtained. The policy management unit 810 may send a policy adjustment notification 855 to the servicing node 805. The policy adjustment notification 855 may contain the modified attributes.
Based on receiving of the policy adjustment notification 855, the servicing node 805 may modify the traffic enforcement rules 830 based on the modified attributes. Therefore, modified traffic enforcement rules (not shown) may be obtained.
The servicing node 905 may be operable to apply the traffic enforcement rules 930 to a data traffic 935 associated with a subscriber. The servicing node 905 may be further operable to determine network conditions 940 associated with the data traffic 935. In an example embodiment, the network conditions 840 may include one or more of the following: events associated with the network, a network workload, a resource availability, a resource utilization, a subscriber behavior, a user experience, a time, a planned reconfiguration, an unplanned reconfiguration, and so forth.
In an example embodiment, the servicing node 905 may analyze the network conditions 940. Based on the analysis, the servicing node 905 may determine an occurrence of a critical event. The critical event may include one or more of the following: an absence of one of predetermined network conditions, presence of an additional network condition being absent from the predetermined network conditions, exceeding a predetermined threshold in the one of the predetermined network conditions, and so forth.
Based on the network conditions 940, such as the occurrence of the critical event, the servicing node 905 may modify the attributes 925 by applying the attribute adjustment rules 920. Therefore, modified attributes (not shown) may be obtained. Based on the modified attributes, the servicing node 805 may modify the traffic enforcement rules 930. Therefore, modified traffic enforcement rules (not shown) may be obtained.
Additionally, the servicing node 905 may send a policy adjustment notification 950 to the policy management unit 910. The policy adjustment notification 950 may contain the modified traffic enforcement rules.
Thus, the system for automated adjusting of subscriber policies delegates making decisions for policy modification to a servicing node. The servicing node may modify the policies (i.e., the traffic enforcement rules) based on evaluation of monitored events and conditions. Therefore, a network operator does not need to intervene into the network operational process. The servicing node may ensure immediate reaction when policy modification is needed. Therefore, the complexity of policy modification execution can be shifted to the servicing node. The policy management unit may be responsible for defining in advance how to modify the policy if/when modification is needed. Thus, the policy management unit may still be the master of the network operational process and responsible for provisioning rules regarding how the policy can be changed.
Additionally, a policy provisioning transaction (in particular, data traffic associated with sending of the policy or the modified policy) may be smaller by volume, because only some attributes (rather than the whole policy) are modified. Therefore, more transactions per second may be allowed. Furthermore, time needed for massive updates of policies may be reduced. Furthermore, the servicing node may be provided with a template for modifying the policy. The template may include a list of modifiable attributes (i.e., the attributes of the network that can be modified). A list of attributes modified by the servicing node may match the list of modifiable attributes in the template to reduce the probability of operational mistakes during modification of the policy.
Additionally, a partial list of attributes may be provided to the servicing node. The partial list may include only the attributes that have been changed since the previous providing of the policy to the servicing node. Furthermore, there may be no need to provide the template to the servicing node if the template was not changed.
The schematic diagram 1005 illustrates conventional applying of policies to subscribers. For each of the levels 1025, 1030, and 1035 of services, the policy may be applied based on a type of service. For example, for the level 1025 of services, the policy may prescribe a peak information rate (PIR) of 5 megabits per second if the type of service is a video service, and a PIR of 3 megabits per second if the type of service is a peer-to-peer service. Similarly, for the level 1030 of services, the policy may prescribe a PIR of 4 megabits per second if the type of service is a video service, and a PIR of 2 megabits per second if the type of service is a peer-to-peer service. For the level 1035 of services, the policy may prescribe a PIR of 3 megabits per second if the type of service is a video service, and a PIR of 1 megabits per second if the type of service is a peer-to-peer service. The PIR is a parameter related to a quality of service associated with limiting of the bandwidth.
The schematic diagram 1010 illustrates applying policies, according to the present disclosure. More specifically, according to the policy, if it is determined that the network is congested, services being provided to the subscribers need to be limited for the subscribers of all levels 1025, 1030, and 1035 of services. However, the policy may still keep differentiation between the levels 1025, 1030, and 1035 of services so that the higher level of service (e.g., the level 1025 of services) can obtain better service that the lower level of service (e.g., the level 1030 of service).
Therefore, the services provided to the subscribers may be limited based on the levels 1025, 1030, and 1035 of services. For example, for the level 1025 of services, the policy may prescribe to lower the PIR to 4 megabits per second if the type of service is the video service, and to lower the PIR to 2 megabits per second if the type of service is the peer-to-peer service. Similarly, for the level 1030 of services, the policy may prescribe to lower the PIR to 2 megabits per second if the type of service is the video service, and to lower the PIR to 0.5 megabits per second if the type of service is the peer-to-peer service. For the level 1035 of services, the policy may prescribe to lower the PIR to 1 megabits per second if the type of service is the video service, and to lower the PIR to 0.1 megabits per second if the type of service is the peer-to-peer service. Therefore, though the quality of service will be lowered for the subscribers of all levels 1025, 1030, and 1035 of services in case of congestion of the network, all subscribers can still have access to the service and no subscribers will be disconnected from the service.
The schematic diagram 1015 illustrates applying policies, according to another example embodiment of the present disclosure. More specifically, according to the policy, if it is determined that the network is congested, services being provided to the subscribers need to be limited for the subscribers of all levels 1025, 1030, and 1035 of services. The policy may define a coefficient that may be applied to the provided quality of service. For example, applying of the coefficient equal to 0.8 means limiting providing of the service to 80%. As shown on the schematic diagram 1015, different coefficients, shown as KG, KS, and KB, may be applied to different levels 1025, 1030, and 1035 of services, respectively. Furthermore, different coefficients, shown as KG1 and KG2, KS1 and K52, and KB1 and KB2, may be applied depending on the type of the service. For example, for the level 1025 of services, the PIR of 5 megabits per second may be multiplied by the coefficient KG1 for the video service and by the coefficient KG2 for the peer-to-peer service. After applying the policy, the network conditions can be normalized and the policy may prescribe to stop applying coefficients to the levels 1025, 1030, and 1035 of services.
