AUTOMATED BANKING MACHINE OPERATED RESPONSIVE TO DATA BEARING RECORDS WITH IMPROVED RESISTANCE TO FRAUD

Information

  • Patent Application
  • 20140151450
  • Publication Number
    20140151450
  • Date Filed
    February 04, 2014
    10 years ago
  • Date Published
    June 05, 2014
    10 years ago
Abstract
A banking system machine is controlled responsive to data read from data bearing records. The machine includes a card reader, a keypad, a cash dispenser, a cash outlet, a deposit accepting opening, and other transaction locations that may be susceptible to the installation of fraudulent devices adjacent thereto. Such unauthorized devices may include for example, a fraudulent card reading device, a fraudulent keypad input intercepting device, a cash outlet trap device, a deposit input diversion device, or other illegitimate devices. The machine includes an anti-fraud arrangement that is operative to deter the attachment of unauthorized devices to the machine. The arrangement can sense and/or dislodge an unauthorized device attached to the machine. The arrangement also allows for the machine's card slot bezel to be frequently exchanged for a differently contoured card slot bezel.
Description
TECHNICAL FIELD

The present disclosure relates generally to banking system machines that operate responsive to data read from data bearing.


BACKGROUND OF INVENTION

Automated banking machines may include a card reader that operates to read data from a bearer record such as a user card. The automated banking machine may operate to cause the data read from the card to be compared with other computer stored data related to the bearer. The machine operates in response to the comparison determining that the bearer is an authorized system user to carry out at least one transaction which is operative to transfer value to or from at least one account. A record of the transaction is also commonly printed through operation of the automated banking machine and provided to the user. A common type of automated banking machine used by consumers is an automated teller machine. An automated teller machine reads customer cards and enables customers to carry out banking transactions. Banking transactions carried out using automated teller machines may include the dispensing of cash, the making of deposits, the transfer of funds between accounts and account balance inquiries. The types of banking transactions a customer can carry out are determined by the capabilities of the particular banking machine and the programming of the institution operating the machine.


Other types of automated banking machines may be operated by merchants to carry out commercial transactions. These transactions may include, for example, the acceptance of deposit bags, the receipt of checks or other financial instruments, the dispensing of rolled coin or other transactions required by merchants. Still other types of automated banking machines may be used by service providers in a transaction environment such as at a bank to carry out financial transactions. Such transactions may include for example, the counting and storage of currency notes or other financial instrument sheets, the dispensing of notes or other sheets, the imaging of checks or other financial instruments, and other types of service provider transactions. For purposes of this disclosure an automated banking machine, automated transaction machine, or an automated teller machine (A TM) shall be deemed to include any machine that may be used to automatically carry out transactions involving transfers of value.


OBJECTS OF EXEMPLARY EMBODIMENTS

It is an object of an exemplary embodiment to provide an automated banking machine that operates responsive to data bearing records.


It is a further object of an exemplary embodiment to provide an automated banking machine that facilitates the detection of fraudulent activity which may be attempted at the machine.


It is a further object of an exemplary embodiment to provide an automated banking machine which improved capabilities.


It is a further object of an exemplary embodiment to provide an automated banking machine which reduces the risk of unauthorized access to devices and operations of the machine.


Further objects of exemplary embodiments will be made apparent in the following Description of Exemplary Embodiments and the appended claims.


The foregoing objects are accomplished in some exemplary embodiments by a card activated automated banking machine which comprises an automated teller machine (ATM). The machine includes a plurality of transaction function devices. The devices include a card reader that is operative to read data included on cards of machine users. In the exemplary embodiment the transaction function devices include input and output devices which are part of a user interface. In the exemplary embodiment the transaction function devices also include devices for carrying out types of banking transactions such as a currency dispenser device and a deposit accepting device. The exemplary machine also includes at least one computer which is referred to herein as a processor or controller, and which is operative to cause the operation of the transaction function devices in the machine.


In an exemplary embodiment the machine includes a housing with a secure chest portion and an upper housing area. The chest portion houses certain transaction function devices such as the currency dispenser device. For purposes of this disclosure a cash dispenser or currency dispenser shall be construed to mean a mechanism that makes cash stored in the machine accessible to users from outside the machine. The chest portion includes a chest door which is generally secured but which is capable of being opened when unlocked by authorized persons.


In some exemplary embodiments during operation of the machine, the transaction areas are illuminated to facilitate operation of the machine by users. In an exemplary embodiment the controller of the machine is operative to illuminate the transaction areas at those times when the user would be expected to receive or place items in such transaction areas during the conduct of transactions. This facilitates guiding the user to the particular transaction area on the machine even when the machine is being operated during daylight hours.


In some exemplary embodiments the capability of illuminating selected areas of the machine during certain transaction steps may be utilized in conjunction with anti-fraud devices. In an exemplary embodiment anti-fraud devices are used to reduce the risk that an unauthorized card reading device is installed externally of the machine adjacent to the card reader slot of the machine fascia. Criminals are sometimes ingenious and in the past some have produced reading devices that can intercept magnetic stripe data on cards that are being input to a machine by a consumer. By intercepting this data, criminals may be able to conduct unauthorized transactions with the consumer's card number. Such external reading devices may be made to appear to be a part of the normal machine fascia.


In an exemplary embodiment the housing in surrounding relation of the card reader slot is illuminated responsive to operation of the controller. In some exemplary machines the housing is operative to illuminate an area generally entirely surrounding the slot so as to make it more readily apparent to a user that an unauthorized modification or attachment to the fascia may have been made.


In some exemplary embodiments during normal operation, the illumination of the area surrounding the fascia card slot is operative to help to guide the user to the slot during transactions when a user is required to input or take their card. The exemplary machine is provided with radiation sensing devices positioned adjacent to the illumination devices that are operative to illuminate the area surrounding the card reader slot. The exemplary controller is programmed to sense changes in the magnitude of radiation sensed by the one or more radiation sensing devices. The installation of an unauthorized card reading device in proximity to the card reading slot generally produces a change in the magnitude of the radiation sensed by the radiation sensing devices. The exemplary controller is programmed to recognize such changes and to take appropriate action in response thereto so as to reduce the possibility of fraud. Such action may include in some exemplary embodiments, the machine sending a status message through a network to a person to be notified of a possible fraud condition. Such actions may also include in some embodiments, warning the user of the machine to look for the installation of a possible fraud device. Of course these approaches are exemplary and in other embodiments other approaches may be used.


In some alternative exemplary embodiments, provisions may be made for providing a bezel that includes or that is adjacent to the card slot, that provides for reducing the risk of the attachment of skimming devices. Such features may include contours, sensing devices and other provisions to prevent the attachment of skimming devices. Further, provision may be made for more readily changeable bezels so as to make it more difficult for criminals to devise a skimming device that can be readily attached to multiple automated banking machines. In some exemplary embodiments sensing devices may be provided in proximity to the keypad used by the customer to provide inputs, such as a personal identification number (PIN). Such sensors may be of the radiation sensing type or other type. Such sensors are adapted to sense the installation of unauthorized input intercepting devices above or adjacent to the keypad. The sensing of such an unauthorized device may cause an exemplary controller in the machine to give notice of the potential fraud device and/or to cease or modify the operation of the machine to reduce the risk of interception of customer inputs. In some exemplary embodiments radiation emitting devices used for sensing may provide outputs of visible light and may be used to guide a user at appropriate times during transactions to provide inputs to the keypad.


Still other embodiments may include covering structures which overlie the keypad. Such overlying structures may help to prevent unauthorized observation of the user inputs. Provision may be made for assuring that any removal of such a covering structure is detected. Further, devices may operate to assure that cameras or other unauthorized interception devices are not installed within the interior of such keypad covering devices.


As will be appreciated, the foregoing objects and examples are exemplary. Additional aspects and embodiments within the scope of the claims may be devised by those having skill in the art based on the teachings set forth herein.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is an isometric external view of an exemplary automated banking machine which incorporates some aspects and features of embodiments described in the present application.



FIG. 2 is a front plan view of the machine shown in FIG. 1.



FIG. 3 is a transparent side view showing schematically some internal features of the machine.



FIG. 4 is a schematic view representative of the software architecture of an exemplary embodiment.



FIG. 5 is a front view showing the fascia portion moved to access a first portion of an upper housing of the machine.



FIG. 6 is a partially transparent side view of the machine.



FIG. 7 is an isometric view of the machine shown in FIG. 1 with the components of the upper housing portion removed.



FIG. 8 is a schematic side view of the housing showing schematically the illumination system for the transaction areas and representing in phantom the movement of the upper fascia portion so as to provide access for servicing.



FIG. 9 is a schematic view of an illumination and anti-fraud sensing device which bounds a card reader slot of an exemplary embodiment.



FIG. 10 is a schematic side view of an unauthorized card reading device in operative connection with a housing of the anti-fraud sensor.



FIG. 11 is a schematic view of exemplary logic for purposes of detecting the presence of an unauthorized card reading device in proximity to the card reader during operation of the machine.



FIG. 12 is an exemplary side, cross sectional view of a machine keypad.



FIG. 13 is a schematic representation of a sensor for sensing whether an unauthorized key input sensing device has been placed adjacent to the keypad.



FIG. 14 is a view of a keypad similar to FIG. 12 but with an unauthorized key input sensing device attached.



FIG. 15 is a schematic representation similar to FIG. 13, but representing the change in reflected radiation resulting from the attachment of the unauthorized key input sensing device.



FIG. 16 is a schematic view of an anti-fraud device disposed within a slot of a card reader.



FIG. 17 is a schematic view of an unauthorized card reading device mounted adjacent the card reader.



FIG. 18 is a schematic view of an alternate embodiment utilizing radiation emitters to emit radiation detectable by an anti-fraud device.



FIG. 19 is a schematic view of yet a further alternative embodiment of an anti-fraud device.



FIG. 20 is a schematic view of an exemplary apparatus for detecting the presence of an unauthorized device in connection with a machine.



FIG. 21 is a schematic of exemplary gain circuitry used in connection with an exemplary radiation sensing device.



FIG. 22 is a schematic view of exemplary logic flow carried out in connection with the apparatus of FIG. 20.



FIG. 23 is a schematic view of an alternative exemplary apparatus for detecting the presence of an unauthorized device in connection with a machine.



FIG. 24 is a schematic of exemplary circuitry used in connection with the exemplary apparatus of FIG. 23.



FIG. 25 is a front view of a fascia of an alternative automated banking machine.



FIG. 26 is a partial isometric view of a fascia of an automated banking machine showing the area of the card reader slot.



FIG. 27 is an isometric view showing the bezel surrounding the card reader slot.



FIG. 28 is an isometric view of a card reader bezel similar to FIG. 26.



FIGS. 28A, 28B, and 28C show different views of a bezel that is similar to the bezel shown in FIG. 28.



FIG. 29 is an exploded rear view of the card reader bezel assembly.



FIG. 30 is a front isometric view of an A TM fascia with an alternative card reader bezel.



FIG. 31 is an isometric view of the card reader bezel shown in FIG. 30.



FIGS. 31A, 31B, and 31C show different views of a bezel that is similar to the bezel shown in FIG. 31.



FIG. 32 is an isometric view of an alternative card reader bezel.



FIGS. 32A, 32B, and 32C show different views of a bezel that is similar to the bezel shown in FIG. 32.



FIG. 33 is an isometric view of an alternative card reader bezel. FIGS. 33A, 33B, and 33C show different views of a bezel that is similar to the bezel shown in FIG. 33.



FIG. 34 is an isometric view of an alternative card reader bezel.



FIGS. 34A, 34B, and 34C show different views of a bezel that is similar to the bezel shown in FIG. 34.



FIG. 35 is an isometric view of an alternative card reader bezel.



FIGS. 35A, 35B, and 35C show different views of a bezel that is similar to the bezel shown in FIG. 35.



FIG. 36 is an isometric view of an alternative card reader bezel.



FIGS. 36A, 36B, and 36C show different views of a bezel that is similar to the bezel shown in FIG. 36.



FIG. 37 is an isometric view of an alternative card reader bezel.



FIGS. 37A, 37B, and 37C show different views of a bezel that is similar to the bezel shown in FIG. 37.



FIG. 38 is an isometric view of an alternative card reader bezel.



FIGS. 38A, 38B, and 38C show different views of a bezel that is similar to the bezel shown in FIG. 38.



FIG. 39 is an isometric view of an alternative card reader bezel.



FIGS. 39A, 39B, and 39C show different views of a bezel that is similar to the bezel shown in FIG. 39.



FIG. 40 is an exploded view of an alternative card reader bezel structure and a card reader.



FIG. 41 shows a front view of an exemplary card reader bezel with a particular contour.



FIG. 42 shows a front view of an exemplary bezel that includes a see-through window.



FIG. 43 shows a top view of the interior of a card reader.



FIG. 44 shows a top view of an exemplary rotatable bezel section having a substantially rectangular shape.



FIG. 45 shows an angled side view of the bezel section shown in FIG. 44.



FIG. 46 shows a top view of an exemplary rotatable bezel section having a substantially triangular shape.



FIG. 47 shows an angled side view of the bezel section shown in FIG. 46.



FIG. 48 shows a front view of the outer face of an exemplary bezel.



FIG. 49 shows a side view taken along A-A in FIG. 48, with projections retracted.



FIG. 50 shows a side view taken along A-A in FIG. 48, with projections extended.



FIG. 51 shows a top view of a bezel's flexible outer surface in an expanded condition.



FIG. 52 shows a front view of the bezel shown in FIG. 51.



FIG. 53 shows a top view of an exemplary arrangement that uses physical contact to outwardly stretch a portion of a bezel's flexible outer surface to create a moving dislodging wave across the surface.



FIG. 54 shows an angled view of a wave creating component used in FIG. 53.



FIG. 55 is an exploded view of a portion of a machine fascia and a keypad cover.



FIG. 56 shows the portion of the machine fascia of FIG. 55 including the keypad cover installed thereon.



FIG. 57 is a schematic view of a portion of the fascia including the keypad cover including certain sensors for detecting fraud devices.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

The following applications are incorporated herein by reference in their entirety: U.S. application Ser. No. 12/288,333 filed Oct. 17, 2008; Ser. No. 13/134,654 filed Jun. 13, 2011; Ser. No. 13/199,106 filed Aug. 19, 2011; Ser. No. 11/975,375 filed Oct. 19, 2007; Ser. No. 11/454,257 filed Jun. 16, 2006; Ser. No. 10/832,960 filed Apr. 27, 2004; and Ser. No. 10/601,813 filed Jun. 3, 2003; and U.S. Provisional Applications 61/000,215 filed Oct. 24, 2007; 61/000,335 filed Oct. 25, 2007; 60/429,478 filed Nov. 26, 2002; 60/560,674 filed Apr. 7, 2004; 60/853,098 filed Oct. 20, 2006; 61/628,513 filed Nov. 1, 2011; and 61/629,900 filed Nov. 30, 2011.


Referring now to the drawings and particularly to FIG. 1, there is shown therein an exemplary embodiment of an automated banking machine generally indicated 10. In the exemplary embodiment automated banking machine 10 is a drive up A 1M, however the features described and claimed herein are not necessarily limited to machines of this type. The exemplary machine includes a housing 12. Housing 12 includes an upper housing area 14 and a secure chest area 16 in a lower portion of the housing. Access to the chest area 16 is controlled by a chest door 18 which when unlocked by authorized persons in the manner later explained, enables gaining access to the interior of the chest area.


The exemplary machine 10 further includes a first fascia portion 20 and a second fascia portion 22. Each of the fascia portions is movably mounted relative to the housing as later explained, which in the exemplary embodiment facilitates servicing. The machine includes a user interface generally indicated 24. The exemplary user interface includes input devices such as a card reader 26 (shown in FIG. 3) which is in operative connection with a card reader slot 28 (FIG. 1) which extends in the second fascia portion. The card reader slot 28 can lead to a card accepting area (e.g., a card entrance or opening) of the card reader 26. The card reader 26 is operative to read data bearing records presented by machine users. Such records can include data corresponding to at least one of the associated user, one or more user financial accounts, and/or other data. In some exemplary embodiments the card reader may read the data from magnetic stripe cards. In other exemplary embodiments the card reader may be operative to read data from other card or record types such as contactless cards. Of course these approaches are exemplary.


The user interface 24 can also include other reader devices, such as a biometric reader. A biometric reader can read user biometric data. For example, user biometric information may involve one or more of a fingerprint, thumbprint, hand scan (e.g., palm print or back of hand), iris scan, retina scan, fingernail print, spoken password, voice print, voice (speech) recognition, image data, face topography data, facial recognition, DNA scan, etc., or combinations thereof. Read biometric data (or indicia) can be used for purposes of identifying a particular user and/or their account. For example, biometric data can be used to verify that a person is authorized to use a cash dispensing automated banking machine. Read biometric data can also be compared to read card data. Correlation of biometric data and card data can result in customer authorization.


Other input devices of the exemplary user interface 24 include function keys 30 and a keypad 32. The exemplary machine 10 also includes a camera 34 which also may serve as an input device for biometric features and the like. The exemplary user interface 24 also includes output devices such as a display 36. Display 36 is viewable by an operator of the machine when the machine is in the operative condition through an opening 38 in the second fascia portion 22. Further output devices in the exemplary user interface include a speaker 40. A headphone jack 42 also serves as an output device. The headphone jack may be connected to a headphone provided by a user who is visually impaired to provide the user with voice guidance in the operation of the machine. The exemplary machine further includes a receipt printer 44 (see FIG. 3) which is operative to provide users of the machine with receipts for transactions conducted. Transaction receipts are provided to users through a receipt delivery slot 46 which extends through the second fascia portion. Exemplary receipt printers that may be used in some embodiments are shown in U.S. Pat. No. 5,729,379 and U.S. Pat. No. 5,850,075, the disclosures of which are incorporated by reference herein in their entirety. It should be understood that these input and output devices of the user interface 24 are exemplary and in other embodiments, other or different input and output devices may be used.


In the exemplary embodiment the second fascia portion has included thereon a deposit envelope providing opening 48. Deposit envelopes may be provided from the deposit envelope providing opening to users who may place deposits in the machine. The second fascia portion 20 also includes a fascia lock 50. Fascia lock 50 is in operative connection with the second fascia portion and limits access to the portion of the interior of the upper housing behind the fascia to authorized persons. In the exemplary embodiment fascia lock 50 comprises a key type lock. However, in other embodiments other types of locking mechanisms may be used. Such other types of locking mechanisms may include for example, other types of mechanical and electronic locks that are opened in response to items, inputs, signals, conditions, actions or combinations or multiples thereof.


The exemplary machine 10 further includes a delivery area 52. Delivery area 52 is in connection with a currency dispenser device 54 which is alternatively referred to herein as a cash dispenser, which is positioned in the chest portion and is shown schematically in FIG. 3. The delivery area 52 is a transaction area on the machine in which currency sheets are delivered to a user. In the exemplary embodiment the delivery area 52 is positioned and extends within a recessed pocket 56 in the housing of the machine.


Machine 10 further includes a deposit acceptance area 58. The deposit acceptance area is an area through which deposits such as deposit envelopes to be deposited by users are placed in the machine. The deposit acceptance area 58 is in operative connection with a deposit accepting device positioned in the chest area 16 of the machine. Exemplary types of deposit accepting devices are shown in U.S. Pat. No. 4,884,769 and U.S. Pat. No. 4,597,330, the disclosures of which are incorporated herein by reference in their entirety.


In the exemplary embodiment the deposit acceptance area serves as a transaction area of the machine and is positioned and extends within a recessed pocket 60. It should be understood that while the exemplary embodiment of machine 10 includes an envelope deposit accepting device and a currency sheet dispenser device, other or different types of transaction function devices may be included in automated banking machines. These may include for example, check and/or money order accepting devices, ticket accepting devices, stamp accepting devices, card dispensing devices, money order dispensing devices and other types of devices which are operative to carry out transaction functions.


In this exemplary embodiment the machine 10 includes certain illuminating devices which are used to illuminate transaction areas, some of which are later discussed in detail. First fascia portion 20 includes an illumination panel 62 for illuminating the deposit envelope providing opening. Second fascia portion 22 includes an illumination panel 64 for illuminating the area of the receipt delivery slot 46 and the card reader slot 28. Further, an illuminated housing 66 later discussed in detail, bounds the card reader slot 28. Also, in the exemplary embodiment an illuminating window 68 is positioned in the recessed pocket 56 of the delivery area 52. An illuminating window 70 is positioned in the recessed pocket 60 of the deposit acceptance area 58. It should be understood that these structures and features are exemplary and in other embodiments other structures and features may be used.


As schematically represented in FIG. 3, the machine 10 includes one or more internal computers which are alternatively referred to herein as controllers. Such internal computers include one or more processors. Such processors may be alternatively referred to herein as computers. Such processors may be in operative connection with one or more data stores. In some embodiments processors may be located on certain devices within the machine so as to individually control the operation thereof. Examples such as multi-tiered processor systems are shown in U.S. Pat. No. 6,264,101 and U.S. Pat. No. 6,131,809, the disclosures of which are incorporated herein by reference in their entirety. Alternatively in other embodiments, the at least one processor associated with the machine may operate in a remote server which is remotely located from the machine. Such a remote server may operate a virtual machine and control the devices thereof in the manner described in U.S. patent application Ser. No. 13/066,272 filed Apr. 11, 2011, the disclosure of which is incorporated herein by reference in its entirety.


For purposes of simplicity, an exemplary embodiment will be described as having a single controller which controls the operation of devices within the machine. However it should be understood that such reference shall be construed to encompass multi-controller and multiprocessor systems as well as remote systems as may be appropriate in controlling the operation of a particular machine. As a result, the exemplary machine is associated with at least one computer, which can include an internal and/or an external (e.g., remote) computer(s).


In FIG. 3 a machine controller is schematically represented 72. As schematically represented, the controller is in operative connection with one or more data stores 79. Such data stores in an exemplary embodiment are operative to store program instructions, values, and other information used in the operation of the machine. Although a controller 72 is schematically shown in the upper housing portion of the machine 10, it should be understood that in alternative embodiments controllers may be located within various portions of the machine.


