The present invention relates to ball games and game courts for ball games involving running and jumping, and more particularly to court systems for use in practice and/or training for and playing such games thereupon with aid of objective measurements of player performance during such training and/or playing.
The sport of basketball has been known and popular for many years. Various embodiments of the game have been developed using different numbers of players. Similarly, elastic surfaces or trampolines have been a source of entertainment for over 70 years. Among the joys of playing basketball is the ability to dribble, jump high and dunk or slam a ball into the basket. The recently developed game of SLAMBALL™ combines many of these skills.
Basketball and SLAMBALL™ have captured the interest of spectators and players of varying levels of skill, from beginner to competitive professionals. Any person desiring to develop the skills required of either game may have a difficult time doing so alone. Finding an available court is sometimes challenging for basketball players, but it is especially challenging for SLAMBALL™ players, who must find a court having a combination of rigid and elastic surfaces that will accommodate practice, training and/or play. Players improve through repeated practice and by receiving instruction from others more knowledgeable than themselves, and in particular by receiving feedback regarding their own performance through criticism and/or objective measurements.
Ball game players often find that they do not receive sufficient shooting or slamming practice during normal team practices. Thus, there is a continuing need for persons desiring to improve their skills to practice independently and in a time-efficient manner, where a great deal of time is not lost chasing after loose balls rather than shooting or slamming. Several types of basketball retrieval apparatuses that automatically return a ball to a player are known in the art, but none address the court availability or performance improvement quantification problems, i.e. they do not address the need to objectively measure performance during either a practice session or an actual game. There are player skill parameters, referred to herein as “metrics”, for which traditional means for measuring performance (e.g., a stopwatch) are insufficient. In the games of basketball and SLAMBALL™, these include measures of the vertical heights from a playing surface that a player attains, as well as statistics related to successful and unsuccessful slam-dunks. Means for quantifying such skills in the context of a practice session or an actual game would be highly desirable.
There is also a need for those players desiring training and instruction to receive it in a cost-efficient manner. A system allowing either individualized or group on-court instruction would be highly advantageous.
The objects set forth above as well as further and other objects and advantages of the present invention are achieved by the embodiments of the invention described hereinbelow.
The present invention provides a basketball and/or SLAMBALL™ court system enabling practice and skills development. The court system may be used by a single player or multiple players on the same court, or in alternative embodiments, one or more players on one court may compete against one or more players on a different court.
In preferred embodiments, the system includes at least one SLAMBALL™ court equipped with automated components facilitating practice and play. Operation of the automated components is controlled by a central computer, typically in response to a payment received from the player(s) wishing to use the facility. The system can be used for leisure or as an entertainment attraction similar to baseball/softball batting cages and soccer kicking cages. Several embodiments of the invention include sensors for measuring the athletic performance and/or skill level of the player or players on the court. Such performance information (“metrics”) can serve a multitude of purposes. A single individual may wish to assess his or her own performance objectively, for example, to compete against themselves. The metrics may also be used to individualize training to be provided, or to compete against other players' performances.
Game courts may also be used by competing teams of offensive and defensive players on the same court, or by competing teams on different courts (i.e., in multi-court embodiments.) For example, two teams simultaneously competing against one another with appropriate offensive and defensive metrics can also use a two-court embodiment. Any number of courts can be included in the system, in configurations of competition and practice as desired. In practice mode, an automatic ball feeder delivers a basketball to a player at a selected speed and trajectory to a desired point.
In a basic form, the system includes a playing area including a planar playing surface (such as a basketball or SLAMBALL™ court), a hoop above the playing surface through which players attempt to shoot or slam a ball, and an automatic ball feeder that only delivers balls if the player(s) has paid for the privilege of using the court. The ball feeder operation is controlled through a mechanism, which is preferably but not necessarily a computer, that receives an indication from a payment receiving means of whether sufficient payment has been received. Payments may be made in any payment form, such as tokens, credits, cash, credit cards and arcade-type cards, and can entitle players to a certain amount of system use time, a certain number of delivered balls (determined by a ball counter), or any other predetermined measure of system usage. It is preferred to have some type of sectioning means surrounding the playing area for preventing loose balls from traveling too far, perhaps into adjacent playing areas.
The playing surface may comprise a typical basketball (parquet) floor, or alternatively a resilient surface adjacent one or more deformable elastic surfaces, such as trampolines that are well known in the art. Trampoline construction is well known, involving a sturdy membrane or fabric suspended by a plurality of coil springs each attached to the fabric on one end and to a stationary element on their respective other ends. A detailed description of SLAMBALL™ court surfaces may be found in U.S. Patent Application Publication No. 2003/0013560. Artisans will appreciate that other materials may be used in the construction of the deformable surfaces while remaining within the scope and intent of the invention. For the protection of leaping players, it is preferred to dispose a layer of padding about the perimeter of the deformable surfaces, i.e. at the interfaces of the resilient and deformable surfaces. The deformable surfaces can exhibit a variety or uniformity of shapes, such as squares, rectangles, triangles, circles, ellipsoids, trapezoids, hexagons, and octagons.