The schematic diagram 1020 illustrates applying policies, according to another example embodiment of the present disclosure. As shown on the schematic diagram 1020, for the level 1025 of services, coefficients KG1 and KG2 may be applied to the video service and the peer-to-peer service, respectively. The network parameters associated with the subscriber of the level 1025 of services may be monitored. A policy 1040 for modifying the level 1025 of services, for example, in case of detection of a certain event, may prescribe to reduce the coefficient KG1 to 0.3 and the coefficient KG2 to 0.4. Additionally, if a certain parameter of the network exceeds a predetermined threshold, the policy may prescribe to reduce the coefficient KG1 to 0.4 and the coefficient KG2 to 0.5.
In an example embodiment, a servicing node may select coefficients for different levels of services and different types of services based on attribute adjustment rules. The attribute adjustment rules may contain rules defining how the attributes of the network, such as the PIR, need to be modified.
In example embodiments, the modification of policies may be performed by the servicing node not only in cases when the network is congested. More specifically, the servicing node may determine that a network load is low and may modify the policies, for example, by increasing the PIR, to allow the subscribers to go beyond the bandwidth of initially applied policies. Additionally, such modification of policies may allow for utilizing network resources efficiently and not letting the system idle.
A traffic enforcement rule 1220 may be related to limiting bandwidth consumed by the application. Rules for this traffic enforcement rule 1220 may be as follows: “Rule 1: If <Netflix Video>, QoS-PIR=K1*2 Mbps,” “Rule 2: if <Amazon Video>, QoS-PIR=K2*3 Mbps,” where K is a coefficient that may be applied to the quality of service and QoS means the quality of service. The reason 1230 for adjustment of the traffic enforcement rule 1220 may be that a predefined bandwidth limit is not enough to ensure access to an application to active subscribers. The attributes 1240 of adjustment conditions may include an aggregated bandwidth consumed by the active subscribers trying to access the application. The adjustment actions 1250 may include reducing bandwidth limit proportionally to a level of service provided to the subscriber. The adjustment actions 1250 may be defined as “If <aggregated bandwidth of subscribers exceeds 30 Gbps, K1=K1*0.5, K2=K2*0.7”.
Alternatively, the reason 1230 for adjustment of the traffic enforcement rule 1220 may be that a demand became lower and, therefore, more bandwidth is available for active subscribers and more application servers become available. The attributes 1240 of adjustment conditions may include a number of active subscribers trying to consume application bandwidth and a number of application servers. The adjustment actions 1250 may include increasing bandwidth limit to an originally predefined level.
A traffic enforcement rule 1220 may be related to optimizing video traffic. Rules for this traffic enforcement rule 1220 may be as follows: “Rule 1: If <HD Video>, forward to VAS cluster optimizers including endpoint-1, endpoint-2, endpoint-3,” where VAS cluster is a value adding service cluster. The reason 1230 for adjustment of the traffic enforcement rule 1220 may be that a number of subscribers entitled for video optimization has grown and the cluster of optimizers may need to be extended. The attributes 1240 of adjustment conditions may include a number of premium subscribers that require video optimization. The adjustment actions 1250 may include adding endpoint-4 and endpoint-5 to a pool of optimizers of the value adding service cluster. The adjustment actions 1250 may be defined as “Modify the optimizer pool by adding more endpoints.”
A traffic enforcement rule 1220 may be related to handling Domain Name System (DNS) traffic. Rules for this traffic enforcement rule 1220 may be as follows: “Rule 1: If <DNS protocol>, steer traffic to the pool of DNS servers.” The reason 1230 for adjustment of the traffic enforcement rule 1220 may be that a volume of DNS traffic is higher than a predetermined threshold. The attributes 1240 of adjustment conditions may include DNS traffic aggregated bandwidth. The adjustment actions 1250 may include increasing the DNS server pool. The adjustment actions 1250 may be defined as “Add additional servers to the DNS cluster.”
Alternatively, the reason 1230 for adjustment of the traffic enforcement rule 1220 may be that a volume of DNS traffic returned to normal. The attributes 1240 of adjustment conditions may include returning of volume of DNS to normal. The adjustment actions 1250 may include decreasing the DNS server pool. The adjustment actions 1250 may be defined as “Reduce the number of DNS servers.”
A traffic enforcement rule 1220 may be related to subscriber monitoring. Rules for this traffic enforcement rule 1220 may be as follows: “Rule 1: For <HTTP protocol>, generate flow-based report”; “Rule 2: if <other traffic>, generate periodical aggregated reporting records.” The reason 1230 for adjustment of the traffic enforcement rule 1220 may be that the behavior of the subscriber becomes suspicious and the network operator needs a more granular report for browsing habits. The attributes 1240 of adjustment conditions may include behavioral analysis. The adjustment actions 1250 may include adjusting policy for the subscriber switching from a flow-based report to a transaction-based report. The adjustment actions 1250 may be defined as “Change granularity and frequency of generated reporting records.”
Alternatively, the reason 1230 for adjustment of the traffic enforcement rule 1220 may be that behavior of the subscriber returned to normal, and there is no need for high scrutiny reporting. The attributes 1240 of adjustment conditions may include behavioral analysis. The adjustment actions 1250 may include returning subscriber to a flow-based reporting mode. The adjustment actions 1250 may be defined as “Change granularity and frequency of generated reporting records.”
The components shown in
Mass data storage 1330, which can be implemented with a magnetic disk drive, solid state drive, or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 1310. Mass data storage 1330 stores the system software for implementing embodiments of the present disclosure for purposes of loading that software into main memory 1320.
Portable storage device 1340 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk (CD), digital video disc (DVD), or USB storage device, to input and output data and code to and from the computer system 1300 of
User input devices 1360 provide a portion of a user interface. User input devices 1360 include one or more microphones, an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. User input devices 1360 can also include a touchscreen. Additionally, the computer system 1300 as shown in
Graphics display system 1370 includes a liquid crystal display (LCD) or other suitable display device. Graphics display system 1370 receives textual and graphical information and processes the information for output to the display device.
Peripheral devices 1380 may include any type of computer support device to add additional functionality to the computer system.
The components provided in the computer system 1300 of
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the embodiments provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit, a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a Compact Disk Read Only Memory (CD-ROM) disk, DVD, BLU-RAY DISC (BD), any other optical storage medium, Random-Access Memory (RAM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), Electronically Erasable Programmable Read Only Memory (EEPROM), flash memory, and/or any other memory chip, module, or cartridge.