In order to conduct transactions the exemplary machine 10 communicates with remote computers. The remote computers are operative to exchange messages with the machine and authorize and record the occurrence of various transactions. This is represented in FIG. 3 by the communication of the machine through a network with a bank 78, which has at least one computer which is operative to exchange messages with the machine through a network. For example, the bank 78 may receive one or more messages from the machine requesting authorization to allow a customer to withdraw $200 from the customer's account. The remote computer at the bank 78 will operate to determine that such a withdrawal is authorized and will return one or more messages to the machine through the network authorizing the transaction. In exemplary embodiments at least one processor in the machine is operative to cause the communication of data corresponding to data read from a user's card from the machine to the remote computer as part of one or more messages. The machine may also communicate other data corresponding to user inputs such as a personal identification number (PIN) and requested transaction data to the remote computer. The remote computer operates to compare the data corresponding to card data and/or PIN data to data corresponding to authorized users and/or financial accounts stored in at least one data store associated with the remote computer.


Responsive to the data corresponding to an authorized user or financial account and a permissible transaction request, the remote computer communicates at least one message to the machine which corresponds to authorization to carry out the requested transaction. After the machine conducts the functions to accomplish a transaction such as dispensing cash, the machine will generally send one or more messages back through the network to the bank indicating that the transaction was successfully carried out. Of course these messages are merely exemplary. It should be understood that in some embodiments the machine may communicate with other entities and through various networks. For example as schematically represented in FIG. 3, the machine will communicate with computers operated by service providers 80. Such service providers may be entities to be notified of status conditions or malfunctions of the machine as well as entities who are to be notified of corrective actions. An example of such a system for accomplishing this is shown in U.S. Pat. No. 5,984,178, the disclosure of which is incorporated herein by reference in its entirety. Other third parties who may receive notifications from exemplary machines include entities responsible for delivering currency to the machine to assure that the currency supplies are not depleted. Other entities may be responsible for removing deposit items from the machine. Alternative entities that may be notified of actions at the machine may include entities which hold marketing data concerning consumers and who provide messages which correspond to marketing messages to be presented to consumers. Various types of messages may be provided to remote systems and entities by the machine depending on the capabilities of the machines in various embodiments and the types of transactions being conducted.



FIG. 4 shows schematically an exemplary software architecture which may be operative in the controller 72 of machine 10. The exemplary software architecture includes an operating system such as for example Microsoft® Windows, ffiM OS/2® or Linux. The exemplary software architecture also includes an ATM application 82. The exemplary application includes the instructions for the operation of the automated banking machine and may include, for example, an Agilis® 91x application that is commercially available from Diebold, Incorporated which is a cross vendor software application for operating A TMs. Further examples of software applications which may be used in some embodiments are shown in U.S. Pat. Nos. 6,289,320 and 6,505,177, the disclosures of which are incorporated herein by reference in their entirety. In the exemplary embodiment middleware software schematically indicated 84 is operative in the controller. In the exemplary embodiment the middleware software operates to compensate for differences between various types of automated banking machines and transaction function devices used therein. The use of a middleware layer enables the more ready use of an identical software application on various types of machine hardware. In the exemplary embodiment the middleware layer may be Involve® software produced by Nexus Software, or middleware software produced by Korala Associates Limited of Scotland.


The exemplary software architecture further includes a diagnostics layer 86. The diagnostics layer 86 is operative as later explained to enable accessing and performing various diagnostic functions of the devices within the machine. In the exemplary embodiment the diagnostics operate in conjunction with a browser schematically indicated 88. The exemplary software architecture further includes a service provider layer schematically indicated 90. The service provider layer may include software such as WOSA XFS service providers or J/XFS service providers which present a standardized interface to the software layers above and which facilitate the development of software which can be used in conjunction with different types of machine hardware. Of course this software architecture is exemplary and in other embodiments other architectures may be used.


As schematically represented in FIG. 4, a controller 72 is in operative connection with at least one communications bus 92. The communications bus may in some exemplary embodiments be a universal serial bus (USB) or other standard or nonstandard type of bus architecture. The communications bus 92 is schematically shown in operative connection with transaction function devices 94. The transaction function devices include devices in the machine which are used to carry out transactions. These may include for example the currency dispenser 54, card reader 26, receipt printer 44, keypad 32, as well as numerous other devices which are operative in the machine and controlled by the controller to carry out transactions.


Furthermore, communication between the controller and the transaction function devices can be encrypted. For example, encryption codes (or keys) can be stored in a data store associated with the transaction function device (e.g., a card reader). The transaction function device (e.g., a card reader) can authenticate itself to the controller, and vice versa. Thus, the use of encryption allows data read from a card to be protected during a transaction with the machine. An encrypted read head can be used in the card reader. Examples of encryption applications which may be used in some embodiments are shown in U.S. patent application Ser. No. 12/802,496 filed Jun. 8, 2010, the disclosure of which is herein incorporated by reference in its entirety. In an exemplary embodiment one of the transaction function devices in operative connection with the controller is a diagnostic article reading device 96 which may be operative to read a diagnostic article schematically indicated 98 which may provide software instructions useful in servicing the machine. Alternatively and/or in addition, provision may be made for connecting the bus 92 or other devices in the machine computer device 100 which may be useful in performing testing or diagnostic activities related to the machine.


In the exemplary embodiment of machine 10 the first fascia portion 20 and the second fascia portion 22 are independently movably mounted on the machine housing 12. This is accomplished through the use of hinges attached to fascia portion 20. The opening of the fascia lock 50 on the first fascia portion 20 enables the first fascia portion to be moved to an open position as shown in FIG. 5. In the open position of the first fascia portion an authorized user is enabled to gain access to a first portion 102 in the upper housing area 14. In the exemplary embodiment there is located within the first portion 102 a chest lock input device 104. In this embodiment the chest lock input device comprises a manual combination lock dial, electronic lock dial or other suitable input device through which a combination or other unlocking inputs or articles may be provided. In this embodiment, input of a proper combination enables the chest door 18 to be moved to an open position by rotating the door about hinges 106. In the exemplary embodiment the chest door is opened once the proper combination has been input by manipulating a locking lever 108 which is in operative connection with a boltwork. The boltwork which is not specifically shown, is operative to hold the chest door in a locked position until the proper combination is input. Upon input of the correct combination the locking lever enables movement of the boltwork so that the chest door can be opened. The boltwork also enables the chest door to be held locked after the activities in the chest portion have been conducted and the chest door is returned to the closed position. Of course in other embodiments other types of mechanical or electrical locking mechanisms may be used. In the exemplary embodiment the chest lock input device 104 is in supporting connection with a generally horizontally extending dividing wall 110 which separates the chest portion from the upper housing portion. Of course this housing structure is exemplary of machine housing structures and in other embodiments other approaches may be used.


An authorized servicer who needs to gain access to an item, component or device of the machine located in the chest area may do so by opening the fascia lock and moving the first fascia portion 20 so that the area 102 becomes accessible. Thereafter the authorized servicer may access and manipulate the chest lock input device to receive one or more inputs, which if appropriate enables unlocking of the chest door 18. The chest door may thereafter be moved relative to the housing and about its hinges 106 to enable the servicer to gain access to items, devices or components within the chest. These activities may include for example adding or removing currency, removing deposited items such as envelopes or checks, or repairing mechanisms or electrical devices that operate to enable the machine to accept deposited items or to dispense currency. When servicing activity within the chest is completed, the chest door may be closed and the locking lever 108 moved so as to secure the boltwork holding the chest door in a closed position. Of course this structure and service method is exemplary and in other embodiments other approaches may be used.


In the exemplary embodiment the second fascia portion 22 is also movable relative to the housing of the machine. In the exemplary embodiment the second fascia portion 22 is movable in supporting connection with a rollout tray 112 schematically shown in FIG. 3. The rollout tray is operative to support components of the user interface thereon as well as the second fascia portion. The rollout tray enables the second fascia portion to move outward relative to the machine housing thereby exposing components and transaction function devices supported on the tray and providing access to a second portion 114 within the upper housing and positioned behind the second fascia portion. Thus as can be appreciated, when the second fascia portion is moved outward, the components on the tray are disposed outside the housing of the machine so as to facilitate servicing, adjustment and/or replacement of such components. Further components which remain positioned within the housing of the machine as the rollout tray is extended become accessible in the second portion as the second fascia portion 22 is disposed outward and away from the housing.


In the exemplary embodiment the rollout tray 112 is in operative connection with a releasable locking device. The locking device is generally operative to hold the tray in a retracted position such that the second fascia portion remains in an operative position adjacent to the upper housing area as shown in FIGS. 1, 2 and 3. This releasable locking mechanism may comprise one or more forms of locking type devices. In the exemplary embodiment the releasable locking mechanism may be released by manipulation of an actuator 116 which is accessible to an authorized user in the first portion 102 of the upper housing 14. As a result an authorized servicer of the machine is enabled to move the second fascia portion outward for servicing by first accessing portion 102 in the manner previously discussed. Thereafter by manipulating the actuator 116 the second fascia portion is enabled to move outward as shown in phantom in FIG. 8 so as to facilitate servicing components on the rollout tray. Such components may include for example a printer or card reader. After such servicing the second fascia portion may be moved toward the housing so as to close the second portion 114. Such movement in the exemplary embodiment causes the rollout tray to be latched and held in the retracted position without further manipulation of the actuator. However, in other embodiments other types of locking mechanisms may be used to secure the rollout tray in the retracted position. It should be understood that this approach is exemplary and in other embodiments other approaches may be used.


As best shown in FIG. 7 in which the components supported in the upper housing are not shown, the delivery area 52 and the deposit acceptance area 58 are in supporting connection with the chest door 18. As such when the chest door 18 is opened, the delivery area 52 and the deposit acceptance area 58 will move relative to the housing of the machine. The exemplary embodiment shown facilitates servicing of the machine by providing for the illumination for the transaction areas by illumination sources positioned in supporting connection with the rollout tray 112. As best shown in FIG. 6, these illumination sources 118 are movable with the rollout tray and illuminate in generally a downward direction. In the operative position of the second fascia portion 22 and the chest door 18, the illumination sources are generally aligned with apertures 120 and 122 which extend through the top of a cover 124 which generally surrounds the recessed pockets 60 and 56. As shown in FIG. 10 aperture 120 is generally vertically aligned with window 68 and aperture 122 is generally aligned with window 70. In an exemplary embodiment apertures 120 and 122 each have a translucent or transparent lens positioned therein to minimize the risk of the introduction of dirt or other contaminants into the interior of the cover 124.


As can be appreciated from FIGS. 6 and 8, when the chest door 18 is closed and the second fascia portion 22 is moved to the operative position, the illumination sources 118 are positioned in generally aligned relation with apertures 120 and 122. As a result the illumination of the illumination devices is operative to cause light to be transmitted through the respective aperture and to illuminate the transaction area within the corresponding recessed pocket. In operation of an exemplary embodiment, the controller executes programmed instructions so as to initiate illumination of each transaction area at appropriate times during the conduct of transactions. For example in the exemplary embodiment if the user is conducting a cash withdrawal transaction, the controller may initiate illumination of the delivery area 52 when the cash is delivered therein and is available to be taken by a user. Such illumination draws the user's attention to the need to remove the cash and will point out to the user that the cash is ready to be taken. In the exemplary embodiment the controller is programmed so that when the user takes the cash the machine will move to the next transaction step. After the cash is sensed as taken, the controller may operate to cease illumination of the delivery area 56. Of course these approaches are exemplary.


Likewise in an exemplary embodiment if a user of the machine indicates that they wish to conduct a deposit transaction, the controller may cause the machine to operate to initiate illumination of the deposit acceptance area 58. The user's attention is drawn to the place where they must insert the deposit envelope in order to have it be accepted in the machine. In the exemplary embodiment the controller may operate to also illuminate the illumination panel 62 to illuminate the deposit envelope providing opening 48 so that the user is also made aware of the location from which a deposit envelope may be provided. In an exemplary embodiment the controller may operate to cease illumination through the window 70 and/or the illumination panel 62 after the deposit envelope is indicated as being sensed within the machine.


In alternative embodiments other approaches may be taken. This may include for example drawing the customer's attention to the particular transaction area by changing the nature of the illumination in the recessed pocket to which the customer's attention is to be drawn. This may be done for example by changing the intensity of the light, flashing the light, changing the color of the light or doing other actions which may draw a user's attention to the appropriate transaction area. Alternatively or in addition, a sound emitter, vibration, projecting pins or other indicator may be provided for visually impaired users so as to indicate to them the appropriate transaction area to which the customer's attention is to be drawn. Of course these approaches are exemplary and in other embodiments other approaches may be used.


As previously discussed the exemplary embodiment of machine 10 is also operative to draw a user's attention at appropriate times to the card reader slot 28. Machine 10 also includes features to minimize the risk of unauthorized interception of card data by persons who may attempt to install a fraud device such as an unauthorized card reading device on the machine. As shown in FIG. 9, the exemplary card slot 28 extends through a card slot housing 66 which extends in generally surrounding relation of the card slot. It should be understood that although the housing 66 generally bounds the entire card slot, in other embodiments the principles described herein may be applied by bounding only one or more sides of a card slot as may be appropriate for detecting unauthorized card reading devices. Further, it should be understood that while the exemplary embodiment is described in connection with a card reader that accepts a card into the machine, the principles being described may be applied to types of card readers that do not accept a card into the machine, such as readers where a user draws the card through a slot, inserts and removes a card manually from a slot, and other card reading structures.


In the exemplary embodiment the housing 66 includes a plurality of radiation emitting devices 126. The radiation emitting devices emit visible radiation which can be perceived by a user of the machine. However, in other embodiments the radiation emitting devices may include devices which emit nonvisible radiation such as infrared radiation, but which nonetheless can be used for sensing the presence of unauthorized card reading devices adjacent to the card slot. In the exemplary embodiment the controller operates to illuminate the radiation emitting devices 126 at appropriate times during the transaction sequence. This may include for example times during transactions when a user is prompted to input the card into the machine or alternatively when a user is prompted to take the card from the card slot 28. In various embodiments the controller may be programmed to provide solid illumination of the radiation emitting devices or may vary the intensity of the devices as appropriate to draw the user's attention to the card slot. In the exemplary embodiment the card slot housing 66 includes therein one or more radiation sensing devices 128. The radiation sensing devices are positioned to detect changes in at least one property of the radiation reflected from the emitting devices 126. The sensing devices 128 are in operative connection with the controller. The controller is operative responsive to its programming to compare one or more values corresponding to the magnitude and/or other properties of radiation sensed by one or more of the sensors, to one or more stored values and to make a determination whether the comparison is such that there is a probable unauthorized card reading device installed on the fascia of the machine. In some embodiments the controller may be operative to execute fuzzy logic programming for purposes of determining whether the nature of the change in reflected radiation or other detected parameters are such that there has been an unauthorized device installed and whether appropriate personnel should be notified.



FIG. 10 shows a side view of the housing 66. An example of a fraud device which comprises unauthorized card reading device 130 is shown attached externally to the housing 66. The unauthorized card reading device includes a slot 132 generally aligned with slot 128. The device 130 also includes a sensor shown schematically as 134 which is operative to sense the encoded magnetic flux reversals which represent data on the magnetic stripe of a credit or debit card. As can be appreciated, an arrangement of the type shown in FIG. 10 enables the sensor 134 if properly aligned adjacent to the magnetic stripe of a card, to read the card data as the card passes in and out of slot 128. Such an unauthorized reading device may be connected via radio frequency (RF) or through inconspicuous wiring to other devices which enable interception of the card data. In some situations criminals may also endeavor to observe the input of the user's PIN corresponding to the card data so as to gain access to the account of the user.


As can be appreciated from FIG. 10 the installation of the unauthorized card reading device 130 changes the amount of radiation from emitting devices 126 and that is reflected or otherwise transmitted to the sensors 128. Depending on the nature of the device and its structure, the amount or other properties of radiation may increase or decrease. However, a detectable change will often occur in the magnitude or other properties of sensed radiation between a present transaction and a prior transaction which was conducted prior to an unauthorized card reading device being installed. Of course the sensing of the magnitude of radiation is but one example of a property of radiation that may be sensed as having changed so as to indicate the presence of an unauthorized reading device.



FIG. 11 demonstrates an exemplary simplified logic flow executed by a controller for detecting the installation of an unauthorized card reading device. It should be understood that this transaction logic is part of the overall operation of the machine to carry out transactions. The exemplary logic flow is carried out through the execution of software instructions by at least one processor. The software instructions may be resident on any form of article which includes computer readable instructions such as a hard disk, floppy disk, semiconductor memory, flash memory, CD, DVD, ROM or other article. In this exemplary logic flow the machine operates to carry out card reading transactions in a normal manner and to additionally execute the represented steps as a part of such logic each time a card is read. From an initial step 136 the controller in the machine is operative to sense that a card is in the reader within the machine in a step 138. Generally in these circumstances the controller will be operating the radiation emitting devices 126 as the user has inserted their card and the card has been drawn into the machine. In this exemplary embodiment the controller continues to operate the radiation emitting devices and senses the radiation level or levels sensed by one or more sensors 128. This is done in a step 140.


The controller is next operative to compare the signals corresponding to the sensed radiation levels to one or more values in a step 142. This comparison may be done a number of ways and may in some embodiments execute fuzzy logic so as to avoid giving false indications due to acceptable conditions such as a user having the user's finger adjacent to the card slot 28 during a portion of the transaction. In the case of a user's finger for example, the computer may determine whether an unauthorized reading device is installed based on the nature, magnitude and changes during a transaction in sensed radiation, along with appropriate programmed weighing factors. Of course various approaches may be used within the scope of the concept discussed herein. However, based on the one or more comparisons in step 142 the controller is operative to make a decision at step 144 as to whether the sensed value(s) compared to stored value(s) compared in step 142 have a difference that is in excess of one or more thresholds which suggest that an unauthorized card reading device has been installed.


If the comparison does not indicate a result that exceeds the threshold(s) the transaction devices are run as normal as represented in a step 146. For example, a customer may be prompted to input a PIN, and if the card data and PIN are valid, the customer may be authorized to conduct a cash dispensing transaction through operation of the machine. Further, in the exemplary embodiment the controller may operate to adjust the stored values to some degree based on the more recent readings. This may be appropriate in order to compensate for the effects of dirt on the fascia or loss of intensity of the emitting devices or other factors. This is represented in a step 148. In step 148 the controller operates the machine to conduct transaction steps in the usual manner as represented in a step 150.


If in step 144 the difference between the sensed and stored values exceeds the threshold(s), then this is indicative that an unauthorized card reading device may have been installed since the last transaction. In the exemplary embodiment when this occurs, the controller is operative to present a warning screen to the user as represented in a step 152. This warning screen may be operative to advise the user that an unauthorized object has been sensed adjacent to the card reader slot. This may warn a user for example that a problem is occurring.


Alternatively if a user has inadvertently placed innocently some object adjacent to the card reader slot, then the user may withdraw it. In addition or in the alternative, further logic steps may be executed such as the machine prompting a user to indicate whether or not they can see the radiation emitting devices being illuminated adjacent to the card slot and prompting the user to provide an input to indicate if such items are visible. Additionally or in the alternative, the illuminating devices within the housing 66 may be operative to cause the emitting devices to output words or other symbols which a user can indicate that they can see or cannot see based on inputs provided as prompts from output devices of the machine. In some alternative embodiments, sensors or cameras may be utilized to observe the outputs through the fascia, and are connected to processors including suitable programming to determine if particular outputs are not sensed or perceivable. The absence of the ability to perceive such signals may be indicative of the installation of an unauthorized interception device. This may enable the machine to determine whether an unauthorized reading device has been installed or whether the sensed condition is due to other factors. It may also cause a user to note the existence of the reading device and remove it. Of course various approaches could be taken depending on the programming of the machine.


If an unauthorized reading device has been detected, the controller in the exemplary embodiment will also execute a step 154 in which a status message is sent to an appropriate service provider or other entity to indicate the suspected problem. This may be done for example through use of a system like that shown in U.S. Pat. No. 5,984,178 the disclosure of which is incorporated herein by reference in its entirety. Alternatively messages may be sent to system addresses in a manner like that shown in U.S. Pat. No. 6,289,320 the disclosure of which is also incorporated herein by reference in its entirety. In a step 156 the controller will also operate to record data identifying for the particular transaction in which there has been suspected interception of the card holder's card data. In addition or in the alternative, a message may be sent to the bank or other institution alerting them to watch for activity in the user's card account for purposes of detecting whether unauthorized use is occurring. Alternatively or in addition, some embodiments may include card readers that change, add, or write data to a user's card in cases of suspected interception. Such changed data may be tracked or otherwise used to assure that only a card with the modified data is useable thereafter. Alternatively or in addition, in some embodiments the modified card may be moved in translated relation, moved irregularly, or otherwise handled to reduce the risk that modified data is intercepted as the card is output from the machine.


In other exemplary embodiments, card readers may be provided which include features for reading a card inserted in a direction that is generally transverse to the direction of the extending magnetic stripe of the card. That is, instead of inserting a short edge of a card into a card input slot, a long edge of the card can be inserted first into the card slot. The card slot is wider than a typical slot, and the card reader read head is horizontally movable. This may be done in a manner described in U.S. Provisional Patent Application Ser. Nos. 61/446,744 filed Feb. 25, 2011 and 61/574,594 filed Aug. 5, 2011, the disclosures of each of which are herein incorporated by reference in their entirety. Of course these approaches are exemplary of many that may be employed.


In the exemplary embodiment the machine is operated to conduct a transaction even in cases where it is suspected that an unauthorized card reading device has been installed. This is represented in a step 158. However, in other embodiments other approaches may be taken such as refusing to conduct the transaction. Other steps may also be taken such as capturing the user's card and advising the user that a new one will be issued. This approach may be used to minimize the risk that unauthorized transactions will be conducted with the card data as the card can be promptly invalidated. Of course other approaches may be taken depending on the programming of the machine and the desires of the system operator. In addition while the fraud device shown is an unauthorized card reading device, the principles described may also be used to detect other types of fraud devices such as for example false fascias, user interface covers and other devices. In some embodiments additional or alternative features and methods may be employed to help detect the presence of unauthorized card reading devices or other attempted fraud devices in connection with the machine. For example in some embodiments an oscillation sensor may be attached to the machine to detect changes in frequency or vibration that result from the installation of unauthorized devices on the machine. FIG. 10 shows schematically an oscillator 127 attached to the interior surface of the machine fascia. Oscillator 127 may be operative responsive to the controller and suitable vibration circuitry to impart vibratory motion to the fascia in the vicinity of the card reader slot. A sensor 129 is in operative connection with the fascia and is operative to sense at least one parameter of the motion imparted to the fascia by the oscillator 127. Although oscillator 127 and sensor 129 are shown as separate components, it should be understood that in some embodiments the functions of the components may be performed by a single device.