In an alternative embodiment, player use of the system can be limited by a means for adjusting the elasticity of rebounds provided by the one or more deformable elastic surfaces. A number of means will be described in detail below with reference to the figures of the drawing. Several such means rely on the use of hydraulic pistons to counter the elastic forces provided by component springs of the trampoline that give the trampoline its ‘bounciness’. Another approach involves pressurizing one or more chambers below the deformable surface to greater than atmospheric pressures, thereby reducing the extent of deformation possible of the deformable surfaces.
A non-obtrusive ball collector is preferably deployed below the hoop for conveying balls passing through the hoop to the ball feeder. In a preferred embodiment, the ball collector comprises netting sleeve disposed circumferentially below the hoop and forming a channel of sufficient diameter to accommodate the balls passing through the hoop. Other ball collectors, such as sheets of flexible polymeric materials similarly dimensioned and positioned could equally be used. One or more sensors disposed at the hoop and/or ball feeder indicates whether a shot or slam has been successful, i.e. by sensing whether a ball has passed through the hoop.
In yet another embodiment, a plurality of sensors outputs to the computer position and trajectory information related to the one or more players and the ball(s) on a court. The computer accepts this sensor information, and from it creates an output indicative of the movement of the one or more players and ball. The output can be visual, such as the display of player metrics, time, score, distance or angle from the hoop, etc . . . , and/or audio, such as simulated crowd noise or training instruction to a player in response to his or her measured athletic performance. The computer and sensors have the ability to differentiate between various players on a court, and can determine whether shot and/or slam attempts have been successful, or perhaps missed or blocked. Player metrics are directly related to the skill level of a player, and can include a variety of parameters, such as vertical height(s) jumped, percentage of successful shots or slams or blocks, overall number of successful shots or slams, number of jumps, average jump height, hang time, score, and others. These may optionally be represented as a function of time, deformable surface elasticity, hoop height, etc. The sensors may also be useful in determining whether players adhere to particular game rules. For example, in the game “around the world”, players shoot balls at the hoop from predetermined, progressive positions (such as, for example, those indicated by reference numerals 53 in
In addition to controlling, in alternate embodiments, adjustable position of hoop and/or backboard, the ball feeder, elasticity adjusting means, sensors and output devices, the control mechanism may optionally control a camera for recording, in still photos or on videotape, a practice session or game played.
As mentioned above, the invention provides several configurations including multiple playing areas, which may be used independently or in combinations for competition. The multiple playing areas are, in some configurations, defined by a large single playing surface having multiple courts separated from one another by a sectioning means. The sectioning means may comprise a net, wall or some other type of divider that separates players and prevents loose balls from traveling to other courts, or alternatively the sectioning means may comprise a simple marking on the surface that does not present a physical impediment to players who wish to play a “full court” version of basketball or SLAMBALL™.
Distinct playing areas may each be equipped with independent ball capture and ball feeder mechanisms, but in one preferred form of the invention the playing areas are located around a single, central ball feeder responsible for delivering balls to all of the playing areas.
For a better understanding of the present invention, together with other and further objects thereof, reference is made to the accompanying drawing and detailed description, wherein:
FIGS. 1B,C are schematic illustrations of support mechanisms that allow repositioning of a hoop and backboard used in the system;
FIGS. 2A,B are schematic illustrations of trampolines and a hydraulic piston elasticity control means;
FIGS. 5A,B are schematic illustrations of multi-court embodiments of the system.
The present invention provides a system of one or more automated game courts, such as basketball or SLAMBALL™ courts, upon which one or more players can play or practice to improve their skills.
With reference to
Hoop 6 is located at an elevated position above the court 4, and is typically accompanied by a backboard 14. With reference to
Payment means 12 comprises any mechanism adapted to receive, for example, game tokens or arcade-type cards, credit cards or cash. A payment made entitles one or more players to commensurate use of the system. Payments may entitle the player(s) to a predetermined playing time, as measured by a timer 9 in control mechanism or computer 10, a predetermined number of balls to be delivered by ball feeder 8, or other means for limiting play (such as described below.) The term computer, as used herein, is understood to mean a generic device including a microprocessor and input/output means in electrical communication with the various system components so as to enable control over the system components configured in a particular system. In certain embodiments of the present invention, simpler mechanisms known in the art for controlling usage, for example, of batting or soccer cages may be similarly employed for limiting usage of the system.
Court 4 is preferably, though not necessarily, comprised of a flat, resilient surface, such as a basketball parquet, that will support players running and dribbling on it, and one or more co-planar deformable elastic surfaces, such as trampolines 16, each of which is lined with padding 18. The trampoline(s) 16 may have any variety of shapes, such as squares, rectangles, triangles, circles, ellipsoids, trapezoids, hexagons, and octagons. They are preferably arranged so as to enable players to bounce on them as they attempt to slam balls through the hoop. In one embodiment, their arrangement is similar to that of courts used in the popular SLAMBALL™ game. Because the trampolines require a region below the planar surface into which they may deform, the court is either elevated, or alternatively below each trampoline there exists a below-ground pit.