In some embodiments, the computer system 1300 may be implemented as a cloud-based computing environment, such as a virtual machine operating within a computing cloud. In other embodiments, the computer system 1300 may itself include a cloud-based computing environment, where the functionalities of the computer system 1300 are executed in a distributed fashion. Thus, the computer system 1300, when configured as a computing cloud, may include pluralities of computing devices in various forms, as will be described in greater detail below.
In general, a cloud-based computing environment is a resource that typically combines the computational power of a large grouping of processors (such as within web servers) and/or that combines the storage capacity of a large grouping of computer memories or storage devices. Systems that provide cloud-based resources may be utilized exclusively by their owners or such systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
The cloud may be formed, for example, by a network of web servers that comprise a plurality of computing devices, such as the computer system 1300, with each server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource customers or other users). Typically, each user places workload demands upon the cloud that vary in real-time, sometimes dramatically. The nature and extent of these variations typically depends on the type of business associated with the user.
Thus, methods and systems for automated adjusting of subscriber policies are disclosed. While the present embodiments have been described in connection with a series of embodiments, these descriptions are not intended to limit the scope of the subject matter to the particular forms set forth herein. It will be further understood that the methods are not necessarily limited to the discrete components described. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the subject matter as disclosed herein and defined by the appended claims and otherwise appreciated by one of ordinary skill in the art.
Number | Name | Date | Kind |
---|---|---|---|
5218602 | Grant et al. | Jun 1993 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5862339 | Bonnaure et al. | Jan 1999 | A |
5875185 | Wang et al. | Feb 1999 | A |
5935207 | Logue et al. | Aug 1999 | A |
5958053 | Denker | Sep 1999 | A |
5995981 | Wikstrom | Nov 1999 | A |
6003069 | Cavill | Dec 1999 | A |
6047268 | Bartoli et al. | Apr 2000 | A |
6075783 | Voit | Jun 2000 | A |
6131163 | Wiegel | Oct 2000 | A |
6219706 | Fan et al. | Apr 2001 | B1 |
6259705 | Takahashi et al. | Jul 2001 | B1 |
6321338 | Porras et al. | Nov 2001 | B1 |
6374300 | Masters | Apr 2002 | B2 |
6456617 | Oda et al. | Sep 2002 | B1 |
6459682 | Ellesson et al. | Oct 2002 | B1 |
6483600 | Schuster et al. | Nov 2002 | B1 |
6535516 | Leu et al. | Mar 2003 | B1 |
6578066 | Logan et al. | Jun 2003 | B1 |
6587866 | Modi et al. | Jul 2003 | B1 |
6600738 | Alperovich et al. | Jul 2003 | B1 |
6658114 | Farn et al. | Dec 2003 | B1 |
6748414 | Boumas | Jun 2004 | B1 |
6772205 | Lavian et al. | Aug 2004 | B1 |
6772334 | Glawitsch | Aug 2004 | B1 |
6779017 | Lamberton et al. | Aug 2004 | B1 |
6779033 | Watson et al. | Aug 2004 | B1 |
6804224 | Schuster et al. | Oct 2004 | B1 |
6952728 | Alles et al. | Oct 2005 | B1 |
7010605 | Dharmarajan | Mar 2006 | B1 |
7013482 | Krumel | Mar 2006 | B1 |
7058718 | Fontes et al. | Jun 2006 | B2 |
7069438 | Balabine et al. | Jun 2006 | B2 |
7076555 | Orman et al. | Jul 2006 | B1 |
7143087 | Fairweather | Nov 2006 | B2 |
7167927 | Philbrick et al. | Jan 2007 | B2 |
7181524 | Lele | Feb 2007 | B1 |
7218722 | Turner et al. | May 2007 | B1 |
7228359 | Monteiro | Jun 2007 | B1 |
7234161 | Maufer et al. | Jun 2007 | B1 |
7236457 | Joe | Jun 2007 | B2 |
7254133 | Govindarajan et al. | Aug 2007 | B2 |
7269850 | Govindarajan et al. | Sep 2007 | B2 |
7277963 | Dolson et al. | Oct 2007 | B2 |
7301899 | Goldstone | Nov 2007 | B2 |
7308499 | Chavez | Dec 2007 | B2 |
7310686 | Uysal | Dec 2007 | B2 |
7328267 | Bashyam et al. | Feb 2008 | B1 |
7334232 | Jacobs et al. | Feb 2008 | B2 |
7337241 | Boucher et al. | Feb 2008 | B2 |
7343399 | Hayball et al. | Mar 2008 | B2 |
7349970 | Clement et al. | Mar 2008 | B2 |
7370353 | Yang | May 2008 | B2 |
7373500 | Ramelson et al. | May 2008 | B2 |
7391725 | Huitema et al. | Jun 2008 | B2 |
7398317 | Chen et al. | Jul 2008 | B2 |
7423977 | Joshi | Sep 2008 | B1 |
7430755 | Hughes et al. | Sep 2008 | B1 |
7463648 | Eppstein et al. | Dec 2008 | B1 |
7467202 | Savchuk | Dec 2008 | B2 |