The sensor 129 is in operative connection with the controller of the machine through appropriate circuitry. The controller selectively activates the oscillator and the sensor 129 is operative to sense the resulting movement of the fascia caused by the oscillation. The installation of an unauthorized card reading device or other fraud device on the machine will generally result in a change in at least one property being sensed by the sensor 129. This may include changes in amplitude, frequency or both. Alternatively or in addition, some embodiments may provide for the oscillator to impart vibration characteristics of various types or vibratory motion through a range of frequencies and/or amplitudes. Sensed values for various oscillatory driving outputs may then be compared through operation of the controller to one or more previously stored values. Variances from prior values may be detected or analyzed through operation of the controller and notifications given in situations where a change has occurred which suggests the installation of an unauthorized device.


In some embodiments the controller may cause the oscillator and sensor to operate periodically to sense for installation of a possible unauthorized device. Alternatively, the controller may cause such a check to be made during each transaction. Alternatively in some embodiments oscillation testing may be conducted when a possible unauthorized device is detected by sensing radiation properties. The controller may operate to take various actions in response to sensing a possible unauthorized reading device through vibration, radiation or both. For example detecting a possible fraud device by both radiation and oscillation may warrant taking different actions than only detecting a possible fraud device through only one test or condition.


In some embodiments the controller may be programmed to adjust the thresholds or other limits used for resolving the presence of a possible fraud device for responses to changes that occur over time at the machine. This may include for example adjusting the thresholds for indicating possible fraud conditions based on the aging of the oscillator or the sensor. Such adjustments may also be based on parameters sensed by other sensors which effect vibration properties. These may include for example, the fascia temperature, air temperature, relative humidity and other properties. Of course readings from these and other sensors may be used to adjust thresholds of the oscillation sensor, radiation sensor or other fraud device sensors. Various approaches may be taken depending on the particular system.


In some embodiments the oscillator may additionally or alternatively be used to prevent the unauthorized reading of card reader signals. This may be done for example when the banking machine has a device which takes a user card into the machine for purposes of reading data on the card. In such embodiments the controller may operate to vibrate the area of the fascia adjacent to the card reader slot when a user's card is moving into and/or out of the slot. In such cases the vibration may be operative to cause the generation of noise or inaccurate reading by an unauthorized card reading sensor so as to make it more difficult to intercept the card stripe data using an unauthorized reading device. In some embodiments such vibration may also serve to disclose or make more apparent the presence of unauthorized card reading devices. Of course these approaches are exemplary and in other embodiments other approaches may be used.


In some exemplary embodiments provision may be made for detecting the presence of unauthorized input sensing devices for sensing a user's inputs through the keypad on the machine. Such unauthorized input sensing devices may be used by criminals to sense the PIN input by the user. Detecting unauthorized devices may be accomplished by providing appropriate sensing devices in or adjacent to the keypad. Such sensing devices may be operative to detect that a structure has been placed over or adjacent to the keypad. Such sensors may be in operative connection with the controller in the machine or other devices which are operative to determine the probable installation of such an unauthorized input sensing device. In response to determining the probable installation of such a device, the controller may be operative in accordance with its programming to provide notification to appropriate entities, modify the operation of the machine such as to disable operation or prevent certain operations, or to take other appropriate actions.



FIG. 12 shows the cross-sectional view of exemplary keypad 32. Keypad 32 is shown schematically, and it should be understood that not all of the components of the keypad are represented. Keypad 32 includes a plurality of keys 250. Keys 250 are moveable responsive to pressure applied by a user's finger to provide an input corresponding to alphabetical or numerical characters. Extending between some of the keys 250 are areas or spaces 252. Extending in spaces 252 are sensors 254. In the exemplary embodiment the sensors 254 are radiation type sensors, but as previously discussed, in other embodiments other approaches may be used. Overlying the sensors 254 is an outer layer 256. In the exemplary embodiment, layer 256 is translucent or otherwise comprised of material so as to partially enable the transmission of radiation from the sensors therethrough.


As represented in FIG. 13, the exemplary sensors 254 include a radiation emitter 258 and a radiation receiver 260. During operation the radiation emitter is operative to output radiation that is at least partially reflected from the inner surface of layer 256. The reflected radiation is received by the receiver 260. Corresponding electrical signals are produced by the receiver, and such signals are transmitted through appropriate circuitry so as to enable the controller to detect the changes in signals that correspond to probable presence of an unauthorized reading device.



FIG. 14 is a schematic view of an unauthorized input intercepting device 262 that has been positioned in overlying relation of a keypad 32. The input intercepting device 262 includes false keys 264 which are moveable and which are operatively connected to the corresponding keys 250 of the keypad. In the exemplary embodiment, input intercepting device 262 includes sensors which are operative to detect which of the false keys 264 have been depressed by a user. Because the depression of the false keys is operative to actuate the actual keys 250, the machine is enabled to operate with the device 262 in place. Input intercepting device 262 in exemplary embodiments may include a wireless transmitter or other suitable device for transmitting the input signals to a criminal who may intercept such inputs.


As represented in FIG. 19, the input intercepting device 262 includes portions 267 which extend in the areas 252 in overlying relation of layer 256. As represented in FIG. 15, the portion of the input intercepting device extending in overlying relation of the layer 256 is operative to cause a change in the amount of radiation from the emitter 258 that is reflected and sensed by the receiver 260 of the sensor. This is because the overlying portion will have different radiation reflecting or absorbing characteristics which will change the radiation reflective properties of the layer 256 compared to when no such input intercepting device is present. Thus the installation of the unauthorized input intercepting device can be detected.


In some exemplary embodiments the controller may be operative to sense the level of reflected radiation at the sensors periodically. This may be done, for example, between transactions when a user is not operating the terminal. This may avoid giving a false indication that an unauthorized input intercepting device has been installed when a user is resting a hand or some other item adjacent to the keypad during a transaction. Of course in other embodiments sensor readings can be taken and compared during transactions to prior values stored in a data store to determine if a change lasting longer than normal has occurred which suggests that an unauthorized input intercepting device has been installed rather than a user has temporarily placed their hand or some other item adjacent to the keypad. For example, in some exemplary embodiments the controller may not resolve that there is a probable unauthorized input intercepting device on the machine until a significant change from a prior condition is detected in the radiation properties adjacent to the keypad on several occasions both during a transaction and thereafter. Alternatively or in addition, a controller may be operative to determine that an improper device has been installed as a result of changes that occur during a time when no transactions have occurred. Alternatively in other embodiments, the controller may operate to sense and analyze signals from the sensors responsive to detecting inputs from other sensors, such as for example an ultrasonic sensor which senses that a person has moved adjacent to the machine but has not operated the machine to conduct a transaction. Of course these approaches are merely exemplary of many approaches that may be used.


It should be understood that although in the exemplary embodiment radiation type sensors are used for purposes of detection, in other embodiments other types of sensors may be used. These include, for example, inductance sensors, sonic sensors, RF sensors, or other types of sensing approaches that can be used to detect the presence of material in locations that suggest an unauthorized input intercepting device being positioned adjacent to the keypad. Further, in some embodiments the controller or other circuitry associated with the sensors may be operative to make adjustments for normal changes that may occur at the machine. These may include, for example, changes with time due to aging of emitters, the build up of dirt in the area adjacent to the keypad, weather conditions, moisture conditions, scratching of the surface of the sensing layer, or other conditions which may normally occur. Appropriate programs may be executed by the controller or other circuitry so as to recalibrate and/or compensate for such conditions as may occur over time while still enabling the detection of a rapid change which is sufficiently significant and of such duration so as to indicate the probable installation of an unauthorized input intercepting device. Of course these approaches are exemplary of many approaches that maybe used.


In other embodiments other or additional approaches to detecting fraudulent reading or other improper activities may be used. For example, in some embodiments the fascia of the banking machine may be subject to observation within a field of view of one or more imaging devices such as camera 131 schematically represented in FIG. 10. Camera 15 may be in operative connection with an image capture system of the type shown in U.S. Pat. No. 6,583,813, the disclosure of which is incorporated herein by reference in its entirety.


In some embodiments the controller and/or an image capture system may be operative to execute sequences of activities responsive to triggering events that may be associated with attempts to install or operate fraud devices. For example, the presence of a person in front of the banking machine may be sensed through image analysis, weight sensors, sonic detectors or other detectors. The person remaining in proximity to the machine for a selected period or remaining too long after a transaction may constitute a triggering event which is operative to cause the system to take actions in a programmed sequence. Such actions may include capturing images from one or more additional cameras and/or moving image data from one or more cameras from temporary to more permanent storage. The sequence may also include capturing image data from the fascia to try to detect tampering or improper devices. Radiation or vibration tests may also be conducted as part of a sequence. Notifications and/or images may also be sent to certain entities or system addresses. Of course these actions are exemplary.


In some exemplary embodiments the controller of the machine or other connected computers may be operatively programmed to analyze conditions that are sensed and to determine based on the sensed conditions that a fraud device is installed. Such a programmed computer may be operative to apply certain rules such as to correlate the repeated sensing of abnormal conditions with a possible fraud or tampering condition and to conduct tests for the presence of fraud devices. Such events may constitute soft triggers for sequences or other actions to detect and reduce the risk of fraud devices. Of course these approaches are merely exemplary and in other embodiments other approaches may be used.


In some embodiments the machine may include sensors adapted to intercept signals from unauthorized card readers or customer input intercepting devices. For example, some fraud devices may operate to transmit RF signals to a nearby receiver operated by a criminal. The presence of such RF signals in proximity to the machine may be indicative of the installation of such a device. Such signals may be detected by appropriate circuitry and analyzed through operation of the machine controller or other processor, and if it is determined that it is probable that such a device is installed, programmed actions may be taken.


For example, in some embodiments suitable RF shielding material may be applied to or in the fascia to reduce the level of RF interference from devices within the machine at the exterior of the fascia. Antennas or other appropriate radiation sensing devices may be positioned adjacent to or installed on the fascia. A change in RF radiation in the vicinity of the fascia exterior may result upon the installation of an unauthorized device. The RF signals can be detected by receiver circuitry, and signals or data corresponding thereto input to a processor. In some embodiments the circuitry may also determine the frequency of the radiation sensed to be used in resolving if it is within the range emitted by legitimate devices such as cell phones of users operating the machine. In other embodiments the circuitry may analyze the signals to determine if they are varying, and the circuitry and/or the processor may evaluate whether the changes in signal correspond to the input of a PIN or a card to the machine.


In response to the sensed signal data, the processor may operate in accordance with its programming to evaluate the nature and character of the intercepted signals. For example, if the signals do not correspond to a legitimate source, such as a cell phone, the processor may operate to take actions such as to wholly or partially cease operation of the machine, capture images with a camera and digital video recorder, and/or notify an appropriate remote entity through operation of the machine. Alternatively, the processor may compare the sensed RF signals to transaction activity at the machine. If the sensed signals are determined to be varying in ways that correspond in a pattern or relationship to card or PIN inputs, for example, the processor may operate in accordance with its programming to cause the machine or other devices to take appropriate programmed steps.


In still other exemplary embodiments the processor may be in operative connection with e RF emitter. The processor may operate in accordance with its programming to cause the emitter to generate RF signals that interfere with the detected signals. This can be done on a continuing basis or alternatively only at times during user operation of the machine when user inputs are likely to be intercepted. For example, the processor controlling the emitter may operate the machine or be in communication with a controller thereof. In such situations, the processor may operate to control the emitter to produce outputs at times when a user's card is moving into or out of a card slot, and/or when the machine is accepting a user's PIN or other inputs. Thus, the emitter may be operative to produce interfering signals during relatively brief periods so as to not disrupt RF transmissions for an extended period in the event an incorrect determination is made and the RF signals are from a legitimate source.


In some embodiments an emitter may be a type that transmits on a plurality of frequencies intended to disrupt transmissions within the expected range of frequencies for a fraud device. In other embodiments the emitter may be controlled responsive to the processor to match the frequency or frequencies of suspect signals that have been detected. Of course these approaches are exemplary of approaches that may be used.


In alternative exemplary embodiments, the radiation may be generated so as to disrupt sensors that may attempt the reading of a magnetic stripe of a card as it passes through a card reader slot. This may be accomplished, for example, through the use of a suitable electrical coil or other device which produces electromagnetic radiation in the area adjacent to the exterior of the card slot where a skimming device would likely be located. Suitable driving circuitry may operate to produce radiation in the form of electromagnetic pulses which will be sensed as signals by a read head of the skimming device. Driving circuitry may operate to cause such electromagnetic radiation to be produced by a toroid or similar structure adjacent to the slot. In some exemplary embodiments, the toroid may surround the card slot on the inside of the machine fascia and be configured so that the electromagnetic radiation is generally directed toward an area outside of the machine and adjacent to the slot. Further in exemplary embodiments, suitable shielding material may be provided to further assure that the radiation acts in the area where a skimmer may be positioned and does not interfere with the operation of other devices in or on the machine. FIG. 41 shows an example of a card reader bezel 660. Upper radiation emitters 664 are located adjacent to an upper portion of the card reader entry slot 662 of the bezel. Lower radiation emitters 666 are located adjacent to a lower portion of the slot 662.


In exemplary embodiments, the strength of the radiation may be limited to a level that does not damage the data recorded within the magnetic stripe of a card. For magnetic cards used in financial applications, generally the high coercivity stripe media will not be adversely impacted provided that the electromagnetic pulse that is produced is at or below 4,000 Gauss. Of course it should be understood that in other applications and particularly when other card types are used, different approaches may be taken.


In example systems suitable driving circuitry may operate to cause radiation to be output from the toroid or other emitter at a frequency that will generally interfere with the signals that an unauthorized reading head would generate when sensing the magnetic stripe on a card. Such frequency will generally be of sufficiently high strength and at a frequency so as to produce so much noise in the signal from the unauthorized reader head that the information encoded on the magnetic stripe of the card cannot be determined from the signals. Alternatively or in addition, the driving circuitry may operate so as to vary the pulse frequency and duration in a random or otherwise programmed manner so as to further attempt to interfere with the signals that would be generated by an unauthorized stripe reading device. Such signals may be varied, for example, in response to variations in speed and/or direction of the card as it is moved through the reader slot of the fascia. Thus, for example, in a system that varies the speed and/or direction of the card, a suitable processor programmed to receive signals indicative of the operation of card reader motors or other moving devices, may operate to vary the interference radiation that is output so as to try to achieve the maximum interference to prevent the unauthorized interception of card data.


The pulse frequency of interfering electromagnetic radiation which is intentionally output can be varied in a predetermined programmed pattern. The at least one processor of the machine, by knowing the pattern, can cause the card reader to read the stripe data when the interfering noise is not being emitted. Alternatively, the at least one processor can resolve the actual magnetic stripe data from the total data read by the card reader. For example, the at least one processor can act to remove the data attributed to the generated noise from the total read data.


Further, in some exemplary embodiments, the output of electromagnetic radiation can be operative to cause the inducement of changes to data encoded on counterfeit cards which may have magnetic stripe materials that are more readily modified than genuine cards. Thus, for example, in some embodiments the circuitry associated with the card reader may operate to determine if the data read from the card varies in ways that suggest that the radiation output has modified data written on the card. Thus, for example, the effect of the electromagnetic noise from the toroid or other emitter may have resulted in the recording of such noise on the stripe of a counterfeit card. Such noise may have impacted the recorded data on the card such that the magnetic flux reversals which correspond to the card data are substantially reduced or even substantially erased. Further, an area of a counterfeit card which have been exposed to the radiation for a longer period of time may have the level of noise included in the stripe increased for those areas having such extended exposure. Thus, for example, the last portion of the card to enter the card reader may exhibit the effects of more exposure to noise on the data encoded on the stripe. Thus through analyzing the signals that are received from the magnetic read head within the card reader, a low quality counterfeit card that has bad its magnetic properties modified through operation of the anti-skim device can be detected. Thus for example in some embodiments, the signals from the read beads of the machine card reader, including, for example, noise levels, the magnitude of the flux reversals, and other properties, may be analyzed for areas along the length of the stripe through operation of at least one processor to identify conditions which correspond to a counterfeit card. In response to detecting signals which suggest that the card may be counterfeit, the at least one processor may operate in accordance with its programming to not cause the requested transaction to be conducted. This may include, for example, not processing the transaction, capturing the card, or taking other appropriate steps.


Further in some alternative embodiments, the detection of one or more conditions that correspond to a suspect counterfeit card may cause the at least one processor to operate the machine to operate the card reader to cause the card to be passed back out through the slot at least some distance so that it is exposed again to the radiation. The card can then be returned into the machine and read by the card reader so the effects of this additional exposure can be analyzed. The changes in the signals read from the card may further confirm that the card is a counterfeit. Of course these approaches are exemplary and in other embodiments, other approaches may be used.


As can be seen, the exemplary embodiments allow for outputting electromagnetic radiation to jam skimmers. An exemplary system can cause electromagnetic radiation to be output (directed) into the area of the card slot when a card is (expected to be) moving into or out of the machine. This electromagnetic radiation output can prevent a skimming device, which has been fraudulently attached to the outside of a machine at a position adjacent to the card input slot, from being able to read data that is encoded on the magnetic stripe of a card. As previously discussed, the exemplary embodiments also allow for modification of a counterfeit card's stripe data by outputting electromagnetic radiation. A counterfeit card may be made using materials that are not as high quality as regular (genuine) cards. As a result, the magnetic stripe used on a card that is readily programmable by counterfeiters may be subject to having its encoded data changed by virtue of the outputted electromagnetic radiation designed to jam the signals from a counterfeit read head.


As previously described, the output of electromagnetic radiation by a machine can be viewed as providing “noise”. This noise can begin to change or reduce the signal strength that can be detected from a counterfeit card. If the radiation exposure is long enough then it may even serve to effectively erase data that was encoded on the counterfeit card's magnetic stripe.


By analyzing the magnetic flux reversals that can be read from the card, and by determining that the signals produced by the read head from flux data has been reduced or modified as a result of exposure to the noise, a counterfeit card can be identified. In addition, if a suspect card is identified, the card reader can operate to send the card back out of the card slot part way, so that it is further exposed to the damaging electromagnetic radiation. The card can then be pulled back into the machine and reviewed again to see if the further (additional) exposure to the electromagnetic radiation has further effectively impacted the data on the card's magnetic stripe. By effectively determining that the encoded data on the magnetic stripe was readily modified by outputted electromagnetic radiation that was intended to jam a card skimmer, the low (poor) quality of the magnetic stripe on a card can identify it as a potentially counterfeit card.


As can be seen, the same electromagnetic radiation outputted by a machine can serve several (e.g., at least three) fraud prevention functions. First, the electromagnetic radiation can function to jam operation of a fraudulent card reader device. Second, this same electromagnetic radiation can function to modify data on a counterfeit card's (low quality) magnetic stripe, enabling the machine to detect the counterfeit card. Third, because the counterfeit card's magnetic stripe data was damaged (modified) by the radiation, the physically (structurally) damaged card can be prevented from future successful use. That is, not only can the machine deny acceptance of the card for the currently attempted transaction, but the machine can also cause the card to be denied use in future transactions attempted at other machines. Thus, the exemplary arrangement provides for prevention of future fraud.


In still other exemplary embodiments, the automated banking machine can include an image capture device such as a small camera or similar sensors adjacent to the card slot. Such 11 camera can operate to capture images of the front and/or back of the card as the card passes through the card slot. Alternatively, such a camera or other sensor device suitable for capturing images on the cards may be positioned inside the machine or within the card reader itself. The image capture device can operate to capture visible images of the front and/or back of the card that is being and/or has been received by the machine. FIG. 41 also shows an example of cameras 668 located adjacent the card entry slot 662. Another camera 670 is located in at least part of a projection member 672 that extends outwardly from the face of the bezel 660.


The camera or other suitable image capture device can be in operative connection with one or more processors which operate to produce data corresponding to images captured through operation of the image capture device. Such images will correspond to the visible appearance of the face of the card toward which the camera is directed. The image data captured can be analyzed through the operation of at least one processor for the presence of one or more features which identify the particular card as a genuine card. Such features can include, for example, alphanumeric characters corresponding to the name of the person to which the card is issued and/or the card (account) number. Such features can also correspond to the presence of certain words, logos, or trademarks. Such features can also relate to the specific locations of image data and/or text data that is normally present on a genuine card but is likely not to be present on a counterfeit card. Such image data and/or text data may correspond to logos, holograms, trademarks, symbols, text, patterns, colors, bar codes, or other information.


In exemplary embodiments image data can be compared to magnetic stripe data to determine if there is substantial correspondence (e.g., an acceptable amount of data matches). For example, the at least one processor can operate character recognition software which is operative to identify letters, numbers, symbols, or other items that are found in captured images that correspond to the face (or a portion thereof) of a card. Such character recognition software is available from commercial sources such as A2ia and Carreker.


For example, the at least one processor can be programmed to identify the letters included in the name of the individual that is on the card face. The at least one processor can then operate to compare the letters of the individual's name on the card face with data encoded on the card's magnetic stripe which corresponds to the user's name. The at least one processor can also operate to have the name data resolved from other stripe data, such as from an account number that is correlated in a data store with the name data. The magnetic stripe data can be read through operation of a card reader.


In some embodiments certain types of genuine cards can include embossed (e.g., raised) numeric data. The at least one processor can operate to determine if a card has embossed numeric data. If so, then the at least one processor can further operate to determine if the embossed numeric data includes an account number which corresponds to the account number data encoded on the magnetic stripe. A failure to have data of either type (e.g., raised, account number on face, account number on stripe) correspond may indicate that the card is not genuine. In alternative embodiments, the at least one processor can operate to analyze the image data to detect the presence of certain symbols such as bank logos, card network logos, holograms, or other visually identifiable items. The absence of such items (or the presence of items that are not appropriate for the particular circumstances) may cause the at least one processor to operate in accordance with its programming to identify the card as suspect counterfeit.


The exemplary embodiments also provide for situations where counterfeit cards are (visually) blank cards or substantially blank. For example, a face of a card may only be of a single constant color (e.g., white). The at least one processor can operate in accordance with its programming to identify that images captured from a card contain little or no visible indicia (or differences in color). The existence of such conditions may cause the card to be identified as a suspect counterfeit card. In response to making such a determination, exemplary embodiments of one or more processors can operate in accordance with their associated programming to prevent the carrying out of a transaction using the card. Further, the card may be captured, images of the particular user may be captured and identified through the use of external cameras or other devices, notifications may be given remotely to bank employees or law enforcement authorities, operation of the machine may be suspended or other appropriate steps taken depending on the programming associated with the particular machine.