With reference to
Other means for controlling the elasticity of the trampolines 16 are also possible. One alternative (not shown) consists of pressurizing a closed region, or locating inflatable reservoirs, below the material 20 of the trampoline to a pressure that provides a sufficient resistance to the deformation of the elastic surface allowed by the springs 22. A controllable pump and discharge valve for each trampoline is required for such an embodiment.
With reference again to
In a preferred embodiment illustrated in
Computer 10 uses the position and trajectory information output from the sensors 44,46 to compute various player and/or team metrics, and/or to create a visual or audio output relative to the computed metrics.
Simpler alternatives to the three dimensional player-tracking sensing system can also be employed. For example, a simple ball counter or an electronic eye or sensor attached to the rim and or backboard can keep track of the number of successful and failed attempts and will capture such information which will then be transmitted to a computer controlled audio and scoring metric system.
Also illustrated is a pair of speakers 52 shown as embedded in scoreboard 50, but they are not required to be. The audio output that computer 10 causes speakers 52 to create is preferably responsive to the measured performance of the player(s) on the court. For example, speakers 52 may simulate crowd jeers and/or cheers in response to a made shot or slam. Alternatively, when system 2 is being operated in Training Mode, as opposed to Play Mode, the audio output may include training instruction individualized to a particular player based on his or her motions as detected by the sensors 44,46. Optionally, a camera 56 may record for the player(s) or coach(es) the action that occurs on the court. In a commercial pay-to-play environment, the camera may capture still photos or short movies on video tape of a game or practice session for sale to a user of the system.
The automated ball feeder (and collector), means for adjusting the hoop and/or backboard position, payment receiving means, and elasticity control means and sensing system features are not mutually exclusive; system 2 may be configured with each feature individually or in various combinations.
With reference to
As noted above, the system 2 may be used in multiple modes: Training (individual or team), and Playing (single or multiple courts, single or multiple players on each court.) The particular mode selected will determine what metrics are displayed on the scoreboards associated with the court(s) being used. Each use of the system, however, is preceded by the receipt of a payment from those desiring system usage. System computer 10 will then prompt the participants for answers to questions in order to select options and settings for the courts (e.g., hoop height, elasticity, etc.) As discussed, players may be required to wear some article that allows the system sensors (if selected for use) to detect and differentiate the players from each other. Various offensive and defensive metrics can then be more easily measured and maintained.
The system response for a single player practice session is represented in Table One, which reflects the visual (scoreboard 50 display) and audio (speaker 52 ) outputs created by the system computer 10 in response to the metrics reflected.
The system response for a team (one offensive, one defensive player) training session is represented in Table Two:
It can be readily appreciated how these examples can be extended for the purposes of multi-court practice and play, with multiple players and teams on each of the courts.
Although the invention has been described with respect to various embodiments, it should be realized this invention is also capable of a wide variety of further and other embodiments within the spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3201126 | Nissen | Aug 1965 | A |
3233895 | Grelle et al. | Feb 1966 | A |
3312471 | Nissen | Apr 1967 | A |
3339925 | Nissen | Sep 1967 | A |
4013292 | Cohen et al. | Mar 1977 | A |
4162063 | Nissen et al. | Jul 1979 | A |
4239214 | Brenner | Dec 1980 | A |
4452444 | Schulze, Jr. | Jun 1984 | A |
4699386 | Carzino | Oct 1987 | A |
5064195 | McMahan et al. | Nov 1991 | A |
5138322 | Nuttall | Aug 1992 | A |
5330175 | Kim | Jul 1994 | A |
5364091 | Sebek | Nov 1994 | A |
5370591 | Jewell et al. | Dec 1994 | A |
5537212 | Kelly et al. | Jul 1996 | A |
5624122 | Winkelhorn | Apr 1997 | A |
5684453 | Welch | Nov 1997 | A |
5697791 | Nashner et al. | Dec 1997 | A |
5776018 | Simpson et al. | Jul 1998 | A |
5833557 | Cole | Nov 1998 | A |
5842699 | Mirando et al. | Dec 1998 | A |
5984684 | Brostedt et al. | Nov 1999 | A |
6042490 | Lenhart | Mar 2000 | A |
6095928 | Goszyk | Aug 2000 | A |
6133946 | Cavallaro et al. | Oct 2000 | A |
6280352 | Coffeen et al. | Aug 2001 | B1 |
6389368 | Hampton | May 2002 | B1 |
6488600 | Gordon | Dec 2002 | B1 |
6634966 | Gordon | Oct 2003 | B2 |
6676546 | Gordon | Jan 2004 | B2 |
6682444 | Gordon | Jan 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20050130772 A1 | Jun 2005 | US |