7472190 | Robinson | Dec 2008 | B2 |
7492766 | Cabeca et al. | Feb 2009 | B2 |
7506360 | Wilkinson et al. | Mar 2009 | B1 |
7509369 | Tormasov | Mar 2009 | B1 |
7512980 | Copeland et al. | Mar 2009 | B2 |
7533409 | Keane et al. | May 2009 | B2 |
7552323 | Shay | Jun 2009 | B2 |
7584262 | Wang et al. | Sep 2009 | B1 |
7584301 | Joshi | Sep 2009 | B1 |
7590736 | Hydrie et al. | Sep 2009 | B2 |
7610622 | Touitou et al. | Oct 2009 | B2 |
7613193 | Swami et al. | Nov 2009 | B2 |
7613822 | Joy et al. | Nov 2009 | B2 |
7673072 | Boucher et al. | Mar 2010 | B2 |
7675854 | Chen et al. | Mar 2010 | B2 |
7703102 | Eppstein et al. | Apr 2010 | B1 |
7707295 | Szeto et al. | Apr 2010 | B1 |
7711790 | Barrett et al. | May 2010 | B1 |
7733866 | Mishra et al. | Jun 2010 | B2 |
7747748 | Allen | Jun 2010 | B2 |
7765328 | Bryers et al. | Jul 2010 | B2 |
7792113 | Foschiano et al. | Sep 2010 | B1 |
7808994 | Vinokour et al. | Oct 2010 | B1 |
7818252 | Jackowski | Oct 2010 | B2 |
7826487 | Mukerji et al. | Nov 2010 | B1 |
7881215 | Daigle et al. | Feb 2011 | B1 |
7948952 | Hurtta et al. | May 2011 | B2 |
7965727 | Sakata et al. | Jun 2011 | B2 |
7970934 | Patel | Jun 2011 | B1 |
7979694 | Touitou et al. | Jul 2011 | B2 |
7983258 | Ruben et al. | Jul 2011 | B1 |
7990847 | Leroy et al. | Aug 2011 | B1 |
7991859 | Miller et al. | Aug 2011 | B1 |
7992201 | Aldridge et al. | Aug 2011 | B2 |
8019870 | Eppstein et al. | Sep 2011 | B1 |
8032634 | Eppstein et al. | Oct 2011 | B1 |
8081640 | Ozawa et al. | Dec 2011 | B2 |
8090866 | Bashyam et al. | Jan 2012 | B1 |
8099492 | Dahlin et al. | Jan 2012 | B2 |
8116312 | Riddoch et al. | Feb 2012 | B2 |
8122116 | Matsunaga et al. | Feb 2012 | B2 |
8151019 | Le et al. | Apr 2012 | B1 |
8179809 | Eppstein et al. | May 2012 | B1 |
8185651 | Moran et al. | May 2012 | B2 |
8191106 | Choyi et al. | May 2012 | B2 |
8224971 | Miller et al. | Jul 2012 | B1 |
8261339 | Aldridge et al. | Sep 2012 | B2 |
8266235 | Jalan et al. | Sep 2012 | B2 |
8296434 | Miller et al. | Oct 2012 | B1 |
8312507 | Chen et al. | Nov 2012 | B2 |
8379515 | Mukerji | Feb 2013 | B1 |
8499093 | Grosser et al. | Jul 2013 | B2 |
8539075 | Bali et al. | Sep 2013 | B2 |
8554929 | Szeto et al. | Oct 2013 | B1 |
8559437 | Mishra et al. | Oct 2013 | B2 |
8560693 | Wang et al. | Oct 2013 | B1 |
8584199 | Chen et al. | Nov 2013 | B1 |
8595791 | Chen et al. | Nov 2013 | B1 |
RE44701 | Chen et al. | Jan 2014 | E |
8675488 | Sidebottom et al. | Mar 2014 | B1 |
8681610 | Mukerji | Mar 2014 | B1 |
8750164 | Casado et al. | Jun 2014 | B2 |
8782221 | Han | Jul 2014 | B2 |
8787174 | Riley | Jul 2014 | B2 |
8813180 | Chen et al. | Aug 2014 | B1 |
8826372 | Chen et al. | Sep 2014 | B1 |
8879427 | Krumel | Nov 2014 | B2 |
8885463 | Medved et al. | Nov 2014 | B1 |
8897154 | Jalan et al. | Nov 2014 | B2 |
8965957 | Barros | Feb 2015 | B2 |
8977749 | Han | Mar 2015 | B1 |
8990262 | Chen et al. | Mar 2015 | B2 |
8996670 | Kupinsky | Mar 2015 | B2 |
9094364 | Jalan et al. | Jul 2015 | B2 |
9106561 | Jalan et al. | Aug 2015 | B2 |
9137301 | Dunlap et al. | Sep 2015 | B1 |
9154577 | Jalan et al. | Oct 2015 | B2 |
9154584 | Han | Oct 2015 | B1 |
9215275 | Kannan et al. | Dec 2015 | B2 |
9219751 | Chen et al. | Dec 2015 | B1 |
9253152 | Chen et al. | Feb 2016 | B1 |
9270705 | Chen et al. | Feb 2016 | B1 |
9270774 | Jalan et al. | Feb 2016 | B2 |
9338225 | Jalan et al. | May 2016 | B2 |
9350744 | Chen et al. | May 2016 | B2 |
9356910 | Chen et al. | May 2016 | B2 |
9386088 | Zheng et al. | Jul 2016 | B2 |
9531846 | Han et al. | Dec 2016 | B2 |
20010042200 | Lamberton et al. | Nov 2001 | A1 |
20010049741 | Skene et al. | Dec 2001 | A1 |
20020026515 | Michielsens et al. | Feb 2002 | A1 |
20020032777 | Kawata et al. | Mar 2002 | A1 |
20020032799 | Wiedeman et al. | Mar 2002 | A1 |
20020078164 | Reinschmidt | Jun 2002 | A1 |
20020091844 | Craft et al. | Jul 2002 | A1 |
20020103916 | Chen et al. | Aug 2002 | A1 |
20020133491 | Sim et al. | Sep 2002 | A1 |
20020138618 | Szabo | Sep 2002 | A1 |
20020141386 | Minert et al. | Oct 2002 | A1 |
20020143991 | Chow et al. | Oct 2002 | A1 |
20020178259 | Doyle et al. | Nov 2002 | A1 |
20020188678 | Edecker et al. | Dec 2002 | A1 |
20020191575 | Kalavade et al. | Dec 2002 | A1 |
20020194335 | Maynard | Dec 2002 | A1 |
20020194350 | Lu et al. | Dec 2002 | A1 |
20030009591 | Hayball et al. | Jan 2003 | A1 |
20030014544 | Pettey | Jan 2003 | A1 |
20030023711 | Parmar et al. | Jan 2003 | A1 |
20030023873 | Ben-Itzhak | Jan 2003 | A1 |
20030035409 | Wang et al. | Feb 2003 | A1 |