As can be seen, the exemplary embodiments allow for the use of visual reading of card data to detect a counterfeit card. The exemplary embodiments enable the detection of counterfeit cards which have a magnetic stripe but little or no other data printed thereon. This includes detection of a card that was originally produced for one purpose, but a criminal erased the card's image data and encoded different data onto the card's magnetic stripe.


As previously discussed, one way of identifying a counterfeit card is to capture an image of the front and/or back of the card, and then compare data included in the captured image to data read from the card's magnetic stripe. For example, an account number embossed on the front of a card can be resolved from an image captured by a small camera. The camera can be s positioned on the inside the machine aqjacent to the card slot or positioned within the card reader. At least one processor can analyze the image data, and determine if the account number data read visually from the card corresponds to the account number data read from the magnetic stripe by the magnetic read head. If the account numbers do not substantially correspond (or no visually perceivable account number can be determined), then the card can be determined as counterfeit.


As previously discussed, another way of identifying a counterfeit card is to look for the name of the card holder. The name is normally visibly embossed on the exterior surface of the card. The name is also normally magnetically recorded on the card at magnetic stripe track 1. By comparing the name data from different locations and/or data formats (or by finding that the card's visual appearance does not include such name data), a counterfeit card can be identified.


As previously discussed, a further way of identifying a counterfeit card is to do a visual analysis for logos, holograms, or other data that would normally be present on a genuine card. This might include, for example, looking for the presence of a Visa or MasterCard logo. It might also include looking for a hologram in an appropriate place (e.g., a specific expected location on a card face). Such analysis can also involve searching for the name of a particular bank on the card face, and determining whether the name of the bank (on the card face) corresponds with the bank account data that can be read from the magnetic stripe. Similar comparable data features may also be resolved from using the back side of the card. Also, correspondence between data on the front and the back of the card as read visually can also help to identify counterfeit cards. An alternative or additional approach includes visually reading (or otherwise sensing) whether a card has many (or any) visible markings on it at all. A visible marking can involve colors, scratches, etc. For example, determination of a totally white card can be equated as an indication that the card is counterfeit. A card having no (or a very small amount of) scratches can also be associated with a counterfeit card, or be an indication that additional scrutiny should be undertaken. As previously discussed, all of these approaches can be implemented through appropriate programming of at least one processor associated with the machine (e.g., a computer within the machine and/or a computer in operative connection with the machine) to analyze the visual data that can be read from a card. Furthermore, it should be understood that the various methods described herein for determining whether a card is genuine or counterfeit can be used in combination with each other.


It should be understood that the exemplary embodiments allow for use of card data that is stored in data storage formats other than a magnetic stripe. Such card data storage formats can include (but are not limited to) smart card chip features, radio frequency identification (RFID) tags, near field communication (NFC) chips, infrared (IR), wireless type cards, wireless communication, bar codes, electronic ink, etc. For example, specific image data (e.g., a name, account number, etc.) read from a face of a card can be compared to similar data (e.g., a name, account number, etc.) read from a RFID tag (or bar code, NFC chip, etc.) of the same card. An alternate exemplary embodiment is described with particular reference to FIGS. 16 and 17. In the exemplary embodiment, card reader 26, also shown schematically in FIG. 3, includes a card reader slot 28 defining a predetermined opening as indicated by arrow 300. The card reader includes component 310, such as a magnetic read head, operative to read data included on the magnetic stripe of a card such as a debit or credit card. The embodiment shown in FIG. 16 is merely exemplary, and it should be understood that the principles described herein are applicable to card readers that accept a card into the machine and to card readers that do not accept a card into the machine.


At least one sensing device also referred to as a sensor, schematically indicated 312, is positioned within an interior of the machine adjacent the card slot 28. In one exemplary embodiment, the sensing device 312 is able to sense at least one property of radiation passing through the card reader slot 28 to the interior of the machine and reaching the sensing device. For example, the sensing device 312 may be positioned so as to sense the intensity of ambient light that enters the slot from outside the machine housing, as indicated by arrows 316. Of course it should be understood that the positioning of the sensing device is schematic only and in some embodiments the sensing device may comprise multiple sensing devices and may be located outside the card path. Alternatively, one or more radiation sensors may be mounted on a moving member that moves into the card path when a card is not present.


As represented in FIG. 17, in the event that an unauthorized card reading device 320 is positioned adjacent the card reader 26, the property sensed by the sensing device 312 will be altered. For example, a sensing device enabled to sense the intensity of ambient light entering the slot will detect a change in that property.


The unauthorized card reading device 320 may be positioned such that at least a portion of the unauthorized device extends in the slot 28 which effectively narrows the opening defined by the card reader slot 28, as illustrated by arrow 324. In the illustrated embodiment, the unauthorized card reading device 320 includes a fraudulent magnetic read head 326 used to skim data from a passing card stripe. The unauthorized card reading device 320 defines a narrower opening than the legitimate card slot 28 to cause the inserted card to be kept close to the fraudulent magnetic read head 326.


The narrowed opening reduces the amount of ambient light entering the slot 28, and ultimately the amount of light that passes through the slot and is detected by sensing device 312. The decrease in intensity of ambient light detectable by the sensing device is illustrated in FIGS. 16 and 17 by arrows 328, 330, respectively. In an exemplary embodiment, the sensing device 312 includes at least one photocell which is used to sense light as an integrator over area. The exemplary sensor configuration is generally not sensitive to dust due to its position within the machine interior. Of course, in other embodiments other approaches may be used. In other embodiments an unauthorized card reading device may not necessarily have a narrower slot than the machine's card reader slot. However the placement of the unauthorized card reading device will often result in a greater distance between the card opening to the unauthorized device outside the machine, and the at least one sensor inside the banking machine housing. This increased distance of the overall card slot, and longer light path results in the amount of light reaching the at least one sensor being reduced. Such a reduction in ambient light or other radiation can be monitored and sensed between transactions or at other times to detect when such a device is installed, for example. Of course, these approaches are exemplary.


In an alternate embodiment, illustrated in FIG. 18, the property sensed by the sensing device 312 may be intensity of radiation emitted by one or more radiation emitters 334, such as LEDs, which are positioned to enable radiation emitted thereby to enter the slot 28 and be detected by sensing device 312. As will be readily appreciated, placement of an unauthorized card reading device adjacent the card reader impacts the detectable radiation. The one or more radiation emitters 334 may operate substantially continuously, intermittently, or in accordance with transaction instructions as previously described. For example, the radiation emitters 334 may emit radiation responsive to operation of at least one controller in the machine when a user is instructed by the machine to insert a card into the card reader. The radiation is sensed by the sensing device. If an unauthorized card reading device has been positioned adjacent the card reader slot subsequent to a prior transaction, there is a detectable change in the property sensed by the sensing device. Further, in some embodiments a radiation guide, such as a fiber optic strand may extend from an area adjacent at least one emitter to an area adjacent the detector. Having the outside end of the strand located in the area where an unauthorized device would be attached may result in a greater change in sensed radiation to indicate the installation of an unauthorized card reading device. Of course this approach is exemplary.


In an exemplary embodiment, the sensing device 312 is in operative connection with at least one controller in the machine, as in previously described embodiments. With reference again to FIG. 11, the controller is operative responsive to its programming to compare one or more values corresponding to the sensed property to one or more stored values and make a determination as to the probability that an unauthorized card reading device 320 has been installed on the machine. Numerous factors and conditions may be used in making the determination. If an unauthorized card reading device is likely present, the controller generates at least one signal or otherwise enables the machine to take at least one action responsive to a change in the sensed property, as previously described. In an exemplary embodiment, the responsive action may include the activation of an oscillator 127, as shown in FIG. 10 and previously described. Alternatively, the controller may sense for an unauthorized source of Radio Frequency (RF) signals at the machine. Of course this is merely exemplary. In still other embodiments the automated banking machine may include at least one light operated externally, such as a fascia light. The fascia light may provide a light level that is used to calculate a threshold of minimum light that can be expected to pass through the card slot when no card is present in the slot. The threshold can be used by the at least one controller to determine if the amount of radiation reaching the sensor is below the threshold. In such circumstances the at least one controller may be operative in accordance with its programming to generate at least the signal which can be used to indicate the likely presence of an unauthorized card reading device.


Of course in some embodiments the programming of the at least one controller is operative to compare the amount of light received at different times, such as between card reading transaction steps, to detect a change that corresponds to installation of an unauthorized card reading device. Alternately or in addition, the at least one controller may operate to monitor signals from the at least one sensor at times between transactions for changes which correspond to the installation of an unauthorized card reading device. In still other embodiments the at least one controller may be programmed to not identify certain changes as corresponding to the installation of an unauthorized reading device. This may include, for example, changes in radiation for card insertion, changes due to fingers placed against the slot by a user, such as a blind user, and other conditions that may cause a temporary drop in radiation sensed. In some embodiments the programming of the controller may disregard certain conditions based on the then-current operational status of the machine, such as receiving or delivering a card, for example. In some embodiments the at least one controller may execute fuzzy logic to determine events that correspond to installation of an unauthorized card reading device. Of course these approaches are merely exemplary.


In still other embodiments the card slot may be bounded by one or more light reflecting surfaces. Such light reflecting surfaces may be configured to facilitate detecting the installation of an unauthorized card reading device. For example, in some embodiments, multiple opposed side surfaces bounding a card slot may be comprised of reflective material. Such material may be operative to normally conduct more radiation through the slot from outside the machine to the at least one sensor within the machine housing. Therefore, in some embodiments this configuration may cause a greater reduction in radiation reaching the at least one sensor when an unauthorized card reading device is installed.


In still other embodiments the reflective surfaces may be tapered or otherwise contoured to facilitate detection of changes in radiation that result from an unauthorized card reading device. For example, in some embodiments one or more reflective surfaces may be contoured to increase the amount of light that passes through the card slot to the at least one sensor. However, in some embodiments one or more reflective surfaces may be contoured to reflect at least some light falling on the card slot so it does not reach the sensor. This may be useful in embodiments where the card slot is subject to exposure to a wide range of radiation levels, and restricting the radiation that reaches the at least one sensor facilitates identifying a change that indicates the installation of an unauthorized card reading device. In still other embodiments, reflective surfaces may facilitate directing radiation to at least one sensor within the machine. This may include using a contoured mirror surface that focuses visible radiation for example.


Further, in some embodiments a mirror surface may be used on only one side of the slot. This may be done, for example, to provide reflection of radiation on a side of a slot opposite the slot side adjacent magnetic stripes of cards. Thus an unauthorized card reading device is likely to be positioned at least on the slot side opposite of the reflective surface, which may reduce radiation reading the reflective surface. This may help in detecting certain types of unauthorized card reading devices. An example is shown in FIG. 19 which includes a fascia surface 336 through which a card reader housing 338 extends. The card reader housing includes a card slot 340 through which cards pass. The card reader includes within the machine, a card reader mechanism 342, which includes a read head 344. The mechanism operates responsive to at least one controller to selectively move magnetic stripe cards by engagement with the rollers shown, so that data in the stripe is read by the read head.


In this exemplary embodiment, at least one reflective surface 346 is positioned on a side of the slot opposed of the side of the slot which is adjacent the stripe on cards which pass through the slot. At least one sensor 347 is positioned on the side of the slot opposite the reflective surface. As can be appreciated, an unauthorized reading device will generally be positioned ahead of the opening to the card slot and will extend at least on the side of the slot on which magnetic stripes of cards are positioned. As can be appreciated from the arrow shown in phantom, an unauthorized card reading device in this position will generally reduce the amount of light reflected from surface 346 to the sensing device. As a result, signals from the sensing device can be used by at least one controller to determine when an unauthorized card reading device has been installed. Of course these approaches are merely exemplary of approaches that maybe used.



FIG. 20 shows an alternative embodiment which includes apparatus for detecting the presence of an unauthorized device adjacent a user transaction location on an automated banking machine. In some embodiments the user transaction location may include the area adjacent the card reader slot as previously discussed. Alternatively or in addition, the user transaction location may include all or a portion of a keypad on the automated banking machine. In still other embodiments the user transaction location monitored may include a cash outlet of the cash dispenser in the machine and through which cash is delivered to users. Other exemplary user transaction locations monitored may include a deposit opening through which deposits, envelopes, checks, cash or other items are accepted into the machine. In still other embodiments other user transaction locations may be monitored through use of the exemplary apparatus for the presence of an unauthorized device. Various user transaction locations on the automated banking machine that are monitored may include locations where items are input to the machine by users or delivered from the machine to users.


The exemplary apparatus 350 shown in FIG. 20 includes a radiation output device 352. The radiation output device emits radiation responsive to signals from control circuitry schematically indicated 354. In the exemplary embodiment the radiation output device includes an infrared (IR) light emitting diode (LED). It should be understood that although one radiation output device is shown which is of a particular type, alternative embodiments may include multiple radiation output devices of the IR type or radiation output devices of other types. The apparatus also includes a radiation sensing device 356. In the exemplary embodiment the radiation sensing device comprises a photo diode suitable for sensing IR radiation. Of course it should be understood that in other embodiments other types and numbers of radiation sensing devices may be used.


The radiation sensing device 356 is also in operative connection with control circuitry 354. In the exemplary embodiment the control circuitry includes gain control circuitry schematically indicated 358. As discussed later in greater detail, the exemplary gain control circuitry is operative to amplify signals from the radiation sensing device in a manner which provides greater signal amplification when lower ambient light levels are being sensed. The exemplary control circuitry also includes circuitry 360 which is operative to convert the amplified analog signals to digital signals. The exemplary control circuitry also includes at least one controller 362. The controller includes at least one processor that operates in accordance with its associated programming. In some embodiments the controller may cause operation of other devices in the machine while in other embodiments the controller may be associated only with the radiation detection functions. Of course it should be understood that the gain control circuitry 354 is exemplary and in other embodiments other approaches may be used.


In the exemplary embodiment the infrared LED 352 in the photo diode 356 are positioned on the machine physically close to each other and both face outward from the surface of the machine at the user transaction location generally indicated 364. In the exemplary embodiment the control circuitry operates to cause the LED to output infrared pulses which have a duration of about 20 to 100 milliseconds. In the exemplary embodiment these pulses are output on an intermittent and regular periodic basis. Of course in other embodiments other approaches may be used.


In operation the exemplary control circuitry is operative to determine data corresponding to a level of radiation sensed by the photo diode 356 when the LED is off. The control circuitry is also operative to determine data corresponding to the magnitude of radiation that reaches the photo diode when the LED 352 is on. In this particular arrangement the amount of radiation generated by the LED 352 that is reflected to the photo diode 356 increases when an unauthorized device, schematically indicated 366 is installed on the machine. Such a device may include for example an unauthorized card reading device of the types previously discussed. If an unauthorized device is present, the radiation pulses are generally reflected from the unauthorized device and are sensed by the photo diode. The amount of radiation reflected is often dependent on the distance that the unauthorized device is disposed from the radiation output device. The amount of reflected radiation is often also dependent on the material reflectivity of the unauthorized device as well as the particular geometry of the unauthorized device in the area adjacent the user transaction location. As a general proposition the closer the unauthorized device is positioned to the photo diode, the more infrared radiation that will be reflected to the photo diode. The greater magnitude of reflected radiation results in a larger output from the radiation sensing device 356.


In the exemplary embodiment the probable presence of the unauthorized device is determined by the control circuitry comparing the magnitude of the signal that results from the reflected radiation pulse, as well as such signal having an elevated magnitude that continues through a plurality of cycles and/or for at least a set time. In the exemplary embodiment if the elevated level of reflected radiation continues for a predetermined time period, then the control circuitry is operative to cause the automated banking machine to take at least one action. These actions may be of the type previously described, such as to conduct further analysis as to whether an unauthorized device is present. Alternatively or in addition, the control circuitry may be operative to provide at least one output indicative of an abnormal condition at the automated banking machine. Of course it should be understood that these approaches are exemplary.



FIG. 22 shows an exemplary schematic logic flow executed through operation of the at least one processor that is included with the control circuitry. The processor operates responsive to computer executable instructions. Prior to operation the at least one processor has stored in a memory associated therewith, at least one threshold value. This at least one threshold value is indicative of the level of radiation being reflected to the radiation sensing device relative to the ambient level of radiation, corresponding to a probable abnormal condition. The programming of this at least one threshold value is represented by a step 268. Also prior to operation, the memory associated with the at least one processor is programmed to include at least one timer value. This at least one time value corresponds to at least one time period. If during this time period the level of reflected IR radiation relative to the level of ambient IR radiation exceeds a threshold, the control circuitry is operative to determine that there is an abnormal condition which corresponds to the probable installation of a fraud device. This is represented in a step 370. Of course it should be understood that these steps are exemplary and in other embodiments data corresponding to radiation sensed by the radiation sensing device may be compared to multiple threshold values or conditions. Likewise in other embodiments other or additional time periods or logic values may be used to determine the probable presence of an abnormal condition. In still other embodiments time periods and threshold values may be variable and calculated by the at least one processor responsive to one or more sensed values or parameters.


In the exemplary embodiment, after loading the initial values in the memory the control circuitry operates in the manner discussed. The control circuitry determines data that corresponds to the level of ambient radiation reaching the photo diode at a time when the LED is not operating. This is represented in a step 372. The control circuitry through this step is operative to determine data at a first level that corresponds to the then current level of ambient radiation. The control circuitry then is operative to determine data that corresponds to the level of reflected radiation at a time while the LED is operated. This is represented by a step 374. The control circuitry then operates to determine in a step 376 if the data corresponding to the reflected radiation is at least as great as the level of ambient radiation. If not, the at least one processor returns to the logic flow step 372.


If in step 376 the level of radiation determined when the LED is operating is at least as great as the level of ambient radiation sensed, the control circuitry is operative to calculate a difference value. This is represented in a step 378. In the exemplary embodiment the difference value corresponds to the data corresponding to the level of radiation when the LED is operating minus the value corresponding to the level of radiation when the LED is not operating. In the exemplary embodiment, the calculation is done using the two immediately preceding values. However, it should be understood that in other embodiments other approaches may be used such as using averages of a plurality of preceding cycles, using a portion of the difference in magnitude values and/or using adjusted values that discard certain single abnormal data points (for example) for purposes of carrying out the calculation which corresponds to the difference in the radiation sensed compared to the level of ambient radiation.


In the exemplary embodiment the difference value calculated in step 378 is then compared to the programmed threshold stored in connection with the control circuitry in step 368. This comparison is executed in a step 380. In the exemplary step 380 the at least one processor is operative to determine if the difference value is at least as great as the threshold value. If so the at least one processor of the control circuitry checks in a step 382, to determine if a countdown timer function has been started. If not, the control circuitry operates to start the countdown timer in a step 384. In the exemplary embodiment the countdown timer is operative to determine if the difference value remains at least as great as the threshold for the stored set period of time. If it does then the control circuitry is operative to determine that an abnormal condition likely exists. Of course it should be understood that while in the exemplary embodiment time values are used for purposes of determining an abnormal condition. In other embodiments other approaches may be taken. These may include for example counting the number of cycles during which one or more difference values exceed one or more thresholds. These approaches may include for example a number of consecutive radiation output cycles, or alternatively the determination could be based on radiation values during a number of cycles within a given sample being in excess of a particular threshold. Also as previously discussed determinations may be based on multiple different thresholds and/or other parameters. Of course these approaches are exemplary.


As shown in FIG. 22, if in step 380 the difference value is not at least as great as the threshold, the control circuitry determines in a step 386 if the countdown timer has been started. If not, the process repeats and the ambient value is again determined. However, if in step 386 the countdown timer has been previously started and the different value is not above the threshold, a step 388 is executed in which the countdown timer is stopped. In these circumstances the control circuitry is no longer calculating a time period in which a condition exists continuously which suggests an abnormal condition. For example, it can be appreciated that in cases where users are operating devices on an automated banking machine, the user's fingers or other objects may cause radiation levels that are sensed to vary during relatively limited periods of time. However, in general these conditions which effect the sensed radiation levels are soon removed and the sensed radiation levels will return to a level consistent with normal operation of the machine. The exemplary embodiment of the control circuitry is able to deal with such circumstances by providing that a suspect condition must exist for a sufficient period of time before an abnormal condition at the machine is indicated. Of course this approach is exemplary.


In circumstances where in step 380 the difference value is at least as great as the threshold value, it is determined in step 382 that the countdown timer has already been started. In response to this condition a step 390 is carried out. In step 390 the control circuitry is operative to determine if the time period which corresponds to an abnormal condition has been reached. If not, the sensing process continues. However, if the difference value has been at least as great as the threshold value for the set time period as determined in step 390, the control circuitry is operative to set an alarm condition event. This is represented in a step 392. In the exemplary embodiment step 392 also includes the control circuitry operating to cause the machine to take at least one action. The at least one action may include for example, causing the at least one controller in the machine to take steps to determine if an improper device has been attached to the machine. Alternatively and/or in addition the control circuitry may operate to generate one or more signals which cause the banking machine to provide at least one output to indicate an abnormal condition. This at least one output may include for example, taking steps to make the machine inoperative or provide one or more outputs to inform users of the presence of a possible fraud device. Alternatively or in addition the at least one output may include the machine sending a message to another location or to an operator such as a bank or to a servicer entity that there is a problem with the machine. Of course these approaches are exemplary.


In operation of the exemplary control circuitry, even after an abnormal condition has been indicated, the control circuitry continues to operate to evaluate the radiation levels reaching the radiation sensing device. This is represented by a step 394. Thereafter the control circuitry is operative to determine a value corresponding to the level of radiation sensed while the LED is operating. This is represented in a step 396.


In the exemplary embodiment the control circuitry continues to operate to compare the data corresponding to the ambient values and the values while the emitter operates to determine if the data corresponding to the reflected value is at least as great as the ambient value. This is indicated in a step 398. A difference value is then calculated in a step 400 through subtraction of the data corresponding to the ambient value from the data corresponding to the sensed value when the LED is operating. Thereafter the difference value is compared to the threshold value to determine if the difference value is at least as great as the threshold. This is represented in a step 402.


In the exemplary embodiment the control circuitry is operative to provide at least one output to indicate that the abnormal condition which was previously determined has been cleared responsive to a negative determination in step 402. This is represented in a step 404. Of course in some exemplary embodiments at least one controller may operate to continue to send messages and provide outputs to indicate the probable abnormal condition. Likewise in still other exemplary embodiments, the at least one controller may operate responsive to other inputs or tests that it has carried out, to determine that an abnormal condition does not exist. Thereafter the at least one controller may operate in accordance with its programming to take steps to inform a remote servicer or other entity that there is not an abnormal condition at the machine. The remote servicer may check the machine remotely through messages that cause the machine to carry out additional tests for the presence of fraudulent devices and/or may view images from cameras adjacent to the machine. In still other exemplary embodiments other steps or actions may be taken to determine and/or clear the presence of unauthorized devices. Of course these approaches are exemplary.



FIG. 21 shows an exemplary form of the control circuitry 358. In the exemplary embodiment the LED 352 is driven by a square wave signal responsive to the controller 362. As previously discussed, in the exemplary embodiment the radiation output device is operative to provide regular periodic intermittent pulses. These pulses are determined through the programming of the controller and may be of various durations. However, in the exemplary embodiment the pulses are set at a fixed duration. A suitable length of the duration for this particular embodiment has been found to be in a range of about 20 to 100 milliseconds.


In the exemplary embodiment a dual gain approach is used to provide greater sensitivity during times when the ambient radiation levels are relatively low. This may include for example operation of the automated banking machine in indoor or nighttime environments. The gain circuitry of exemplary embodiments includes a selectable dual gain transimpedance amplifier schematically indicated 406. In the exemplary embodiment, the gain which corresponds to the amount of amplification of the signal from the radiation sensing device is determined by selectively switching one of two possible gain impedances with the transimpedance amplifier feedback circuit. An electronic switch 407 is selectively operative responsive to the controller 362 to cause the dual gain transimpedance amplifier to provide higher gain and greater amplification of the signals from the photo diode responsive to the photo diode sensing ambient light levels at or below a particular threshold. Similarly responsive to the level of ambient light being determined as above the threshold the switch 407 is operated responsive to the controller to cause the lower gain for the photo diode signals to be provided.


This exemplary approach provides appropriate amplification based on the level of currently sensed ambient radiation and helps to assure that the presence of unauthorized devices may be more readily detected in lower ambient light level conditions. It should be understood however that the approach shown as exemplary. For example in other embodiments, other types of gain circuitry may be used such as those that provide a plurality of levels of gain responsive to ambient light and/or other parameters that are sensed. These may include for example, several different levels of amplification which correspond to particular conditions at the machine. Alternatively or in addition, other sensors may be used for purposes of determining radiation levels in other areas of the machine. Such signals from other sensors may be used by one or more controllers in the machine to make further evaluations as to possible abnormal conditions. Of course these approaches are exemplary and in other embodiments other approaches may be used.



FIG. 23 shows an alternative form of control circuitry generally indicated 410 which may be used in alternative embodiments of an automated banking machine which detects an unauthorized device at a transaction location on the machine. In the exemplary embodiment the circuitry may be part of the circuitry which is operative to control operation of an automated banking machines of the types previously described. Of course it should be understood that aspects of the exemplary embodiment may be used in other devices as well.


The exemplary arrangement includes at least one radiation output device which includes an infrared LED 412. The arrangement further includes at least one radiation detecting device which in the exemplary embodiment includes a photo diode 414. The photo diode 414 is operative to sense infrared radiation of the type output by LED 412. As represented schematically in FIG. 23 the exemplary embodiment includes driver circuitry that is operative to cause the LED 412 to output radiation. The driver circuitry of the exemplary embodiment is a square wave oscillator 416. The square wave oscillator causes the LED to output radiation periodically and on a fifty percent duty cycle. In an exemplary arrangement the LED is driven by a square wave signal and operates at a frequency of 10 KHz. Of course this approach is exemplary and in other embodiments other approaches may be used.


In the exemplary embodiment the photo diode is operative to output at least one signal corresponding to the magnitude of radiation sensed, to amplifier circuitry schematically indicated 418. The amplifier circuitry of the exemplary embodiment amplifies the signals from the photo diode, and the level of amplification determines sensitivity of the controller circuitry. The exemplary amplifier 418 is operative to output one or more signals corresponding to radiation sensed, to phase sensitive detector circuitry schematically indicated 420. The phase sensitive detector circuitry is synchronized with a square wave oscillator 416. Circuitry 420 operates in the exemplary embodiment as a full wave rectifier that is sensitive to phase alignment of the input signal with the reference square wave that drives LED 412. As a result the circuitry 420 is operative to produce signals that correspond to the magnitude of radiation sensed during the time period that the LED is operating to output radiation. In addition, in the exemplary embodiment circuitry 420 is operative to attenuate the signals output therefrom in accordance with radiation that is sensed directly from the LED by the photo diode. This aspect is later discussed and enables the exemplary embodiment to produce sensed signals for each cycle that corresponds to radiation reflected from a possible unauthorized sensing device and to minimize the effects of possible direct sensing of radiation output from the LED. Of course these approaches are exemplary.


The sensor signals that are output from circuitry 420 are passed to circuitry 422. In the exemplary embodiment circuitry 422 includes an integrator/low pass filter. The integrator/low pass filter is operative to integrate sensed values corresponding to each of the sensor signals output from circuitry 420. Exemplary circuitry 422 integrates the demodulated signals over a defined time period. The defined time period in the exemplary embodiment comprises a plurality of cycles of the LED. The number of cycles over which the values are integrated may be selectively set for the particular circuitry to suit the particular machine arrangement and/or transaction location in which the sensing is conducted.


Circuitry 422 provides the values corresponding to the integrated output to an analog to digital converter schematically indicated 424. The analog to digital converter provides digital outputs to at least one processor 426. In the exemplary embodiment the processor is operative to compare the integrated value of the sensed values over a plurality of cycles, to one or more thresholds that are stored in memory associated with the processor. In situations where the at last one value received from the analog to digital converter 424 is in excess of a threshold, the at least one processor 426 operates in accordance with its programming to provide at least one output. This at least one output causes the controller or other devices in the automated banking machine to take at least one action. The at least one action may include for example, providing an alarm signal, notifying remote locations or taking other steps of the types previously described. FIG. 24 shows exemplary circuitry which corresponds to the schematic shown in FIG. 23. In this exemplary embodiment the LED 412 operates to emit radiation intermittently during a desired period of operation in accordance with a fifty percent duty cycle. The transconductance amplifier 418 operates to amplify the signals from photo diode 414. This circuitry further includes a first stage amplifier 428 that is used to bias the signal. The first stage amplifier also has its input signal conditioned so as to subtract out the effect of radiation that is sensed directly from the LED by the further diode 414. This is accomplished in the exemplary circuitry through the use of a connection through the resistor designated 430. The circuitry helps to assure that the total output voltage swing is available for the signal output. The value of resistor 430 is selected to remove that portion of the “cross talk” that occurs between the particular configuration of the LED and photo diode. In the exemplary embodiment this avoids the need for light pipes or other devices to reduce the incidence of radiation directly from the IED reaching the photo diode. Of course this approach is exemplary and in other embodiments other approaches may be used.


In the exemplary embodiment the at least one controller in the automated banking machine operates to cause the machine to carry out transactions. A transaction location such as the card reader slot, to which the I.ED and photo diode are adjacent, is utilized in the operation of the machine to carry out a transaction function. As in the case of the other described embodiments, placement of an unauthorized device schematically indicated 432 in FIG. 23 causes the level of radiation output from the LED and reflected to the photo diode 414 to increase. This is a function of the particular configuration of the transaction location at which the system is used. The control circuitry is operative in this exemplary embodiment to produce signals corresponding to the sensed radiation only during the time periods that the LED operates to output radiation. The phase sensitive detector circuitry 420 operates to output a plurality of sensor signals, each corresponding to a particular cycle in which the LED outputs radiation. The values corresponding to the sensor signals are integrated by the circuitry 422 over a set comprising a plurality of cycles. This integration produces a value that is then output to the analog to digital converter 424. The comparison of this value is then made through operation of the processor 426 to at least one threshold. When the value is below the threshold the amount of reflected radiation is considered to be indicative that no abnormal condition exists because no unusual amount of radiation is being reflected to the photo diode.


In circumstances where the amount of reflected radiation increases, the at least one value produced by the circuitry will be in excess of a threshold. The processor 426 operates in accordance with its programmed instructions to output at least one signal. The at least one signal then causes at least one action by the A TM of the types previously discussed. While in the exemplary embodiment the control circuitry operates to integrate sensed values for a plurality of sets of cycles which are gathered sequentially, in other embodiments other approaches to gathering data may be used. This may include for example, integrating sensed values for a plurality of cycles in which the cycles in the sets may substantially overlap. Thus for example if the period of integration is ten cycles, each set may overlap the other set by a plurality of cycles. Indeed in some embodiments the immediately succeeding set may overlap the immediately preceding set by all but one cycle. In this way some embodiments may provide for monitoring such that an abnormal condition is more rapidly detected.


In other exemplary embodiments provision may be made for including in a set sensed values, data corresponding to cycles that are not immediately adjacent. For example in some embodiments, sampling circuitry may be included such that values corresponding to one of each of several cycles, may be included in a set for purposes of producing at least one value. In this way the amount of data analyzed may be reduced, and in some embodiments the effects of temporary fluctuations in the amount of reflected radiation may be minimized so as to reduce the possibility of false alarms. As referred to herein however, in cases where a sampling of cycles is described as conducted for sensed values, those values that are sampled shall be considered immediately adjacent cycles even though the driving circuitry may operate to produce numerous radiation output cycles intermediate of those cycles for which radiation sensed is sampled.


Further while in the exemplary embodiment only one radiation output device and radiation sensing device are shown, other embodiments may include a plurality of either output devices and/or input devices. Also while in the exemplary embodiment the attenuation of sensed signals is accomplished through circuitry providing a fixed resistance, other embodiments may provide for variable resistance and more active attenuation. This may be done for example by including one or more sensors that operate to sense a degree of radiation which moves along a path directly between the one or more radiation output devices and radiation sensing devices. The outputs of such sensors may be used to provide active variable attenuation of the sensed signal. Of course other approaches may also be used.


In the exemplary embodiment the ATM 10 is provided with enhanced diagnostic capabilities as well as the ability for servicers to more readily perform remedial and preventive maintenance on the machine. This is accomplished in an exemplary embodiment by programming the controller and/or alternatively distributed controllers and processors associated with the transaction function devices, to sense and capture diagnostic data concerning the operation of the various transaction function devices. In an exemplary embodiment this diagnostic data may include more than an indication of a disabling malfunction. In some embodiments and with regard to some transaction function devices, the data may include for example instances of speed, intensity, deflection, vacuum, force, friction, pressure, sound, vibration, wear, or other parameters that may be of significance for purposes of detecting conditions that may be developing with regard to the machine and the transaction function devices contained therein. The nature of the diagnostic data that may be obtained will depend on the particular transaction function devices and the capabilities thereof as well as the programming of the controllers within the machine.


Still exemplary embodiments may include other or additional features. Such features of exemplary embodiments are described in connection with an automated banking machine generally indicated 510 in FIG. 25. Machine 510 includes a fascia generally indicated as component 512. The fascia 512 is generally positioned in supporting connection with a machine housing and/or other machine components of the type previously described. In this exemplary embodiment, fascia 512 extends through a wall 514 or other similar fascia supporting structure.


Of course this approach is exemplary, and in other embodiments other approaches may be used. Automated banking machine 510 includes a card reader positioned within the machine that is associated with a card reader slot 516 which extends through the fascia. A card reader bezel 517 includes and is in generally surrounding relation of the card reader slot. The card reader can also have an appropriate indicator and sensors adjacent to the card reader slot such as those that have been previously discussed. The machine includes a keypad 518 of the type previously described through which a user may provide manual inputs. Further, the exemplary embodiment includes a plurality of function keys 520 which are positioned adjacent to a display 524. Function keys 520 may be actuated to provide inputs corresponding to selections that are output on the display.


The exemplary embodiment further includes a camera 522 which may be used to capture images of users of the machine. Camera 522 may also or alternatively serve as a biometric input device for purposes of recognizing users via appearance features such as through facial recognition in the manner discussed in the incorporated disclosure.


An area above the fascia generally indicated 515 includes speaker openings 526. The speaker openings enable audible outputs from speakers included in the machine to be output to users. A headphone jack 528 enables users to connect headphones or other audible output devices to the machine. This enables blind users or persons who may have disabilities that require operation of the machine through voice guidance, to receive audible outputs concerning operation of the machine.


The exemplary machine further includes a depository such as a check acceptor. The check acceptor has an associated check accepting opening 530 in the fascia. A light indicator 531 is positioned adjacent to the opening 530 so as to indicate the status of the check acceptor. Thus, for example, in exemplary embodiments when a user indicates that they wish to deposit a check into the machine, the light indicator 531 may operate to provide a visible indication of the location of the check reader slot. Alternatively or in addition, the light indicator may provide a green indicator to indicate in such circumstances that the check acceptor is operational. Alternatively in some embodiments, the indicator may provide a yellow or red indication to indicate other conditions such as that the check acceptor is operating and cannot process further checks, or that the check acceptor has malfunctioned. Of course these approaches are exemplary and in other embodiments, other approaches may be used.


In the exemplary embodiment the machine includes a cash dispenser which operates to dispense cash to users through a cash outlet opening 542. The cash outlet opening includes a gate 538 which operates to open when cash is to be dispensed therefrom. A visual indicator 543 is positioned adjacent to the cash outlet opening. The visual indicator may operate to provide an indication of when cash is being dispensed or has been presented to a user. For example, the visual indicator may operate to indicate to a machine user the location at which they may take the cash dispensed from the machine. Alternatively or in addition, the indicator 543 may operate to indicate conditions such as that the cash dispenser has malfunctioned or is not available, so as to provide an indication that the machine cannot carry out cash dispensing transactions.


In the exemplary embodiment, the machine 510 further includes an envelope depository. The fascia includes an opening 540 through which envelopes may be accepted for deposit into the machine. Access through the opening 540 is controlled through a movable gate 544. The gate 544 is opened through operation of the machine at appropriate times in transaction sequences when a deposit envelope can be accepted. An indicator 541 is positioned adjacent to the envelope accepting opening 540. The indicator may operate in exemplary embodiments in the manner of the other indicators so as to indicate to users when the envelope accepting depository can accept envelopes therein. Likewise the indicator may also or alternatively indicate conditions that the envelope accepting opening is inoperative or is otherwise not available.


The exemplary fascia further includes a receipt dispensing opening 545. The receipt dispensing opening 545 is operative to deliver receipts produced by a receipt printer within the machine. The receipt dispensing opening 545 further has an indicator adjacent thereto which can be operated to indicate that a receipt has been presented and can guide the user to the opening so they may take the receipt. Like the other indicators, the indicator adjacent to the receipt opening may also operate to indicate that the receipt printer is not available due to a malfunction or other conditions.


It should be appreciated that in some exemplary embodiments, the indicators may operate in a flashing manner to indicate various conditions. The indicators may provide various color outputs so as to indicate various conditions. This may include, for example, a yellow indication when a function is being performed by the corresponding device; a green indication when the device is ready to operate; and a red indication when the device has malfunctioned or is unavailable. Of course alternative approaches may be used. It should be appreciated that the programming associated with the at least one processor included in the machine may be operative to control the indicators so as to provide the programmed indications to machine users.


In an exemplary embodiment, the machine fascia 512 includes several bezels. An exemplary bezel is a removable component of an outer fascia portion which covers at least part of the user side (front) of a function device of an automated banking machine. A fascia bezel can have an opening that leads to its associated function device. An exemplary fascia can have plurality of distinct bezels, including a card reader bezel, display device bezel, cash outlet bezel, deposit input bezel, receipt bezel, keypad bezel, etc. The card reader bezel 517 has an opening (i.e., card slot 516) that leads to the card reader. A display device bezel can have an opening (which may have a transparent cover) that allows a machine user to see the user display screen 524. The cash outlet bezel has the cash outlet opening 542 through which cash can be dispensed by the machine. A deposit input bezel can have a slot (e.g., check accepting opening 530; envelope accepting opening 540) through which a deposit (e.g., checks, currency bills, envelopes, etc.) can be received by the machine (or an acceptor device thereof). The receipt bezel has the receipt dispensing opening 545 that leads from a transaction receipt printer. A keypad bezel can have an opening through which a machine user can provide manual inputs to the keypad 518. As can be seen, an individual bezel can be a part of a fascia's bodywork that surrounds (either physical or visual) user access to an individual function device of the machine.


An exemplary machine includes a user data reader and a bezel having a user data receiving area. The user data reader is operable to read user data provided to the user data receiving area. In an example, a card reader (i.e., a user data reader) is operable to read card data inserted through a bezel's card slot (i.e., a user data receiving area). In a further example, a wireless reader (i.e., a user data reader) is operable to wirelessly read user data that is placed adjacent to a designated reading area (i.e., a user data receiving area) of a bezel. An exemplary machine includes at least one wireless reader that can read a smart card chip data, RFID data, NFC data, magnetic data, IR data, bar code data, electronic ink data, and/or radioactive data, etc.


A machine fascia bezel may function as intermediate structure (or a component) between the machine user and the user function device. The machine bezel may also be shaped to enhance user utilization of the function device. For example, a card reader bezel can have a tapered (or narrowing) slot that guides a user's card toward a correct orientation for proper entry into the card reader. A card accepting area (e.g., a slot) of a card reader may be aligned with a card reader bezel's slot. The (parallel) alignment of two slots can encompass several different slot relationship arrangements, including having: (1) a card reader's slot extending at least partly into a bezel's slot; (2) a bezel's slot extending at least partly into a card reader's slot; or (3) the two slots being set end-to-end (in either abutting or non-abutting relation). When a first slot extends into a second slot, then at least part of the second slot surrounds at least part of the first slot. Of course each bezel slot is formed by bezel structure, and each card reader slot is formed by card reader structure (or other structure operatively associated therewith).


The various types of bezels may be supported by the machine fascia, by the housing, by its associated function (or transaction) device, by a combination thereof, or by other structure associated with the machine. A bezel may also function to retain or provide some support to its associated function device. Other types of bezels are known in other fields. For example, with regard to a typical television, a display bezel can be the front surround of the TV screen. With regard to an automotive vehicle, a particular bezel can be the bodywork structure that surrounds a particular light.


As discussed in more detail later, an automated banking machine is configured to use exchangeable (or interchangeable) bezels for a specific function device. For example, each of a plurality of differently-shaped replaceable card reader bezels can be individually used (in succession or randomly) as the current card reader bezel of the machine. The machine is configured for easy exchange of the card reader bezels. Frequent replacement of the current card reader bezel with another card reader bezel that has a differently-shaped outer surface leading to the bezel's card slot can act to deter attachment of a fraudulent card reader. That is, the fixed shape of a particular fraudulent card reader may not be clandestinely usable (or structurally attachable) with each of the differently-shaped card reader bezels.


In an exemplary embodiment, the machine fascia 512 includes a bezel 517 as shown in FIGS. 26-28. FIG. 26 shows an isometric view including the card reader bezel 517 of the exemplary embodiment. The card reader bezel 517 includes the card reader slot 516. The card reader slot 516 has in surrounding relation thereof a transparent yoke or donut 430, as shown in FIG. 28. The donut portion 430 (of the card reader bezel) surrounds the bezel's card reader slot 516. The donut of the exemplary embodiment is configured to be positioned in adjacent relation with visible and infrared sensors and emitters of the type previously discussed, so that the presence of unauthorized devices adjacent thereto can be detected. In the exemplary embodiment, the translucent or transparent nature of the donut 430 operates to enable radiation to pass therethrough from the emitters and sensors that are positioned within the machine behind the donut so that unauthorized devices and other conditions can be detected. FIG. 28 also shows a fastening member 519 that can be securely fastened to bezel supporting structure of the machine.



FIGS. 28A, 28B, and 28C show different (angled) views of a card slot bezel that is similar to the bezel shown in FIG. 28, but without the fastening member. Thus, for ease of understanding, the bezel in FIGS. 28A, 28B, and 28C has also been labeled with reference numeral 517. As can be seen, the bezel in FIGS. 28A, 28B, and 28C has an exterior surface 521. The exterior surface 521 comprises a contoured (shaped) profile 523. The profile 523 can include protrusions, curves, angles, indents, slots, and topographical (physical) features of various extensions, lengths, and heights, etc. The contoured profile surrounds the entrance 525 to the card slot 516 of the bezel 517. That is, the card slot entrance 525 extends through a outer surface area that is topographically non uniform (e.g., not horizontally level, irregular surface). The surface is non uniform (in physical form) in the outward direction (e.g., direction away from the machine). That is, respective different portions 521A, 521B of the outer surface vary in the outward/inward length (or distance) they extend.


The card slot entrance 525 also has at least one portion (or section) 525A that is further outward/inward than at least one other portion 525B of the card slot entrance. The card slot entrance 525 can be part of the bezel's exterior surface 521. At least a portion of the card slot entrance 525 can be tangible to the machine user. As can be seen, outer surface portions of the bezel profile that are adjacent to (or bound or surround) the card slot entrance 525 can vary in their outwardly extending distance.


In an exemplary embodiment, a bezel can be of an integral, one-piece, unitary structure. An exemplary bezel may comprise plastic, polymer, rubber, and/or fiberglass material. The bezel can also be made of the same material as the remainder of the machine fascia. The bezel can have an exterior color or pattern that matches the rest of the fascia front. As discussed, the exemplary bezel 517 is configured so that its card reader slot (or entrance thereto) does not present a generally uniform horizontal outer surface. Rather as shown, the bezel outer surface includes at least two generally horizontally offset portions connected by an intermediate section. This outer surface configuration makes it more difficult to attach a skimming device to the exterior of the card slot bezel. This is because the irregular outer surface would require a skimmer device to have a similar corresponding complex surface so as to attach thereto in a way that would be unnoticed.