20030035420 | Niu | Feb 2003 | A1 |
20030061506 | Cooper et al. | Mar 2003 | A1 |
20030065762 | Stolorz et al. | Apr 2003 | A1 |
20030091028 | Chang et al. | May 2003 | A1 |
20030131245 | Linderman | Jul 2003 | A1 |
20030135625 | Fontes et al. | Jul 2003 | A1 |
20030195962 | Kikuchi et al. | Oct 2003 | A1 |
20040010545 | Pandya | Jan 2004 | A1 |
20040062246 | Boucher et al. | Apr 2004 | A1 |
20040073703 | Boucher et al. | Apr 2004 | A1 |
20040078419 | Ferrari et al. | Apr 2004 | A1 |
20040078480 | Boucher et al. | Apr 2004 | A1 |
20040103315 | Cooper et al. | May 2004 | A1 |
20040111516 | Cain | Jun 2004 | A1 |
20040128312 | Shalabi et al. | Jul 2004 | A1 |
20040139057 | Hirata et al. | Jul 2004 | A1 |
20040139108 | Tang et al. | Jul 2004 | A1 |
20040141005 | Banatwala et al. | Jul 2004 | A1 |
20040143599 | Shalabi et al. | Jul 2004 | A1 |
20040187032 | Gels et al. | Sep 2004 | A1 |
20040199616 | Karhu | Oct 2004 | A1 |
20040199646 | Susai et al. | Oct 2004 | A1 |
20040202182 | Lund et al. | Oct 2004 | A1 |
20040210623 | Hydrie et al. | Oct 2004 | A1 |
20040210663 | Phillips et al. | Oct 2004 | A1 |
20040213158 | Collett et al. | Oct 2004 | A1 |
20040250059 | Ramelson et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050005207 | Herneque | Jan 2005 | A1 |
20050009520 | Herrero et al. | Jan 2005 | A1 |
20050021848 | Jorgenson | Jan 2005 | A1 |
20050027862 | Nguyen et al. | Feb 2005 | A1 |
20050036501 | Chung et al. | Feb 2005 | A1 |
20050036511 | Baratakke et al. | Feb 2005 | A1 |
20050039033 | Meyers et al. | Feb 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050074013 | Hershey et al. | Apr 2005 | A1 |
20050080890 | Yang et al. | Apr 2005 | A1 |
20050102400 | Nakahara et al. | May 2005 | A1 |
20050125276 | Rusu | Jun 2005 | A1 |
20050163073 | Heller et al. | Jul 2005 | A1 |
20050198335 | Brown et al. | Sep 2005 | A1 |
20050213586 | Cyganski et al. | Sep 2005 | A1 |
20050240989 | Kim et al. | Oct 2005 | A1 |
20050249225 | Singhal | Nov 2005 | A1 |
20050259586 | Hafid et al. | Nov 2005 | A1 |
20050281190 | McGee et al. | Dec 2005 | A1 |
20060023721 | Miyake et al. | Feb 2006 | A1 |
20060036610 | Wang | Feb 2006 | A1 |
20060036733 | Fujimoto et al. | Feb 2006 | A1 |
20060041745 | Parnes | Feb 2006 | A1 |
20060064478 | Sirkin | Mar 2006 | A1 |
20060069774 | Chen et al. | Mar 2006 | A1 |
20060069804 | Miyake et al. | Mar 2006 | A1 |
20060077926 | Rune | Apr 2006 | A1 |
20060092950 | Arregoces et al. | May 2006 | A1 |
20060098645 | Walkin | May 2006 | A1 |
20060112170 | Sirkin | May 2006 | A1 |
20060164978 | Werner et al. | Jul 2006 | A1 |
20060168319 | Trossen | Jul 2006 | A1 |
20060187901 | Cortes et al. | Aug 2006 | A1 |
20060190997 | Mahajani et al. | Aug 2006 | A1 |
20060209789 | Gupta et al. | Sep 2006 | A1 |
20060230129 | Swami et al. | Oct 2006 | A1 |
20060233100 | Luft et al. | Oct 2006 | A1 |
20060233101 | Luft | Oct 2006 | A1 |
20060251057 | Kwon et al. | Nov 2006 | A1 |
20060277303 | Hegde et al. | Dec 2006 | A1 |
20060280121 | Matoba | Dec 2006 | A1 |
20070019543 | Wei et al. | Jan 2007 | A1 |
20070022479 | Sikdar et al. | Jan 2007 | A1 |
20070076653 | Park et al. | Apr 2007 | A1 |
20070086382 | Narayanan et al. | Apr 2007 | A1 |
20070094396 | Takano et al. | Apr 2007 | A1 |
20070118881 | Mitchell et al. | May 2007 | A1 |
20070124502 | Li | May 2007 | A1 |
20070156919 | Potti et al. | Jul 2007 | A1 |
20070165622 | O'Rourke et al. | Jul 2007 | A1 |
20070180119 | Khivesara et al. | Aug 2007 | A1 |
20070185998 | Touitou et al. | Aug 2007 | A1 |
20070195792 | Chen et al. | Aug 2007 | A1 |
20070230337 | Igarashi et al. | Oct 2007 | A1 |
20070242738 | Park et al. | Oct 2007 | A1 |
20070243879 | Park et al. | Oct 2007 | A1 |
20070245090 | King et al. | Oct 2007 | A1 |
20070248009 | Petersen | Oct 2007 | A1 |
20070259673 | Willars et al. | Nov 2007 | A1 |
20070283429 | Chen et al. | Dec 2007 | A1 |
20070286077 | Wu | Dec 2007 | A1 |
20070288247 | Mackay | Dec 2007 | A1 |
20070294209 | Strub et al. | Dec 2007 | A1 |
20080016161 | Tsirtsis et al. | Jan 2008 | A1 |
20080031263 | Ervin et al. | Feb 2008 | A1 |
20080076432 | Senarath et al. | Mar 2008 | A1 |
20080101396 | Miyata | May 2008 | A1 |
20080109452 | Patterson | May 2008 | A1 |
20080109870 | Sherlock et al. | May 2008 | A1 |
20080120129 | Seubert et al. | May 2008 | A1 |
20080134332 | Keohane et al. | Jun 2008 | A1 |
20080162679 | Maher et al. | Jul 2008 | A1 |
20080225722 | Khemani et al. | Sep 2008 | A1 |
20080228781 | Chen et al. | Sep 2008 | A1 |
20080250099 | Shen et al. | Oct 2008 | A1 |