In some exemplary embodiments, the exterior surface of the bezel can include an antistick coating. This can include, for example, a paint or powder coating that includes a silicone material which makes it difficult to attach an unauthorized device thereto via an adhesive or other similar sticky materials. The coating makes it difficult for criminals to attach a skimming device to the bezel. In another embodiment, a bezel's outer surface can comprise spun fiberglass strands that are coated with tetrafluoroethylene (TFE) fluorocarbon polymer or a fluorinated ethylene-propylene (FEP) resin. For example, the anti-stick coating can comprise Teflon®. Further in exemplary embodiments, the bezel 517 can include multiple colored elements such as elements 432 and 434 shown in FIG. 27. Elements 432 and 434 can differ in color from the surrounding bezel. Such elements and the contrasting colors thereof may make it difficult for a skimmer to be attached in a way that does not cause it to be noticeable because of the color contrast. Further, such elements can include logos, designs, or other indicia that further make it difficult for any skimming device to be attached in the area thereof without being noticed. In addition, the inclusion of such indicia provide a visible indicator to an exterior camera or other detecting device which enables a determination to be made that a bezel has been subject to modification via analysis of captured images of the fascia of the machine. The transparency of the yoke 430 also makes it easier to notice a (non-transparent) fraudulent device attached or adjacent thereto. Of course these approaches are exemplary, and in other embodiments other approaches can be used.


In some exemplary embodiments, the fascia of the machine can incorporate different card surrounding bezel configuration designs. Such card surrounding bezel designs can be made readily manually changeable or interchangeable by authorized service persons who have authorization to remove/replace the bezel. In some bezel support arrangements, accessing the bezel may only be feasible through an interior area of the machine.


As shown in FIG. 29, an exemplary bezel 517 includes fastener accepting openings 436, 442 which are operatively configured to accept fasteners that extend through internal bezel-supporting structure of the machine. For example, the fastener accepting openings 442 are configured to receive removable fasteners 440 (e.g., bolts, screws, pins, etc.) that extend through corresponding openings 441 in a card reader holder assembly 438 of the machine. The fasteners 440 allow the bezel 517 to be generally readily engaged and disengaged from the card reader holder assembly 438 (and the machine and the fascia). The other fastener accepting openings 436 are configured to receive other fasteners that operatively connect the bezel to other bezelsupporting structure, such as a card reader, a fascia portion, or other machine structure. As can be seen, FIG. 29 shows at least one fastener 440 releasibly holding a card slot bezel 517 in fixed operatively supported engagement with a bezel support structure 438 of an automated banking machine. Furthermore, the at least one fastener 440 is manually movable to release the respective bezel 517 from fixed operatively supported engagement with the bezel support structure 438.


The bezel fastener arrangements enable authorized service personnel to relatively readily remove a bezel and replace it with another bezel that has a different configuration yet has similarly arranged fastener accepting openings. That is, the machine can be used with a plurality of differently configured card reader bezels, where each bezel would share the same bezel support arrangement of the machine. The approach allows a single automated banking machine to separately use differently configured card reader bezels without requiring any changes to the machine's bezel-support structure. Different bezels can be attached in the same manner to the same machine. In an exemplary embodiment, an automated transaction machine can individually use a plurality of card reader bezels, with each bezel having an exterior surface of a different (unique) contoured profile, where the contoured profile surrounds the bezel's card slot. The differing contoured profiles are configured to reduce the probability of having a same type of fraudulent card reader be attachable adjacent to different card slots of differently configured card reader bezels. The discussed approaches at a common supporting arrangement for plural bezels are exemplary, and in other embodiments other bezel support arrangements can be used. In an exemplary embodiment a card reader holder and gate assembly (generally indicated 438) is releasibly attachable to the card reader bezel 517 via the fasteners 440 which engage the fastener openings 442 in the bezel. Gate assembly 438 includes a movable gate 444 which is operative to block the slot 516 at the back of the bezel 517 when the card reader mechanism within the machine is moved relatively away from the back of the bezel for servicing. The blocking by the gate 444 can prevent user cards from being inserted through the bezel slot 516 during absence of the card reader from the machine. Likewise, the gate 444 is operative to move and open as the card reader assembly is operatively positioned adjacent to the back (rear side) of the bezel 517. Of course these approaches are exemplary and in other embodiments other approaches can be used.



FIG. 40 shows an alternative bezel fastening arrangement. A bezel includes a bezel housing 446 and a bezel insert 448. The bezel insert 448 includes a card reader slot 450 which enables a card to pass therethrough to a card reader 452. The bezel housing 446 is releasibly engageable with bezel-supporting structure in the machine. The bezel insert 448 is releasibly engageable with the bezel housing 446. Thus, both the bezel housing 446 and the bezel insert 448 can be supported by the bezel-supporting structure. Some arrangements allow the bezel insert to be releasibly engaged with the bezel housing before they are attached to the machine. In some embodiments a plurality of differently configured (and interchangeable) bezel inserts can be fittingly used with the same bezel housing. Thus, in some arrangements the bezel housing can remain attached in the machine while the bezel insert is being replaced. That is, only the bezel insert would need to be replaced. In other arrangements the bezel housing would first need to be disconnected (unattached, unfastened) from the machine before the bezel insert could be disconnected from the bezel housing. In other embodiments a bezel housing and a corresponding bezel insert can only be (uniquely) fastened to each other. Thus, replacement of one would likewise require replacement of the other.


Also, in some bezel arrangements both a bezel housing and a bezel insert can be manually touchable by (tangible to) the machine user. This results in both bezel components contributing to the bezel's outer surface configuration. Such a dual component surface configuration may cause additional interference against successful attachment of a fraudulent reading device. Suitable fasteners (e.g., like fasteners 440) and other features can be used to hold the bezel insert 448 in releasibly engaged relation with the bezel housing 446. Some bezel arrangements may require that the fasteners be manually released only from the interior of the machine, which interior accessing may be performed by authorized service personnel.


Fasteners are usable to fasten an interior support and a bezel or a bezel housing. Fasteners are also usable to a fasten a bezel insert and a bezel housing. Such fasteners that are usable in bezel fastening can include bolts, screws, pins, hooks, recesses, male/female connections, flexible parts, telescopic components, snap fit pieces, etc. Also, a bezel support structure may include at least one fastener integral therewith. For example, the integral fastener can comprise a movable screw or a snap fit connector. The snap fit connector can be removably received in a connection slot of a bezel. Alternatively, a bezel can have snap fit connectors that are removably fitted into connection slots of a bezel support.


In another arrangement for securing a bezel, a key actuating type of lock can be used to fasten the bezel to a bezel support structure (e.g., machine housing). The key lock can be arranged so that it is accessible to a mechanical key that is used outside of the machine. Thus, the removable bezel can be locked/unlocked to the housing by a service person located outside of the machine. In still other arrangements, an exterior located key lock can be used in combination with a bezel fastener connection that is located inside the machine housing. As can be appreciated, various approaches can be taken to provide different configurations of bezel fastening so as to minimize the risk of unauthorized removal of a bezel.


Different bezels can respectively have differently configured (or shaped) exterior (outer) faces. That is, the bezels' outer surfaces, which are touchable by customers, can have a shape vary with regard to dimensions in height, length, and width. Different bezel shapes can respectively have a different number and/or different positions of indents, recesses, corners, curves, points, lengths, patterns, molds, forms, trims, contours, outlines, profiles, delineations, characteristics, frames, cutouts, peaks/valleys, physiques, rises, slopes, gradients, projections, angles, materials, colors, etc. Shapes other than donuts can also be used, including C-shapes, Ushapes, L-shapes, I-shapes, T-shapes, V-shapes, X-shapes, rectangular shapes, unique shapes, etc. The bezel 660 of FIG. 41 additionally has an outer contour comprising four walls 682, 684, 686, 688 tapering inwardly to the card entry slot 662. The upper 682 and lower 684 walls each have three raised projections (upper projections 672, 674, 676; lower projections 692, 694, 696) that extend away from the base of their wall face. The two side walls 686, 688 each have a single trapezoidal shaped outward extending raised projection 678, 680. The rise of the projections can vary in outward height. The intentional non-uniform outer surface assists in preventing skimmer attachment to the bezel 660.


In some exemplary embodiments, bezels including card slots of different designs can be readily changed on the same model of machine. Periodically changing bezel configurations may help to deter the installation of fraudulent reader components, such as data skimming devices. This is because criminals cannot readily develop skimming devices which can be attached without observation to a plurality of different configurations of bezels and card slots. Thus, by having different colors and contours of bezel designs, and by having machines of the same type but with different card reader bezel configurations, criminals will find it more difficult to deploy and operate card skimming devices. As can be seen, exemplary embodiments increase the difficulty of criminals to produce a generic skimming device that can be used on an entire (bank) fleet of machines, especially when machines of the same type (model) can respectively have different bezel configurations at different times.


The different bezel configurations can also have differently sized card slots (e.g., slots of different widths). As previously discussed (e.g., with regard to U.S. Provisional Application 61/574,594 filed Aug. 5, 2011), some card slots (card input openings) can be of a larger (horizontal) width to allow a long edge (side) of a card to be inserted first into the card slot. That is, the card can be inserted sideways into the slot. The card reader can be arranged so that a read head is horizontally movable to read the magnetic stripe of the long-edge inserted card. The card reader may be horizontally mounted. In alternative card reading embodiments, a card reader may be vertically mounted to receive and read a card inserted vertically upward (or downward) into a card slot, where the card slot can be of a width configured to receive a long-edge inserted card. FIGS. 30-39 show examples of exemplary bezels which can be installed on automated banking machine fascias. Each of these bezels has a different exterior contour which makes it difficult to attach an unrecognizable skimming device. As can be appreciated, a sole skimming (fraudulent card reading) device would be even further difficult to use with each of the differently configured bezels. As can be appreciated, each example includes similar internal attachments mechanisms so that the bezels can be interchanged and mounted in operative engagement with an exemplary automated banking machine fascia mounting structure. As further expressed in FIGS. 30-39, each of these exemplary bezels can include a translucent donut of the type previously discussed that can be used for purposes of detecting the installation of an authorized card reading device. Of course it should be understood that these bezel configurations are exemplary and in other embodiments, other configurations can be used.



FIG. 30 shows a card reader bezel 651, a receipt bezel 653, a keypad bezel 655, and a display bezel 657. FIG. 30 also shows a wireless reader bezel 659. The machine includes a wireless data reader which is operatively positioned (within reading range) to wirelessly read user data that is placed adjacent to the wireless reader bezel 659 by a machine user. As previously discussed, an automated banking machine can have at least one wireless data reader that can wirelessly read smart card chip data, RFID data, NFC data, magnetic data, IR data, and/or bar code data, etc. For example, a wireless NFC data reader of the machine is operable to read NFC data from a mobile phone (or card, wallet, etc.) that has engagingly contacted (e.g., bumped against) the wireless reader bezel 659. In another embodiment a RFID data reader of the machine can read RFID data from an object (phone, card, wallet, etc.) that is positioned by a machine user within the reading range of the RFID data reader, which reading range includes the area adjacent the wireless reader bezel. In still other embodiments a wireless biometric data reader of the machine can wirelessly read biometric data from a machine user. For example, a biometric feature of the user can be read when the feature is properly positioned near (or in contact with) the wireless reader bezel. As previously discussed, a biometric feature that can be wirelessly read can include any of a fingerprint, iris scan, retina scan, facial feature, etc. When a camera is used as a wireless biometric data reader to read a facial feature of a machine user for use in facial recognition, then the wireless reader bezel can bound (surround) a visual opening that leads from the fascia to the camera.



FIG. 31 is an isometric view of the card reader bezel 651 shown in FIG. 30. FIGS. 31A, 31B, and 31C show different (angled) views of a card slot bezel that is similar to the bezel 651 shown in FIG. 31, but without the fastening member. Thus, for ease of understanding, the bezel in FIGS. 31A, 31B, and 31C has been labeled like the bezel of FIG. 31. The bezel 651 of FIG. 31 has a card entry area 661 that is tapered on four sides. The tapering guides the card to a card slot 663 that passes through the bezel. The card slot 663 has a continuous straight (horizontal) entry opening. Alternatively, the bezel 651 can be viewed as having a card slot that includes the area 661, where the card slot tapers smaller toward the card reader. The FIG. 31 bezel comprises a fastening arrangement which includes at least one fastening member 665. FIGS. 32-39 respectively show differently configured card slot bezels 902, 904, 906, 908, 910, 912, 914, and 916. Each of these respective bezels includes at least one fastening (attaching) member that is useable to removably attach the respective bezel to a machine. Fastening members 903, 905, 907, 909, 911, 913, 915, and 917 are shown. As can be seen, each of these fastening members has similarly arranged attachment points (e.g., fastener receiving holes) or connections (e.g., male/female snap-in connector component). The common usage of similarly configured attachment points allows each bezel to be engagingly supported by the same support structure of the machine. Thus, each of the differently configured bezels of FIGS. 32-39 can be interchangeably used with the same automated banking machine.



FIGS. 32A-39A, 32B-39B, and 32C-39C respectively show different angled views of card slot bezels that are similar to the respective bezels shown in FIGS. 32-39, minus the bezel fastening members. That is, FIGS. 32A, 32B, and 32C show different views of a bezel that is similar to the bezel shown in FIG. 32. Likewise, FIGS. 39A, 39B, and 39C show different views of a bezel that is similar to the bezel shown in FIG. 39. Thus, for ease of understanding, similar reference numerals have been used for similarly (like) configured (shaped) bezels. As can be seen, an automated banking machine can have structure where a bezel area surrounding a card reader slot can be readily replaced from a position inside of the machine. Other arrangements can allow card reader bezel replacement from outside the machine, such as through use of a fascia key lock. Still other bezel fastening arrangements can required a service person to both access an outside securing feature and an inside securing feature of a bezel fastening arrangement. Further, the outside and inside accessing may have to be performed in a specific order of service steps. For example, a first bezel securing feature which can only be manually accessed inside of the machine housing may have to be released before another (second) bezel securing feature which is accessible outside of the machine housing can be released, and vice versa. Thus, the fastening and/or removing of a bezel may require that the authorized person perform (in a particular sequential order) both interior an exterior operations. As discussed, an outer surface of a bezel area can include one or more diagonal faces, including faces of different (outwardly extending) heights. For example, the faces can slope or taper in an inwardly direction toward the card slot. Thus, a bezel configuration can act to guide (or funnel) a card toward the card entry slot. As discussed, exemplary embodiments allow for different card reading area bezels with different configurations to be installed and periodically changed on different machines.


In other exemplary embodiments an interchangeable integral bezel unit can have a translucent or transparent view window. The window is of a configuration (size) and position (location) that allows a customer to view their card while it is inside the card reader. Thus, the customer can be in visual possession of their card at all times during a transaction with the machine. An inability of a customer to see their card can be an indication that an unauthorized component is blocking their (direct line of sight) view to the card. FIG. 42 shows a bezel unit 700 including card slot 702 and a (transparent or translucent) window 704. FIG. 43 shows a card reader 800, which has a shutter 802 and an open top portion 804. At least one read head 806 and card sensors 808 are also shown. The shutter 802 is aligned with the slot 702. The window 704 allows a customer to see into the interior of the reader 800.


The card reader's entrance shutter (door) 802 can be moved from a closed position (or a locked condition) to an open position (or an unlocked condition) to allow a user card to enter into the interior of the card reader 800. In an exemplary embodiment the shutter 802 is normally locked in a closed position to keep non card material out of the card reader. With the shutter 802 unlocked during a card reading operation, a card entering the card reader pushes against the biased shutter 802 causing it to be moved to an open position. For example, the shutter 802 can be pivoted upward about an upper hinge or axis. Upon exit of the card from the card reader, the shutter 802 is biased back to its closed position where it can again be placed in a locked condition. It should also be understood that other arrangements for opening/closing a shutter can also be used, including arrangements that use drive (e.g., mechanical, electrical, etc.) devices to cause the shutter to be moved (driven) from the closed position to an open position independent of card insertion.


In other exemplary embodiments, operation of a shutter of a card reader is linked to one or more visual indicators situated on the bezel (or on the fascia). The bezel has at least one sensor positioned in an area adjacent to (or in) the card input slot. The at least one sensor can sense the presence of a card entering the card slot. The at least one sensor can also sense whether the card is properly oriented to allow reading of the card data (e.g., magnetic stripe data) by the card reader. Both the at least one sensor and the shutter position/condition controlling device can be in operative connection with at least one processor (e.g., controller) of the machine. The magnetic stripe of a card can be used to determine the card's orientation. For example, if a magnetic property of a magnetic stripe can be sensed (by the at least one sensor), then it is determined that the card is correctly oriented. That is, the at least one sensor can be positioned relative to the card entry slot so that it can only read a magnetic property from a properly oriented magnetic stripe.


A visual indicator (e.g., a light emitter which can change colors) on the bezel (or on the fascia) can alert a customer whether their card was correctly or incorrectly inserted. For example, a visual indicator comprising an LED can emit a green light if the card was determined to be properly oriented upon its entry into (or adjacent to) the card input slot. In response to the (magnetic) sensing of a properly oriented card, the shutter can be opened to allow the card to enter the card reader. In contrast, the LED can emit a red light if a sensed card is determined to be improperly oriented. The shutter will remain closed in response to the sensing of an improperly oriented card.


As can be seen, the exemplary embodiments allow for use of shutter locking control in combination with visual indicators during a machine transaction. The computer control that oversees the unlocking of the card reader shutter is dependent on verification that the card is correctly oriented. Furthermore, visual indicators (e.g., LEOs) can be used to identify (confirm) to a customer an authenticated proper card orientation.


The bezel unit of FIG. 42 also includes a visual indicator 706 and at least one sensor 708 operable to both sense the presence of a card and sense a magnetic property. In an exemplary example the at least one sensor includes two sensors, both a separate proximity sensor and a separate magnetic field sensor. In another exemplary example the at least one sensor comprises a single combination sensor. It should be understood that in other exemplary examples more or fewer sensors can be used.


It should also be understood that a card reader shutter arrangement that is (at least partly) controlled by bezel sensor operation is applicable to both short-edge and long-edge card insertion configurations. In the bezel example of FIG. 42 the at least one sensor 708 is positioned adjacent to a lower (bottom) edge of the slot 702. This position allows the at least one sensor to detect a proper orientation for a card that is being inserted short-edge first, has its magnetic stripe facing downward, and has its magnetic stripe at the lower right side of the card. The proper orientation enables the right side read head 806 in FIG. 43 to read data from the magnetic stripe. However, the at least one sensor shown in FIG. 42 may also be viewed as being positioned to detect a proper orientation for a card that is being inserted long-edge first and has its magnetic stripe facing downward. It should be understood that the sensor position is exemplary, and in other embodiments other sensor positions can be used.


Further, in some exemplary embodiments authorized bezels can have embedded therein at least one indicator that can comprise radio frequency identification (RFID) tags, near field communication (NFC) chips, and/or other wired or wireless indicators which can be detected through operation of suitable sensors positioned within the machine. FIG. 29 shows a bezel indicator 456. For example, a bezel indicator can comprise an RFID tag which indicates that the bezel is a genuine and authorized bezel. The data in the RFID tag may include a suitable serial number or other data or value which indicates to the machine that an authorized bezel is present.


As discussed in further detail later, in some arrangements a bezels's RFID tag is programmable, and the machine is operable to store bezel updated data in the RFID tag of an authorized bezel. The stored bezel data can be later read by the machine's RFID reader to verify that an authorized bezel is still present. Updating of bezel data may occur after each transaction. Similarly, the machine may store authorization data in a programmable NFC chip of a bezel. A new bezel being attached to the machine for the first time can have bezel data that identifies it to a machine-associated computer as a bezel that is designated (approved) for use with the machine.


In an exemplary embodiment, at least one bezel indicator reader (or sensor) is positioned within (or adjacent to) the machine. A reader of a bezel indicator can comprise a wireless reader. FIG. 3 shows such a wireless reader 77. The wireless reader 77 is operable to wirelessly receive bezel data transmitted by a bezel positioned adjacent the machine housing. For example, the bezel data can be usable to identify the bezel as a bezel authorized for use with the machine. The bezel data reader 77 can comprise an RFID reader and/or an NFC reader. For example, an RFID reader can detect signals from a RFID tag or other RFID indicator on or in the bezel. The presence of an appropriate bezel data (or indicator) may be monitored through operation of at least one computer associated with the machine to assure that an authorized bezel is installed on a machine. Thus, removal of a bezel can be detected.


Alternatively, an RFID signal strength or other signal properties may be used by at least one computer to determine that an authorized bezel is adjacent the machine housing, and it is also in its proper operating location. The failure to detect an authorized bezel may be indicative that an unauthorized bezel has been installed by criminals on the machine. Likewise, a failure to detect appropriate signal strength or other properties can be an indication that a skimming device is installed. That is, a change in the signal strength from an RFID tag (or from an NFC chip) can be an indication of tampering. For example, the signal strength may be decreased because of the new presence of unauthorized structure. The signal strength may also be decreased because the bezel is not properly positioned (e.g., due to unauthorized movement of the bezel from its normal operating position). Signal strength may also be decreased (or absent) because the current bezel is unauthorized (e.g., due to unauthorized replacement of the prior bezel).


In response to the detection arrangement indicating the absence of the expected bezel indicator, or improper signal properties, the at least one processor can operate in accordance with its programming to take appropriate action. This can include, for example, disabling further operation of the machine, giving an indication to a remote computer of a possible fraud condition, notifying authorities, causing a display device to output a message (warning) to potential customers, and/or other appropriate steps.


In alternative embodiments, a bezel indicator can include a programmable RFID tag or other structure/component which can receive signals (messages), such as from the machine. The indicator can alter its stored data in response to the messages from the machine. For example, a bezel indicator's programmable RFID tag (or a similar wireless indicator including a memory) may receive data (such as from the machine), which is then stored in association with the indicator. This data may be output (sent) by a suitable wireless output device of the machine with each transaction, or upon other events that occur at the machine. That is, with each transaction the current data being stored by the indicator can be updated. For example, after a transaction the machine may provide the bezel indicator new data that corresponds to a code or value, such as the next transaction number or identifier.


The machine includes at least one wireless reader (e.g., an RFID tag reader) that can read data from the bezel's stored data (e.g., an RFID tag). The machine can operate in accordance with its programming to check the data stored in connection with the bezel indicator with each transaction or on a periodic basis. That is, a computer associated with the machine can determine if the bezel's currently stored data matches the latest data sent to the bezel. If the stored data associated with the bezel indicator does not correspond with the data that was last sent by the machine to be stored in the bezel indicator, then at least one processor of the machine will determine this discrepancy. The processor of the machine can further resolve that there is a possible fraud situation occurring at the machine. This may result in the processor causing the machine to no longer operate or to give an indication of a fraud condition to a remote computer.