20080253390 | Das et al. | Oct 2008 | A1 |
20080263209 | Pisharody et al. | Oct 2008 | A1 |
20080271130 | Ramamoorthy | Oct 2008 | A1 |
20080282254 | Blander et al. | Nov 2008 | A1 |
20080291911 | Lee et al. | Nov 2008 | A1 |
20080298303 | Tsirtsis | Dec 2008 | A1 |
20090024722 | Sethuraman et al. | Jan 2009 | A1 |
20090031415 | Aldridge et al. | Jan 2009 | A1 |
20090049198 | Blinn et al. | Feb 2009 | A1 |
20090070470 | Bauman et al. | Mar 2009 | A1 |
20090077651 | Poeluev | Mar 2009 | A1 |
20090092124 | Singhal et al. | Apr 2009 | A1 |
20090106830 | Maher | Apr 2009 | A1 |
20090138606 | Moran et al. | May 2009 | A1 |
20090138945 | Savchuk | May 2009 | A1 |
20090141634 | Rothstein et al. | Jun 2009 | A1 |
20090164614 | Christian et al. | Jun 2009 | A1 |
20090172093 | Matsubara | Jul 2009 | A1 |
20090213858 | Dolganow et al. | Aug 2009 | A1 |
20090222583 | Josefsberg et al. | Sep 2009 | A1 |
20090227228 | Hu et al. | Sep 2009 | A1 |
20090228547 | Miyaoka et al. | Sep 2009 | A1 |
20090262741 | Jungck et al. | Oct 2009 | A1 |
20090271472 | Scheifler et al. | Oct 2009 | A1 |
20090285196 | Lee et al. | Nov 2009 | A1 |
20090288134 | Foottit | Nov 2009 | A1 |
20090313379 | Rydnell et al. | Dec 2009 | A1 |
20100008229 | Bi et al. | Jan 2010 | A1 |
20100023621 | Ezolt et al. | Jan 2010 | A1 |
20100036952 | Hazlewood et al. | Feb 2010 | A1 |
20100042869 | Szabo et al. | Feb 2010 | A1 |
20100054139 | Chun et al. | Mar 2010 | A1 |
20100061319 | Aso et al. | Mar 2010 | A1 |
20100064008 | Yan et al. | Mar 2010 | A1 |
20100082787 | Kommula et al. | Apr 2010 | A1 |
20100083076 | Ushiyama | Apr 2010 | A1 |
20100094985 | Abu-Samaha et al. | Apr 2010 | A1 |
20100095018 | Khemani et al. | Apr 2010 | A1 |
20100098417 | Tse-Au | Apr 2010 | A1 |
20100106833 | Banerjee et al. | Apr 2010 | A1 |
20100106854 | Kim et al. | Apr 2010 | A1 |
20100128606 | Patel et al. | May 2010 | A1 |
20100162378 | Jayawardena et al. | Jun 2010 | A1 |
20100205310 | Altshuler et al. | Aug 2010 | A1 |
20100210265 | Borzsei et al. | Aug 2010 | A1 |
20100217793 | Preiss | Aug 2010 | A1 |
20100217819 | Chen et al. | Aug 2010 | A1 |
20100223630 | Degenkolb et al. | Sep 2010 | A1 |
20100228819 | Wei | Sep 2010 | A1 |
20100235507 | Szeto et al. | Sep 2010 | A1 |
20100235522 | Chen et al. | Sep 2010 | A1 |
20100235880 | Chen et al. | Sep 2010 | A1 |
20100238828 | Russell | Sep 2010 | A1 |
20100265824 | Chao et al. | Oct 2010 | A1 |
20100268814 | Cross et al. | Oct 2010 | A1 |
20100293296 | Hsu et al. | Nov 2010 | A1 |
20100312740 | Clemm et al. | Dec 2010 | A1 |
20100318631 | Shukla | Dec 2010 | A1 |
20100322252 | Suganthi et al. | Dec 2010 | A1 |
20100330971 | Selitser et al. | Dec 2010 | A1 |
20100333101 | Pope et al. | Dec 2010 | A1 |
20110007652 | Bai | Jan 2011 | A1 |
20110019550 | Bryers et al. | Jan 2011 | A1 |
20110023071 | Li et al. | Jan 2011 | A1 |
20110029599 | Pulleyn et al. | Feb 2011 | A1 |
20110032941 | Quach et al. | Feb 2011 | A1 |
20110040826 | Chadzelek et al. | Feb 2011 | A1 |
20110047294 | Singh et al. | Feb 2011 | A1 |
20110060831 | Ishii et al. | Mar 2011 | A1 |
20110083174 | Aldridge et al. | Apr 2011 | A1 |
20110093522 | Chen et al. | Apr 2011 | A1 |
20110099403 | Miyata et al. | Apr 2011 | A1 |
20110099623 | Garrard et al. | Apr 2011 | A1 |
20110110294 | Valluri et al. | May 2011 | A1 |
20110145324 | Reinart et al. | Jun 2011 | A1 |
20110149879 | Noriega et al. | Jun 2011 | A1 |
20110153834 | Bharrat | Jun 2011 | A1 |
20110178985 | San Martin Arribas et al. | Jul 2011 | A1 |
20110185073 | Jagadeeswaran et al. | Jul 2011 | A1 |
20110191773 | Pavel et al. | Aug 2011 | A1 |
20110196971 | Reguraman et al. | Aug 2011 | A1 |
20110276695 | Maldaner | Nov 2011 | A1 |
20110276982 | Nakayama et al. | Nov 2011 | A1 |
20110289496 | Steer | Nov 2011 | A1 |
20110292939 | Subramaian et al. | Dec 2011 | A1 |
20110302256 | Sureshehandra et al. | Dec 2011 | A1 |
20110307541 | Walsh et al. | Dec 2011 | A1 |
20120008495 | Shen et al. | Jan 2012 | A1 |
20120023231 | Ueno | Jan 2012 | A1 |
20120026897 | Guichard et al. | Feb 2012 | A1 |
20120030341 | Jensen et al. | Feb 2012 | A1 |
20120039175 | Sridhar | Feb 2012 | A1 |
20120066371 | Patel et al. | Mar 2012 | A1 |
20120084419 | Kannan et al. | Apr 2012 | A1 |
20120084460 | McGinnity et al. | Apr 2012 | A1 |
20120106355 | Ludwig | May 2012 | A1 |
20120117382 | Larson et al. | May 2012 | A1 |
20120117571 | Davis et al. | May 2012 | A1 |
20120144014 | Natham et al. | Jun 2012 | A1 |
20120144015 | Jalan et al. | Jun 2012 | A1 |
20120151353 | Joanny | Jun 2012 | A1 |