Further in other embodiments, security features (such as data encryption) can be used in association with the transmission of data to/from the indicator and with data storage to make it more difficult to intercept and replicate the data used in association with the indicator. This can include, for example, the use of public key encryption or similar security so as to assure that communications between an emitter/receiver of the machine and the storage device of (within) the indicator cannot be intercepted or readily replicated in a counterfeit bezel device. Of course these approaches are exemplary and in other embodiments other approaches can be used. Furthermore, each of the bezel configurations previously discussed can be used with bezel indicators of the type described to assure that the replaceable/changeable bezels installed on a machine arc authorized, and that a counterfeit bezel has not been installed on the machine. As can be seen, exemplary arrangements allow for a feature to be associated with a replaceable authorized bezel in order to determine if the authorized bezel has been removed and replaced with another (fraudulent) bezel installed by the a criminal. An exemplary system of this type can involve a series of sensors or other switches that can detect when the bezel has been removed from its normal surroundings. If a processor (associated with the sensors) determines a situation where the bezel has been changed, then the machine may be automatically shutdown. A machine servicer may need to provide special inputs to the shutdown machine, cause a message to be downloaded to the machine, or other procedures in order to again make the machine operable for customers.


As can be seen, exemplary examples of sophisticated approaches for determining if the authorized bezel has been removed have been provided. For example, some of these approaches include providing programmable RFID tags or other chips within the authorized bezel. An RFID receiver/reader within the machine can determine if the data output by the RFID tag in the bezel corresponds to a value for an authorized bezel (i.e., a bezel authorized to be used with that particular machine). As previously discussed, the machine itself (or a processor associated therewith) can be used to provide the bezel with an updated value.


Other approaches for authorized bezel verification may analyze signal strength to verify that the bezel is in its proper (expected) position. This can include analyzing the signal strength received by the (remainder of the) machine from an RFID tag or NFC chip embedded in the bezel. If the authorized bezel has been moved from its normal position but still remains within the machine, then the change (e.g., decrease) in the signal strength can be an indicator that the authorized bezel is not in the proper operating position. As a result, changes in the sensed signal from the RFID tag (or NFC chip) can be an indication that the bezel has been moved from its authorized position, and that criminals have installed a skimming bezel on the machine.


As previously discussed, other detection methods for detecting the presence of an unauthorized bezel can also be implemented. These can include having an RF emitter/transmitter of the machine communicate with the programmable RFID component (or NFC chip) of a given bezel with every transaction. The communication can cause the RFID tag to store a different value (or secret code) after completion of each transaction. Before allowing the machine to carry out a subsequent transaction, the processor/sensors associated with the machine can determine if the machine can receive (from the bezel) the prior value that was communicated to the RFID tag. If the value does not correspond (match), or cannot be recovered (received from the bezel), then a fraud condition that the bezel has been replaced with an unauthorized bezel can be determined.


As previously discussed, encryption features can be employed in connection with the communicating and storing of data within a data store associated with the RFID tag or NFC chip of the bezel. Thus, the data stored in the bezel data store (e.g., RFID tag) may be encrypted to make it harder for criminals to produce counterfeit bezels to install on machines. Exemplary encrypted communication approaches can use asymmetric public key encryption for purposes of transmitting a new value to the bezel. This can include having a data store in association with the RFID tag (or NFC chip) in the bezel. The data store can have a public and private key. Similarly, the processor associated with the machine's RFID reader and transmitter can have its own public and private key pair. The machine's emitter can communicate wirelessly to the bezel its public key, and cause the bezel to provide its public key to the machine's processor. A value that is encrypted using a given private key can be decrypted using the corresponding public key. Thus, the ATM is able to determine that it is communicating with the genuine bezel. Likewise, the genuine bezel is able to determine that it is communicating with the authorized emitter and processor associated with the machine. In this exemplary arrangement, data can be securely stored within the data store of the bezel that can authenticate the particular bezel as genuine.


In still other embodiments, card reader bezel structures can be made further resistant to fraud by having movable components included therein or therewith. For example, bezels may be comprised of flexible plastic or other material that allow the flexing and movement of surfaces thereof. Such flexible materials can include embedded therein or mounted adjacent thereto, movable members which are in operative connection with actuators so as to provide periodic movement of the bezel structures. Such movement may be achieved by actuating devices, such as shape memory alloy structures that move in response to applied electrical energy.


Alternatively, such bezel structures may move in response to applied pressure, such as internal fluid (air) bladders, pneumatic cylinders, or other similar pressure providing devices. Further, alternative embodiments may include panels or pieces that are moved in response to solenoid actuators, motors, or other electrical devices.


In the exemplary embodiment, control circuitry can operate in response to at least one processor in the machine to cause the periodic movement of the actuator included within the card reader bezel (or other machine bezel that is used to receive user input). Movement of the actuator changes the exterior contour of the bezel. Changing of the exterior contour will generally cause the dislodgement of (or the readily visibly exposing of) an unauthorized reading device that may have been mounted thereon by a criminal. In exemplary embodiments the exterior surface of the bezel's contour adjacent to the area of the donut can be periodical} y moved in response to the actuator. Such movement can include, for example, producing a periodic single temporary bulge or wave in the outer surface contour of the bezel. In some exemplary embodiments, a plurality of such temporary bulges, waves, or other contour changes can be produced. The outward waves can also be of various sizes (wavelengths and frequencies) and can be continually produced for various lengths of time. Such contour changes can be produced (before and/or after) each time that the user data reading device (e.g., a card reader) is operated, at other periodic intervals, after proximity detection of a potential customer, etc.


As can be appreciated, such repeated periodic contour surface changes will generally be effective, particularly in areas where skimmers are likely to be attached, to cause such skimmers to (at least partly) be disengaged or dislodged from the moving underlying bezel structure. Thus, such skimmers will be made more readily visibly apparent to machine users and machine owners. Furthermore, when combined with the use of anti-stick coatings (of the types previously discussed), the use of bezels having changeable outer contour surfaces will be further effective to prevent the continual (retained) attachment of unauthorized devices thereto. Of course these approaches are exemplary and in other embodiments, other approaches can be used.


Still other exemplary embodiments can change the presented outer surface of a bezel by movement of individual bezel components. For example, a bezel can have plural different faces. The bezel can be rotated about an axis by a service person to change the bezel face that is to be currently presented to the machine users. FIG. 44 shows a top view of a box shaped bezel section 810 having four differently configured (substantially square or rectangular) outer faces 812, 814, 816, 818. The bezel section 810 can be moved (rotated) ninety degrees about its axis 828 to cause an adjacent (next) face to be presented to a customer area adjacent the machine. FIG. 45 shows an angled side view of the bezel section shown in FIG. 44. Some fixed protrusions 820, 822 that are common to both Figures are also shown.


In an exemplary embodiment a bezel comprises both an upper section and a lower section. These two sections are independently rotatable. The arrangement allows for an upper section of one complete bezel face to be used (mixed and/or matched) with the lower section of another complete bezel face. Thus, the arrangement enables the generation of even more different combinations (configurations) of usable bezel faces. As shown in FIG. 45, each of the four sides 812, 814, 816, 818 of the upper bezel section 810 can include a cutout 824, 826 that comprises one-half of the (total area of the) card slot. In other arrangements one of the upper or lower bezel sections can have a cutout that forms substantially the entire slot. A cutout can also be a portion (percentage) that is less than half of a slot.



FIG. 46 shows a top view of another multi-faced upper bezel section 830. The triangular shaped section has three differently configured outer faces 832, 834, 836. The bezel section 830 can be rotated (in either direction) 120° degrees about its axis 838 to cause a different face to be presented to a customer. A drive device 840 can be used to perform the rotation. FIG. 47 shows an angled side view of the bezel section 830 shown in FIG. 46. Protruding outward from the face 832 are two parallel vertically-extending raised members 842, 844. The face 832 also has a slot cutout portion 846. A raised member 848 extending from face 834 is also shown in both Figures.


In an exemplary arrangement a key lock is used to hold a bezel (or a bezel section) of a transaction machine in its desired rotational position. The key lock can be positioned inside the machine. Alternatively, the key lock can be positioned so that it is accessible from the front (exterior) customer side of the machine. Thus, a bank employee who daily adds cash to the machine can also daily manually rotate the bezel to a new position. An unlocked rotatable bezel can also be easily removed and replaced (exchanged) by the bank employee. This allows for use of a plurality of multi-faced bezels, where no two faces are the same. In other arrangements, a machine computer can cause a multi-faced bezel to be rotated (by a computer controlled drive) to a new face immediately following each transaction. The rotation (and the time of rotation) can be predetermined to follow a set rotational pattern. Alternatively, the amount of rotations for any single face change can be randomly determined. As can be seen, bezel movement (or movement of a portion of a bezel) such as by rotation or pivoting, provides increased protection against successful fraudulent device installation and operation.



FIG. 48 shows a front view of another exemplary bezel 850. The bezel 850 includes a plurality of outwardly extendable projections 852, 854, 856, 858. A card reader entry slot 860 is also shown. A bezel's pattern of projections can be based on several variables, including the number of projections being used versus the effectiveness of the pattern. For example, it may not be cost effective to cover an entire bezel face in closely spaced projections. An exemplary embodiment includes a computer program that can calculate effective different patterns of movable face members (projections) based on changeable factors such as configuration (e.g., security contributing angles) of the bezel face, the bezel face material (e.g., strength, thermal expansion properties, etc.), bezel size, other security features employed (e.g., non-stick coating), climate, assessment of fraud risk for the intended geographic location, cost, etc.



FIG. 49 shows a side view of an upper portion of the bezel 850 taken along A-A in FIG. 48. The upper portion includes the projections 852, 854 located above the card slot 860. In FIG. 49 the projections 852, 854 are in their non-extended (flush) position. FIG. 50 also shows a side view of an upper portion of the bezel 850 taken along A-A in FIG. 48. However, in contrast to FIG. 49, the projections 852, 854 in FIG. 50 are in a fully extended position. That is, the outer surface of the projections 852, 854 can be moved from a position (FIG. 49) that is substantially flush with the bezel face to another position (FIG. 50) that is extended outward a predetermined distance from (relative to) the bezel face. The card entry slot 860 is also shown in the FIGS. 49 and 50.


In an exemplary embodiment an electric motor 862 drives a screw rod 864 connected to a plate 866. The plate 866 connects to the projections. The motor 862 can be operated to move the projections outward and inward relative to their guide housings 868. The fixed housings 868 each include at least one slot through which the plate 866 can respectively move. In one exemplary embodiment all of the projections (including those located above and below the card slot 860) are connected to the plate 866 and driven by a drive device (e.g., motor). In other exemplary embodiments all projections located above the card slot are operatively connected to a first plate and a first drive device, whereas all projections located below the card slot are operatively connected to a second plate and a second drive device.


It should be understood that other arrangements for operatively connecting a plurality of projections (or a single projection) to a drive device can be used. It should also be understood that other drive devices and/or arrangements can be used to cause the projections to be moved (driven) in an outward direction (toward a customer area). For example, a mechanical, electrical, electro mechanical, fluid, or magnetic drive member can be used. Biasing arrangements can also be used to move (push or pull) the bezel face components (projections) either outward or inward. The exemplary embodiments also allow for changing the distance which certain movable surface portions (projections) are outwardly moved. That is, the projecting distance can be periodically varied. Some movable portions may be moved only part of their maximum distance, whereas other movable portions may simultaneously be moved their maximum distance. As can be appreciated, the varying of outward movement results in different bezel face configurations. By periodically changing the outer contour of a bezel face, an attached fraudulent device (such as a card skimmer) may become dislodged from the bezel surface. Alternatively, a changed contour may cause a skimmer to be rearranged so that the skimmer becomes more noticeable, either visually by a person or by machine sensors or cameras. The novel ability to outwardly/inwardly move bezel portions allows for machine computer programming to cause a different facial configuration to occur after every customer transaction session.


In other exemplary embodiments a bezel includes a display screen device. A computer associated with the automated banking machine controls the data that is output by the bezel display. For example, the outputted data can comprise data that a potential machine user can verify as correct, such as the current time and/or date, bank name, bank branch address, etc. The data output through the bezel display screen can also be correlated by a computer with information this is concurrently output through the (larger) user display screen, such as the user display screen 36 shown in FIG. 1. For example, the user display screen may notify the potential machine user to check whether the bezel display is currently displaying a specific code. That is, for normal operation the specific code is visible (or indicated or identified) on both the user display and the bezel display. The absence of the code on the bezel display, or an inability of the potential user to see the code on the bezel display, can be an indication of the presence of a (view blocking) card skimmer or an unauthorized bezel. The code can be predetermined or randomly generated. A new code or password can be provided after each transaction. The sophisticated computer programming that causes the two displays to simultaneously output the same code would act as another deterrent to success of a fraud device attached to the machine. In other embodiments other (non identical) data can be correlated. For example, the user display can be used to inform a person (via a displayed text message) to verify that the correct date/time is displayed on the bezel display before inserting their card into a card slot.


In another example the bezel can have an indicator (e.g., an indicator light such as an LED). The indicator can be in addition to or alternative to the bezel display. The machine can cause a plurality of different colors to be individually output by the bezel's indicator. The color being output through the indicator should be visible to a customer. The user display can then ask a person to verify whether a specific color is being output by the bezel indicator.


In still other embodiments card entry into a valid card slot can be normally blocked by the machine. The potential machine user may be required to verify through user input (e.g., to a touch screen user display) that the accessible card slot is closed. For example, the machine can (via displayed instructions) request the user to try to insert only a non-stripe portion of their upside down card into the accessible card slot (which may be a fraudulent slot). The potential machine user may also be required to verify other data, such that the current date/time is correct and/or that the displayed codes match. Following user input corresponding to the required verifications, the card slot can then be opened (unblocked) by the machine. The user can then insert their card into the deemed-valid card slot to enable reading of user data from the card. It should be understood that combinations of arrangements involved with customer validation of the accessible (visible) card slot can be used. A plurality of validation steps can be conducted and/or required by the machine. Additionally, the combinations and arrangements are also applicable to customer validation of other reading devices (e.g., a biometric reader).


As previously discussed, a bezel can be positioned in an area relatively close to a card reader of an automated banking machine. In another exemplary embodiment an outer surface portion of the bezel can comprise a flexible material, such as plastic or rubber. An actuator can be operated to cause the contour of the flexible outer surface of the bezel to be changed. The actuator can be mounted on the bezel. Alternatively, the actuator can be mounted in the machine at a location adjacent to the bezel.


Suitable driving circuitry can move the actuator so that the outer contour of an outer surface of the bezel is physically changed. The change can be temporarily, with the flexible material returning to its original shape (e.g., its shape prior to being flexed). By periodically changing an outer surface portion of a bezel, a skimmer that was attached to the bezel outer surface portion may be dislodged. Thus, the ability of exemplary bezels to have their external form modified by flexing can also assist in reducing fraud at automated banking machines.


An outer surface portion of the bezel can also comprise other shape-changing materials, such as shape memory alloys, piezoelectrics, electroactive polymers (EPAs), superelastic carbon nanotube aerogel, etc. Additional materials can include Mylar®, etc. Flexible elastic packaging materials may also be used. The materials may also be covered by a loose layer of a protective stronger material, such as Kevlar®. Combinations of materials are also useable. In an exemplary embodiment a flexible outer skin portion (e.g., a flexible plastic or rubber portion) of a bezel can be expanded/contracted through operation of an actuator that provides an increase/decrease in pressure applied against the portion. For example, air may be added to a sealed chamber to provide the increase in pressure. The chamber can act as a bellows or baffle. The baffle can have separate chambers that sequentially expand to cause a wave (or ripple) effect on the flexible material (skin) of a bezel. Alternatively, a drive piston may be used to force cylinder fluid (e.g., liquid, air) against the flexible material.



FIG. 51 shows an example of a bezel 870 with its outer skin 872 expanded by fluid pressure from an air-providing (pneumatic) actuator 874. The skin (which can have a balloon like expanding property) is inflated by the increased air pressure. As shown in FIG. 52 the continuous sealed skin 872 surrounds the card slot 876 of the bezel 870. Thus, a single actuator can be used to changed the shape of the bezel's outer surface both above and below the card slot 876. In other embodiments plural actuators can be used to respectively inflate separately segregated (independent) sealed partial sections of the total outer skin surface.


In other exemplary embodiments a movable member may be mechanically slid or rolled against the flexible (elastic) bezel outer surface to push (stretch) the bezel skin in an outward direction (e.g., toward the customer area). For example, a roller (or ball) can have an outer surface that extends further outward than the face of the skin when the roller is rolled (horizontally) across the skin. The movement of the (outwardly pushing) roller causes a wave (of expansion and contraction) to move across the skin. That is, the wave is at its peak where the roller contacts (and pushes outward) the skin. As the roller continues to move, the peak correspondingly continues to move. Thus, the moving roller creates a moving wave. The skin at a specific skin area returns (flexes back) to its normal (non stretched) condition after the roller has passed that specific skin area.



FIG. 53 shows an example of an exemplary wave-creating arrangement applicable to a bezel surface. A cylindrical roller 880 is used to apply a pressure force against the interior side of a bezel skin 882. An angled side view of the roller 880 is shown in FIG. 54. As can be seen, as the roller 880 horizontally moves (in a direction of the arrow) across the flexible skin 882 it creates an outwardly directed wave 884 at the point of contact. In the exemplary embodiment the roller 880 is attached to a slide housing 886 that slides on at least one rail 888. The housing 886 can be pushed, pulled, or driven along the rail 888. At least one biasing component 890 (e.g., a spring) acts to push the roller 880 away from the housing 886 in a direction toward the skin 882. End ramps 892 can be used to keep the roller 880 positioned inward (against the spring force) toward the housing 886 when a wave run is completed. In other exemplary embodiments the force pushing the roller 880 outward (toward the skin) can be provided through use of a conventional drive member (e.g., screws, motors, magnets, etc.), which can then act to release/remove the applied force.


In still other exemplary embodiments, the surface contours (including surface angles) of a bezel body structure can be such that users of the machine are forced to insert cards into the card slot in particular (intended) ways. For example, bezel structures can be configured so as to make it highly awkward for a machine user to insert the card using anything other than their right hand. Implementing this bezel configuration provides predictability regarding the areas adjacent the fascia in which a user's hand will be positioned when inserting a card into the machine. By forcing the use of the right hand of the user for card insertion, this also indicates where the hand structure will be positioned during normal machine/user operation.


In exemplary embodiments, radiation or other types of detectors of the types previously discussed are operative in conjunction with one or more suitably programmed processors to detect the presence of the user's hand adjacent thereto. Further, sensors located in other areas of the fascia where a user's hand would not normally be positioned may be used to detect conditions which correspond to a current attempt to install an unauthorized card reading device. A bezel configuration can have a particular recessed area that leads to the card slot. Thus, because a user is required to manually insert their hand/fingers into the recessed area during insertion of their card into the card slot, the configuration generally assures that the user's (card gripping) hand/fingers will not be positioned in/at a different area of the bezel that is located away from the recessed area during card insertion/removal. For example, this different area of the bezel may be outwardly located from the (normal) card slot. Thus, detecting card insertion without sensing that a hand was moved into the recessed area (e.g., moved in expected close proximity to the card slot) during the card insertion can be an indication that a fraud device was present between the hand and the (normal) card slot during the card insertion.


Card insertion may be based on proximity sensors which detect the presence of the card in the card slot. Card insertion may also be based on magnetic stripe detection. For example, in circumstances where the magnetic stripe of a card is detected, sensors of the type previously described can be operative to sense the presence of structures that are adjacent the slot and outside of the normal area where the user's hand would be expected to be positioned. Thus the sensing of structures in these areas can be analyzed to more reliably provide an indication of an abnormal condition, such as the installation of a skimmer. This can be done in the manner previously discussed or using other types of sensors.


In other embodiments, a user's card (or magnetic stripe thereof) can be detected while it is still located exterior of the bezel's (hand receiving) recessed area. At the approximate time of this card detection, sensing of structure adjacent the card slot or in the recessed area can also be indicative of the structure being unauthorized. That is, if the card is not yet in the recessed area (or adjacent the card slot), then the user's hand also would not yet be in the recessed area. When conditions corresponding to the installation of a skimmer are detected, appropriate steps can be taken, such as ceasing operation of the machine, sending messages to a remote security computer, and the like. It should be understood that the approach of configuring the bezel so that a user's particular hand and fingers are generally forced to be positioned in a particular location and not in another location when inserting or removing a card from the slot, is exemplary of approaches that can be taken to facilitate the detection of the presence of unauthorized reading devices. In other embodiments, other approaches can be used.


In still other embodiments, automated banking machines can be operative to detect conditions where criminals may have tampered with the machine so as to install unauthorized user input interception devices. FIG. 55 shows a portion of a machine fascia generally indicated 647 which includes the machine keypad 638. Keypad 638 may be of the type previously discussed and includes a plurality of keys 636. In the exemplary embodiment the keys of the keypad are positioned generally inwardly relative to a front surface of the fascia 632. In the exemplary embodiment, pockets 650 are positioned in the fascia portion on each side of the keypad. Pockets 650 of the exemplary embodiment include recesses which are adapted to engage leg portions 644 of a keypad cover 640. In the exemplary embodiment the pockets are configured to hold/receive adhesive or other suitable material for engaging the leg portions 644 of the keypad cover 640 to the fascia portion 647. Alternatively, the pockets can receive mechanical connecters/fasteners for securing the leg portions 644 to the fascia portion 647. Of course these approaches are exemplary, and in other embodiments other approaches may be used.


In the exemplary embodiment the attached keypad cover 640 is configured to extend generally above the keypad so as to prevent the unauthorized observation of inputs therethrough by criminals, either directly (e.g., direct line of sight) or indirectly such as through the use of miniature cameras installed in an area adjacent the machine. FIG. 56 shows the keypad cover 640 installed to the fascia portion 647. That is, FIG. 55 shows a potentially fraud condition in which the keypad cover has been removed, whereas FIG. 56 shows a fascia operating condition in which the keypad cover is installed in its proper (normal) position overlying the keypad. Of course FIG. 55 can also be viewed as condition where the keypad cover has not yet been installed to the fascia portion.


The exemplary keypad cover 640 includes a body 630 which is generally comprised of a flexible resilient material. The body 630 includes a pair of inward extending sidewalls 642. The upper portion of the keypad cover includes an opening 634. The opening 634 is generally configured to enable viewing of the keys of the keypad by a user positioned adjacent to the machine.


In the exemplary embodiment, a user is able to extend their fingers into the attached keypad cover to engage the keys of the keypad while simultaneously visually observing the location of the keys so as to provide the desired finger inputs. The body 630 of the keypad cover 640 can be comprised of resilient material having a resilient nature that allows flexing of the cover to accommodate the movement of the user's hand therein. Thus, the resilient material facilitates the user's engagement with the keys. These approaches are exemplary, and in other embodiments other approaches may be used.


In order to provide enhanced security, some exemplary embodiments include sensors that are operable to determine if the keypad cover 640 has been removed from its area above the keypad. This condition is determined because criminals who may wish to install a false keypad overlay often cannot install such a overlay with the keypad cover in place. In exemplary embodiments, one or more sensors 458 are installed adjacent one or more of the pockets 650 positioned on each side of the keypad. The sensors 458 are able to detect properties that are indicative of whether the keypad cover 640 has been removed relative to the sensors or pockets.


In some exemplary embodiments, the sensors 458 may include a photosensor, infrared sensor, ultrasonic sensor, contact sensor, and/or another suitable sensor that is operative to sense a change in conditions if the adjacent leg portion 644 is no longer in adjacent relation thereto. In the exemplary embodiment the sensors 458 are in operative connection with suitable interface circuitry 460 which operates to receive signals from the sensors. The interface circuitry 460 provides one or more outputs to circuitry that includes at least one processor 462. The at least one processor 462 includes associated programming therein that is operative to analyze signals representative of the conditions detected by the at least one keypad cover sensor 458. The processor 462 is operative to determine when the signals correspond to a change which is indicative of removal of the keypad cover 640. Upon determining that such a removal has occurred, the at least one processor/circuitry 462 operates to send at least one message to a terminal controller 464. The terminal controller is operative to take steps in accordance with its programming, like those previously discussed. Such steps may include, for example, operating to cause the machine to no longer operate to perform transactions. Alternatively or in addition, the terminal controller 464 may operate to send one or more notification (alert) messages to a remote computer so as to notify bank personnel, law enforcement, or other individuals that potential tampering with the machine has occurred.


In other exemplary embodiments, one or more sensors 646 may be positioned generally beneath the keypad cover. Sensor 646 is in operative connection with suitable interface circuitry 466 that receives the signals from the sensor so as to evaluate signals received therefrom. In exemplary embodiments, the sensor 646 may include an infrared sensor that includes an emitter and receiver, and is operative to sense a distance to an interior surface of the keypad cover. Such a sensor may be operative in conjunction with interface circuitry 466 to determine the distance to an interior surface of the overlying keypad cover 640. Thus, for example, if the keypad cover has been removed, there will generally be no overlying surface sensed, especially at the expected distance based on a prior distance determination. This cover-removed condition can be determined through operation of at least one processor, such as processor 462. Furthermore, if an unauthorized overlay has been positioned above the keypad (regardless of whether the keypad cover is present or absent), then the total distance sensed by the at least one sensor 646 will be small and/or reduced relative to a prior distance reading (i.e., the expected distance). As a result, such detected changes can also be identified as corresponding to a possible fraud condition.


In the exemplary embodiment, signals from the at least one sensor 646 are analyzed through operation of interface circuitry. In an exemplary embodiment the interface circuitry 462, which includes at least one processor, is combined with the interface circuitry 460 associated with sensor 458. However, it should be understood that in other embodiments separate interface circuitry and processors may be provided for analyzing signals from the various sensors 458, 646 that may be used for sensing possible fraud conditions.


As previously discussed, the at least one processor of the interface circuitry 462 can also be used to detect when signals corresponding to conditions sensed by at least one sensor 646 correspond to either removal of the keypad cover and/or the installation of an overlying keypad overlay. Responsive to such a risk determination, the processor of circuitry 462 is operative to send an indication thereof to the terminal controller 464.


The terminal controller 464 interfaces with the circuitry 462 so that analysis for potential fraud conditions is done at times when a user's fingers should not be in a position to be sensed within the keypad cover. This may include, for example, times when no transaction is being conducted at the machine.


In other embodiments, at least one sensor 646 may include an inductance sensor which may work in conjunction with the other connected circuitry to sense a change in inductance in an area of the keypad cover. Such a change can be indicative of keypad cover removal. Alternatively or in addition, such a change in inductance may correspond to the installation of an overlay so as to intercept PIN inputs. The inductance sensing arrangement can allow for a user's member being within the keypad cover to be taken into consideration.


As can be seen, various exemplary embodiments have been provided for using sensors to sense the removal of a keypad cover. These embodiments include situating sensors in the (two) leg areas where the keypad cover legs respectively attach to the fascia in the side areas adjacent to the keypad. The leg sensors can sense when a keypad cover leg has been removed from its normal attachment position. These embodiments also include positioning at least one sensor so as to sense the distance to an overlying surface above the keypad. The sensor(s) can be used in verifying that the inside surface of the authorized keypad cover is present. The sensor(s) can also be used in verifying that the inside surface is in its expected position. For example, the sensor can sense whether the inside surface is much closer than normal. A determination of a closer (or further outward) cover can be an indication of a fraudulent cover. The sensing/detection of distances can be done during times when a user's fingers would not be expected to be present adjacent to the keypad.


As previously discussed, inductance sensors and other types of sensors can also be used to verify if a keypad cover is present, absent, or out of normal position (e.g., a pre-measured and stored distance or position). Thus, exemplary arrangements discussed herein can provide for immediate detection and automatic notification (via a computer message/warning) regarding removal of a keypad cover. The exemplary ability to detect removal of a keypad cover can help thwart a criminal from clandestinely attaching a fraudulent keypad overlying structure, which structure may be capable of detecting (skimming) a customer's keypad inputs. Again, the exemplary arrangements can assist in reducing fraud at automated banking machines. An inductance sensor adjacent to the keypad may also be operative to sense changes in the makeup of the structure of (or associated with) the keypad cover. For example, criminals may attempt to attach a micro-camera within the interior area of the keypad cover so as to view finger contacts with the keys. Such a micro-camera is represented schematically as 468 in FIG. 57. The installation of a micro-camera within the keypad cover will generally cause a change that is detectable by an inductance sensor or other sensor type. Such a change may be determined through operation of the at least one processor in the circuitry 462. The circuitry may operate responsive to the determination to provide at least one notifying output that corresponds to an indication of a probable fraud event.


In still other embodiments, sensor 646 may comprise one or more imaging sensors. Such imaging sensors may include sensors which are operative to capture image data corresponding to objects within the interior area of the keypad cover. Such sensors may include a CMOS sensor or a micro/miniature camera. Such imaging sensors may determine visual changes to the interior of the keypad cover which may correspond to the installation of a camera or other device intended to intercept user inputs. In some example embodiments, the image data can be captured and analyzed through operation of one or more processors in the analysis circuitry so as to detect conditions during times when no user's fingers are present within the interior area. Changes which may correspond to an unauthorized camera installation within the keypad cover can be determined through operation of one or more processors and signals corresponding to the determination sent to the terminal controller. Of course these approaches are exemplary, and in other embodiments other approaches employing the principles described may be used to determine conditions which correspond to probable tampering and/or the installation of criminal devices designed to accept user inputs.


As can be seen, various exemplary embodiments have been provided for detecting the presence of a camera (or other fraudulent structure) installed within a keypad cover. As previously discussed, an inductance sensor can be positioned in the area of the keypad. The inductance sensor can sense a change in the properties of the keypad cover if a camera has been inserted therein. As previously discussed, another exemplary approach is to have an authorized camera (or other imaging sensor) looking upward from the keypad toward the keypad cover. The camera is associated with a processor that can identify a structural and/or visible change within the inside of the keypad cover. By being able to determine a change in the appearance of the interior of the keypad cover, the presence of an unauthorized device can be determined.


As can be seen from the above discussions, an exemplary embodiment includes an apparatus comprising an automated banking machine, wherein the machine is associated with at least one computer, wherein the machine includes a card reader, wherein the card reader includes a card entry opening, wherein the card reader is operable to read from user cards, user data that corresponds to financial accounts, wherein the card reader is in operative connection with the at least one computer, wherein the at least one computer is operative to cause the card reader to read user data from user cards, wherein the machine also includes a cash dispenser, wherein the cash dispenser is operable to dispense cash from the machine, wherein the cash dispenser is in operative connection with the at least one computer, wherein the at least one computer is operative, responsive at least in part to a determination that user data read by the card reader corresponds to a financial account with which a cash dispense transaction is authorized to be carried out with the machine, to cause the cash dispenser to dispense cash, wherein the at least one computer is also operative to cause the financial account to be assessed a value associated with the cash dispensed, wherein the machine also includes a housing, wherein the housing bounds an interior area, wherein the housing is associated with bezel support structure, wherein the bezel support structure is configured to operatively support different card slot bezels only one at a time, wherein the different card slot bezels arc interchangeable with the machine, wherein the different card slot bezels include at least a first card slot bezel and a second card slot bezel, wherein the first card slot bezel includes a first card slot, wherein the first card slot bezel also includes a first exterior surface, wherein the first exterior surface comprises a first contoured profile, wherein the first contoured profile surrounds the first card slot, wherein the second card slot bezel includes a second card slot, wherein the second card slot bezel also includes a second exterior surface, wherein the second exterior surface comprises a second contoured profile, wherein the second contoured profile surrounds the second card slot, wherein the second contoured profile differs from the first contoured profile, wherein the differing contoured profiles are configured to reduce ability of a same fraudulent card reader being attachable adjacent to each of the first card slot and the second card slot, wherein the machine also includes at least one lock, wherein the at least one lock is in operative connection with the housing, wherein the at least one lock is operable to control access to the interior area, wherein when a respective card slot bezel of the different card slot bezels is operatively supported by the bezel support structure, then at least one fastener releasibly holds the respective card slot bezel in fixed operatively supported engagement with the bezel support structure, and the at least one fastener is manually movable to release the respective card slot bezel from fixed operatively supported engagement with the bezel support structure, wherein when the first card slot bezel is operatively supported by the bezel support structure, then the first card slot is aligned with the card entry opening, which enables a user card to be moved in the first card slot to the card entry opening, wherein when the second card slot bezel is operatively supported by the bezel support structure, then the second card slot is aligned with the card entry opening, which enables it user card to be moved in the second card slot to the card entry opening.


Furthermore, in the exemplary embodiment the machine includes a wireless reader, wherein the wireless reader is operable to wirelessly receive bezel data transmitted by a card slot bezel positioned adjacent the housing, wherein the at least one computer is operative to determine based at least in part on bezel data received by the wireless reader, whether an authorized card slot bezel is positioned adjacent the housing. Each of the different card slot bezels is an authorized card slot bezel, wherein each of the different card slot bezels is operative to wirelessly transmit bezel data, wherein the at least one computer is operative to determine based at least in part on bezel data received by the wireless reader, whether one of the different card slot bezels is positioned adjacent the housing. The at least one computer is operative to determine based at least in part on the bezel data received by the wireless reader, whether an authorized card slot bezel was removed from machine. The machine also includes at least one sensor, wherein the at least one sensor is operable to detect a card slot bezel operatively supported by the bezel support structure, wherein the at least one computer is in operative connection with the at least one sensor, wherein the at least one computer is operative to determine based at least in part on detection of a respective card slot bezel by the at least one sensor, whether the respective card slot bezel is properly positioned relative to the bezel support structure. When the first card slot bezel is operatively supported by the bezel support structure, then at least one first fastener releasibly holds the first card slot bezel in fixed operatively supported engagement with the bezel support structure, wherein the at least one first fastener is manually movable to release the first card slot bezel from fixed operatively supported engagement with the bezel support structure. The at least one first fastener is only accessible from within the interior area. When the second card slot bezel is operatively supported by the bezel support structure, then the at least one first fastener releasibly holds the second card slot bezel in fixed operatively supported engagement with the bezel support structure.


The first card slot bezel can include the at least one first fastener, wherein the at least one first fastener is an integral part of the first card slot bezel. The bezel support structure includes at least one connection slot, wherein the at least one first fastener is resilient, wherein the at least one first fastener is configured to snap fit into the at least one connection slot, wherein the bezel support structure includes the at least one first fastener. The first card slot bezel includes at least one connection slot, wherein the at least one first fastener is resilient, and the at least one first fastener is configured to snap fit into the at least one connection slot. When the second card slot bezel is operatively supported by the bezel support structure, then the at least one first fastener releasibly holds the second card slot bezel in fixed operatively supported engagement with the bezel support structure. The at least one first fastener can be removably attachable to both the first card slot bezel and the bezel support structure, wherein the at least one first fastener comprises at least one screw. The at least one first fastener can include a bezel lock, wherein the at least one bezel lock is in operative connection with the first card slot bezel, wherein the at least one bezel lock is operable to lock the first card slot bezel to the bezel support structure, and wherein the at least one bezel lock is accessible from outside of the machine. Each respective different card slot bezel can comprise a bezel insert and a bezel housing, wherein for each respective different card slot bezel: the bezel housing is configured to be held in fixed operatively supported engagement with the bezel support structure; the bezel insert is removable attachable to the bezel housing; and the bezel insert includes the contoured profile; wherein the contoured profile differs from every other contoured profile of the different card slot bezels.


As can be seen from the above discussions, another exemplary embodiment includes an apparatus comprising an automated banking machine, wherein the machine includes a user data reader, wherein the user data reader is operable to read user data that corresponds to financial accounts, wherein the machine also includes a cash dispenser, wherein the cash dispenser is operable to dispense cash from the machine to an authorized user of the machine during a cash dispense transaction, wherein the machine also includes a housing, wherein the housing bounds an interior area, wherein the machine also includes a bezel, wherein the bezel is removably attached to the housing, wherein the bezel includes a user data receiving area, wherein the user data reader is operable to read user data provided to the user data receiving area, wherein the bezel includes an exterior surface, wherein the exterior surface has a contoured profile, wherein the contoured profile is adjacent the user data receiving area, wherein the bezel also includes bezel data, wherein the bezel data is usable to identify the bezel as a bezel authorized for use with the machine, wherein the machine also includes a bezel data reader, wherein the bezel data reader is operable to wirelessly read the bezel data from the bezel.


Furthermore, in the another exemplary embodiment the user data reader comprises a card reader, the card reader includes a card accepting area (or card reader entry opening), and the user data receiving area comprises a card slot. The machine includes at least one of: (i) the bezel including an RFID tag, wherein the RFID tag includes the bezel data, the bezel data reader comprising an RF reader, wherein the RF reader is operable to wirelessly read the bezel data from the RFID tag; and (ii) the bezel including an NFC chip, wherein the NFC chip includes the bezel data, the bezel data reader comprising an NFC reader, wherein the NFC reader is operable to wirelessly read the bezel data from the NFC chip. The bezel can include an RFID tag, wherein the RFID tag includes the bezel data, wherein the bezel data reader comprises an RF reader, wherein the RF reader is operable to wirelessly read the bezel data from the RFID tag, wherein the RFID tag is programmable, wherein the machine is operable to store bezel data in the RFID tag, and wherein the machine is operable to update bezel data stored in the RFID tag after each transaction. The bezel can include an NFC chip, wherein the NFC chip includes the bezel data, wherein the bezel data reader comprises an NFC reader, wherein the NFC reader is operable to wirelessly read the bezel data from the NFC chip, wherein the NFC chip is programmable, and wherein the machine is operable to store bezel data in the NFC chip, and wherein the machine is operable to update bezel data stored in the NFC chip after each transaction. The machine includes an attachment arrangement with which respective different bezels are respectively individually removably attachable to the housing, wherein the bezel comprises a first bezel that is attached to the housing via the attachment arrangement, wherein the apparatus further comprises a second bezel, wherein the second bezel is attachable to the housing via the attachment arrangement, wherein the second bezel includes a user data receiving area, wherein the user data reader is operable to read user data provided to the user data receiving area of the second bezel, wherein the second bezel includes an exterior surface, wherein the exterior surface of the second bezel has a different contoured profile that differs from the contoured profile of the first bezel, wherein the different contoured profile is adjacent the user data receiving area of the second bezel, wherein the second bezel includes different bezel data, wherein the different bezel data is usable to identify the second bezel as a bezel authorized for use with the machine, and wherein when the second bezel is attached to the housing via the attachment artangement, the bezel data reader is operable to wirelessly read the different bezel data from the second bezel.


Thus, the features and characteristics of the exemplary embodiments previously described achieve desirable results, ellm1nate difficulties encountered in the use of prior devices and systems, solve problems, and may attain one or more of the objectives stated above. In the foregoing description certain terms have been used for brevity, clarity and understanding, however no unnecessary limitations are to be implied therefrom because such terms are for descriptive purposes and are intended to be broadly construed. Moreover, the descriptions and illustrations herein are by way of examples and the invention is not limited to the details shown and described.


In the following claims any feature described as a means for performing a function shall be construed as encompassing any means known to those skilled in the art to be capable of performing the recited function, and shall not be deemed limited to the particular means shown in the foregoing description or mere equivalents thereof. The term “non-transitory” with regard to computer readable medium is intended to exclude only the subject matter of a transitory signal per se, where the medium itself is transitory. The term “non-transitory” is not intended to exclude any other form of computer readable media, including media comprising data that is only temporarily stored or stored in a transitory fashion. Should the law change to allow computer readable medium itself to be transitory, then this exclusion is no longer valid or binding.


Having described the features, discoveries and principles of the invention, the manner in which it is constructed and operated, and the advantages and useful results attained; the new and useful structures, devices, elements, arrangements, parts, combinations, systems, equipment, operations, methods, processes and relationships are set forth in the appended claims.

Claims
  • 1. An apparatus, comprising: a card reader that includes a card accepting area, wherein the card reader is operable to read from user cards, user data that corresponds to financial accounts;a processor, wherein the processor is operable at least in part to a determination that user data read by the card reader corresponds to a financial account to perform a financial transaction involving the financial account;a bezel support arrangement that supports a removable bezel; anda bezel sensor that includes a wireless reader;wherein the bezel sensor is operable to determine whether a bezel mounted on the bezel support arrangement is one of a plurality of authorized, different shaped bezels based on a bezel data in a wireless signal received by the wireless reader from the bezel; andwherein the plurality of different shaped bezels have card slots the align with the card reader when in a predetermined position.
  • 2. The apparatus of claim 1, wherein at least one of the plurality of bezels is operable to transmit the bezel data.
  • 3. The apparatus of claim 1, wherein at least one of the plurality of bezels comprises a radio frequency identification (RFID) tag that includes the bezel data; and wherein the bezel sensor is operable to read the bezel data from the RFID tag.
  • 4. The apparatus according to claim 3 wherein the processor is operable to update bezel data stored in the RFID tag after each transaction.
  • 5. The apparatus of claim 1, wherein at least one of the plurality of bezels comprises a near field communication (NFC) chip that includes the bezel data; and wherein the wireless reader comprises an NFC reader that is operable to wirelessly read the bezel data from the NFC chip.
  • 6. The apparatus according to claim 1, wherein the machine is operable to update bezel data stored in the NFC chip after each transaction.
  • 7. The apparatus according to claim 1 wherein wireless reader is operable to wirelessly receive bezel data transmitted by a card slot bezel selected from the plurality of authorized, different shaped bezels positioned adjacent the housing; and wherein the processor is operative to determine based at least in part on bezel data received by the wireless reader, whether an authorized card slot bezel is positioned adjacent the housing.
  • 8. The apparatus according to claim 1, wherein the processor is operable to determine based at least in part on the bezel data received by the wireless reader, whether an authorized card slot bezel was removed from machine.
  • 9. The apparatus according to claim 1 wherein the bezel sensor is operable to whether the bezel mounted on the bezel support is properly positioned relative to the bezel support structure.
  • 10. The apparatus according to claim 1, further comprising a fastener that releasibly holds the bezel mounted on the bezel support structure in a fixed, operatively supported engagement with the bezel support structure; and wherein the fastener is manually movable to release the bezel mounted on the bezel support structure from the fixed, operatively supported engagement with the bezel support structure.
  • 11. The apparatus according to claim 10, wherein the bezel support structure includes at least one connection slot; and wherein the fastener is resilient and configured to snap fit into the at least one connection slot.
  • 12. The apparatus according to claim 11, wherein the fastener includes a bezel lock; wherein the bezel lock is in operative connection with the bezel mounted on the bezel support structure; andwherein the bezel lock is operable to lock bezel mounted on the support structure to the bezel support structure.
  • 13. The apparatus according to claim 12, wherein the at least one bezel lock is accessible from outside of the machine.
  • 14. A tangible, non-transitory computer readable medium having computer readable instructions encoded thereon for execution by a processor, and when executed operable to: obtain bezel data from a bezel sensor that received the bezel data wirelessly, wherein the bezel data is obtained from a bezel removably mounted on a bezel support structure associated with the bezel sensor;determine from the bezel data whether a bezel that is mounted on the bezel support structure is an authorized bezel.
  • 15. The computer readable medium of claim 14, wherein the bezel that is mounted on the bezel support structure transmits the bezel data.
  • 16. The computer readable medium of claim 14, wherein the bezel that is mounted on the bezel support structure comprises a card slot; and the instructions are further operable to determine whether the card slot is in an aligned position with a card reader.
  • 17. The computer readable medium of claim 14, wherein the instructions are further operable to determine whether the bezel has been removed from the bezel support structure.
  • 18. The computer readable medium of claim 17, the instructions are further operable to: determine that a second bezel has been mounted on the support structure;obtain second bezel data from the bezel sensor that was received wirelessly, wherein the second bezel data is obtained from the second bezel; anddetermine from the second bezel data whether the second bezel is an authorized bezel.
  • 19. The computer readable medium of claim 14, the instructions are further operable to operate a drive to move at least a portion of the bezel support structure between an outward position and a home position.
  • 20. A computer implemented method, comprising: obtaining bezel data from a bezel sensor that received the bezel data wirelessly, wherein the bezel data is obtained from a bezel removably mounted on a bezel support structure associated with the bezel sensor; anddetermining from the bezel data whether a bezel that is mounted on the bezel support structure is an authorized bezel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/507,723, filed Jul. 23, 2012, now U.S. Pat. No. 8,640,947, that claims benefit pursuant to 35 U.S.C. §119(e) of U.S. Provisional Applications 61/628,513 filed Nov. 1, 2011 and 61/629,900 filed Nov. 30, 2011. The disclosures of each of these applications are herein incorporated by reference in their entirety.

Provisional Applications (2)
Number Date Country
61628513 Nov 2011 US
61629900 Nov 2011 US
Continuations (1)
Number Date Country
Parent 13507723 Jul 2012 US
Child 14172454 US