20120170548 | Rajagopalan et al. | Jul 2012 | A1 |
20120173759 | Agarwal et al. | Jul 2012 | A1 |
20120179770 | Jalan et al. | Jul 2012 | A1 |
20120191839 | Maynard | Jul 2012 | A1 |
20120213072 | Kotecha | Aug 2012 | A1 |
20120215910 | Wada | Aug 2012 | A1 |
20120218892 | Kotecha | Aug 2012 | A1 |
20120239792 | Banerjee et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120290727 | Tivig | Nov 2012 | A1 |
20120297046 | Raja et al. | Nov 2012 | A1 |
20120311116 | Jalan et al. | Dec 2012 | A1 |
20130046876 | Narayana et al. | Feb 2013 | A1 |
20130058335 | Koponen et al. | Mar 2013 | A1 |
20130074177 | Varadhan et al. | Mar 2013 | A1 |
20130083725 | Mallya et al. | Apr 2013 | A1 |
20130100958 | Jalan et al. | Apr 2013 | A1 |
20130124713 | Feinberg et al. | May 2013 | A1 |
20130135996 | Torres et al. | May 2013 | A1 |
20130136139 | Zheng et al. | May 2013 | A1 |
20130148500 | Sonoda et al. | Jun 2013 | A1 |
20130166762 | Jalan et al. | Jun 2013 | A1 |
20130173795 | McPherson | Jul 2013 | A1 |
20130176854 | Chisu et al. | Jul 2013 | A1 |
20130176908 | Baniel | Jul 2013 | A1 |
20130191486 | Someya et al. | Jul 2013 | A1 |
20130198385 | Han et al. | Aug 2013 | A1 |
20130250765 | Ehsan et al. | Sep 2013 | A1 |
20130258846 | Damola | Oct 2013 | A1 |
20130282791 | Kruglick | Oct 2013 | A1 |
20140012972 | Han | Jan 2014 | A1 |
20140086052 | Cai | Mar 2014 | A1 |
20140089500 | Sankar et al. | Mar 2014 | A1 |
20140164617 | Jalan et al. | Jun 2014 | A1 |
20140169168 | Jalan et al. | Jun 2014 | A1 |
20140207845 | Han et al. | Jul 2014 | A1 |
20140219082 | Geijer Lundin | Aug 2014 | A1 |
20140254367 | Jeong | Sep 2014 | A1 |
20140258465 | Li | Sep 2014 | A1 |
20140258536 | Chiong | Sep 2014 | A1 |
20140269728 | Jalan et al. | Sep 2014 | A1 |
20140286313 | Fu et al. | Sep 2014 | A1 |
20140298091 | Carlen et al. | Oct 2014 | A1 |
20140330982 | Jalan et al. | Nov 2014 | A1 |
20140334485 | Jain et al. | Nov 2014 | A1 |
20140359052 | Joachimpillai et al. | Dec 2014 | A1 |
20150026794 | Zuk et al. | Jan 2015 | A1 |
20150039671 | Jalan et al. | Feb 2015 | A1 |
20150156223 | Xu et al. | Jun 2015 | A1 |
20150215436 | Kancherla | Jul 2015 | A1 |
20150237173 | Virkki et al. | Aug 2015 | A1 |
20150244566 | Puimedon | Aug 2015 | A1 |
20150281087 | Jalan et al. | Oct 2015 | A1 |
20150281104 | Golshan et al. | Oct 2015 | A1 |
20150296058 | Jalan et al. | Oct 2015 | A1 |
20150312092 | Golshan et al. | Oct 2015 | A1 |
20150312268 | Ray | Oct 2015 | A1 |
20150333988 | Jalan et al. | Nov 2015 | A1 |
20150350048 | Sampat et al. | Dec 2015 | A1 |
20150350379 | Jalan et al. | Dec 2015 | A1 |
20160014052 | Han | Jan 2016 | A1 |
20160014126 | Jalan et al. | Jan 2016 | A1 |
20160036778 | Chen et al. | Feb 2016 | A1 |
20160042014 | Jalan et al. | Feb 2016 | A1 |
20160043901 | Sankar et al. | Feb 2016 | A1 |
20160044095 | Sankar et al. | Feb 2016 | A1 |
20160050233 | Chen et al. | Feb 2016 | A1 |
20160088074 | Kannan et al. | Mar 2016 | A1 |
20160105395 | Chen et al. | Apr 2016 | A1 |
20160105446 | Chen et al. | Apr 2016 | A1 |
20160119382 | Chen et al. | Apr 2016 | A1 |
20160139910 | Ramanathan et al. | May 2016 | A1 |
20160156708 | Jalan et al. | Jun 2016 | A1 |
20160173579 | Jalan et al. | Jun 2016 | A1 |
20170048356 | Thompson et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1372662 | Oct 2002 | CN |
1449618 | Oct 2003 | CN |
1473300 | Feb 2004 | CN |
1529460 | Sep 2004 | CN |
1575582 | Feb 2005 | CN |
1714545 | Dec 2005 | CN |
1725702 | Jan 2006 | CN |
1910869 | Feb 2007 | CN |
101004740 | Jul 2007 | CN |
101094225 | Dec 2007 | CN |
101163336 | Apr 2008 | CN |
101169785 | Apr 2008 | CN |
101189598 | May 2008 | CN |
101193089 | Jun 2008 | CN |
101247349 | Aug 2008 | CN |
101261644 | Sep 2008 | CN |
101442425 | May 2009 | CN |
101495993 | Jul 2009 | CN |
101682532 | Mar 2010 | CN |
101878663 | Nov 2010 | CN |
102123156 | Jul 2011 | CN |
102143075 | Aug 2011 | CN |
102546590 | Jul 2012 | CN |
102571742 | Jul 2012 | CN |
102577252 | Jul 2012 | CN |
102918801 | Feb 2013 | CN |
103533018 | Jan 2014 | CN |
103944954 | Jul 2014 | CN |
104040990 | Sep 2014 | CN |
104067569 | Sep 2014 | CN |
104106241 | Oct 2014 | CN |
104137491 | Nov 2014 | CN |
104796396 | Jul 2015 | CN |
102577252 | Mar 2016 | CN |
102918801 | May 2016 | CN |
102571742 | Jul 2016 | CN |
1209876 | May 2002 | EP |
1770915 | Apr 2007 | EP |
1885096 | Feb 2008 | EP |
02296313 | Mar 2011 | EP |
2577910 | Apr 2013 | EP |
2622795 | Aug 2013 | EP |
2647174 | Oct 2013 | EP |
2760170 | Jul 2014 | EP |
2772026 | Sep 2014 | EP |
2901308 | Aug 2015 | EP |
2760170 | Dec 2015 | EP |
1182560 | Nov 2013 | HK |
1183569 | Dec 2013 | HK |
1183996 | Jan 2014 | HK |
1189438 | Jun 2014 | HK |
1198565 | May 2015 | HK |
1198848 | Jun 2015 | HK |
1199153 | Jun 2015 | HK |
1199779 | Jul 2015 | HK |
1200617 | Aug 2015 | HK |
392015 | Sep 2015 | IN |
261CHE2014 | Jul 2016 | IN |
1668CHENP2015 | Jul 2016 | IN |
H09-097233 | Apr 1997 | JP |
1999096128 | Apr 1999 | JP |
H11-338836 | Oct 1999 | JP |
2000276432 | Oct 2000 | JP |
2000307634 | Nov 2000 | JP |
2001051859 | Feb 2001 | JP |
2001298449 | Oct 2001 | JP |
2002091936 | Mar 2002 | JP |
2003141068 | May 2003 | JP |
2003186776 | Jul 2003 | JP |
2005141441 | Jun 2005 | JP |
2006332825 | Dec 2006 | JP |
2008040718 | Feb 2008 | JP |
2009500731 | Jan 2009 | JP |
2013528330 | Jul 2013 | JP |
2014504484 | Feb 2014 | JP |
2014143686 | Aug 2014 | JP |
2015507380 | Mar 2015 | JP |
5855663 | Dec 2015 | JP |
5906263 | Apr 2016 | JP |
5913609 | Apr 2016 | JP |
5946189 | Jun 2016 | JP |
100830413 | May 2008 | KR |
20130096624 | Aug 2013 | KR |
101576585 | Dec 2015 | KR |
101632187 | Jun 2016 | KR |
269763 | Feb 1996 | TW |
425821 | Mar 2001 | TW |
444478 | Jul 2001 | TW |
WO2001013228 | Feb 2001 | WO |
WO2001014990 | Mar 2001 | WO |
WO2001045349 | Jun 2001 | WO |
WO2003103237 | Dec 2003 | WO |
WO2004084085 | Sep 2004 | WO |
WO2006098033 | Sep 2006 | WO |
WO2008053954 | May 2008 | WO |
WO2008078593 | Jul 2008 | WO |
WO2011049770 | Apr 2011 | WO |
WO2011079381 | Jul 2011 | WO |
WO2011149796 | Dec 2011 | WO |
WO2012050747 | Apr 2012 | WO |
WO2012075237 | Jun 2012 | WO |
WO2012083264 | Jun 2012 | WO |
WO2012097015 | Jul 2012 | WO |
WO2013070391 | May 2013 | WO |
WO2013081952 | Jun 2013 | WO |
WO2013096019 | Jun 2013 | WO |
WO2013112492 | Aug 2013 | WO |
WO2014031046 | Feb 2014 | WO |
WO2014052099 | Apr 2014 | WO |
WO2014088741 | Jun 2014 | WO |
WO2014093829 | Jun 2014 | WO |
WO2014138483 | Sep 2014 | WO |
WO2014144837 | Sep 2014 | WO |
WO2014179753 | Nov 2014 | WO |
WO2015153020 | Oct 2015 | WO |
WO2015164026 | Oct 2015 | WO |
Entry |
---|
“Enhanced Interior Gateway Routing Protocol”, Cisco, Document ID 16406, Sep. 9, 2005 update, 43 pages. |
Crotti, Manuel et al., “Detecting HTTP Tunnels with Statistical Mechanisms”, IEEE International Conference on Communications, Jun. 24-28, 2007, pp. 6162-6168. |
Haruyama, Takahiro et al., “Dial-to-Connect VPN System for Remote DLNA Communication”, IEEE Consumer Communications and Networking Conference, CCNC 2008. 5th IEEE, Jan. 10-12, 2008, pp. 1224-1225. |
Chen, Jianhua et al., “SSL/TLS-based Secure Tunnel Gateway System Design and Implementation”, IEEE International Workshop on Anti-counterfeiting, Security, Identification, Apr. 16-18, 2007, pp. 258-261. |
“EIGRP MPLS VPN PE-CE Site of Origin (SoO)”, Cisco Systems, Feb. 28, 2006, 14 pages. |
Koike et al., “Transport Middleware for Network-Based Control,” IEICE Technical Report, Jun. 22, 2000, vol. 100, No. 53, pp. 13-18. |
Yamamoto et al., “Performance Evaluation of Window Size in Proxy-based TCP for Multi-hop Wireless Networks,” IPSJ SIG Technical Reports, May 15, 2008, vol. 2008, No. 44, pp. 109-114. |
Abe et al., “Adaptive Split Connection Schemes in Advanced Relay Nodes,” IEICE Technical Report, Feb. 22, 2010, vol. 109, No. 438, pp. 25-30. |
Gite, Vivek, “Linux Tune Network Stack (Buffers Size) To Increase Networking Performance,” accessed Apr. 13, 2016 at URL: <<http://www.cyberciti.biz/faq/linux-tcp-tuning/>>, Jul. 8, 2009, 24 pages. |
“Tcp-TCP Protocol”, Linux Programmer's Manual, accessed Apr. 13, 2016 at URL: <<https://www.freebsd.org/cgi/man.cgi?query=tcp&apropos=0&sektion=7&manpath=SuSE+Linux%2Fi386+11.0&format=asci>>, Nov. 25, 2007, 11 pages. |
Cardellini et al., “Dynamic Load Balancing on Web-server Systems”, IEEE Internet Computing, vol. 3, No. 3, pp. 28-39, May-Jun. 1999. |
Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transactions on Networking, vol. 8, No. 2, Apr. 2000. |
Kjaer et al. “Resource allocation and disturbance rejection in web servers using SLAs and virtualized servers”, IEEE Transactions on Network and Service Management, IEEE, US, vol. 6, No. 4, Dec. 1, 2009. |
Sharifian et al. “An approximation-based load-balancing algorithm with admission control for cluster web servers with dynamic workloads”, The Journal of Supercomputing, Kluwer Academic Publishers, BO, vol. 53, No. 3, Jul. 3, 2009. |
Goldszmidt et al. NetDispatcher: A TCP Connection Router, IBM Research Report RC 20853, May 19, 1997. |
Number | Date | Country | |
---|---|---|---|
20170048107 A1 | Feb 2017 | US |