The present invention generally relates to an incubator employed for reading biological indicators, and more particularly, a system and a method employing an automated incubator for incubating and reading biological indicators, and performing other functions associated with the reading of biological indicators.
Biological indicators are used to determine the efficacy of sterilization. In conventional clinical processes, a test organism is coated on a carrier (e.g., a spore strip). The coated carrier is placed in a carrier vial with an ampule of media. The media promotes the growth and recovery of the test organism as well as provides a pH based visual trigger if growth were to occur. This combined clinical indicator vial is then sealed (e.g., using a cap) to protect it from environmental contamination while allowing targeted sterilization energy to penetrate. This self-contained biological indicator (spore strip, ampule, outer vial and sealed cap) is placed in a sterilizer with the article to be sterilized (for testing & validation purposes) or more generally packaged in another known resistance vessel (PCD or test pack) to be placed along with the article to be sterilized. After sterilization, the self-contained biological indicator is then activated by crushing the ampule to expose the growth and indication media to the spore strip and placed in a biological indicator incubator to determine whether any of the test organism survived the sterilization procedure.
The biological indicator incubator provides a controlled environment for organism growth by holding the test organism at a temperature that supports organism growth. Commercially available biological indicators visually indicate spore growth or spore inactivation that is correlated to a sterility assurance level through a color change (or lack of color change) after a sufficient incubation period. While this color change may occur over time, the span of time required is generally beyond a clinical users ability to monitor and report in an efficient manner.
There is a need for a biological indicator incubator that provides for simple, dependable, automatic readout of self-contained biological indicators after an incubation period, along with other characteristics associated with the incubation and readout of biological indicators.
The present invention provides an automated biological indicator incubator. In one embodiment, the present invention provides an automated biological indicator incubator configured to control the temperature of incubation test wells to a desired temperature range suitable for use with a biological indicator, control the incubation period, and detect a change in the biological indicator colored media providing an indication of growth or lack of growth. In other embodiments, the automated biological indicator incubator is self-calibrating, and provides a communication interface to an external device, such as a computer. The communication interface is suitable for use to collect and analyze data associated with the biological indicator during the incubator period, and for making a determination of growth or lack of growth and success of the sterilization process as well as a permanent document of the monitoring of the sterilization process.
The accompanying drawings are included to provide a further understanding of the present invention and are incorporated in and constitute a part of this specification. The drawings illustrate the embodiments of the present invention and together with the description serve to explain the principles of the invention. Other embodiments of the present invention and many of the intended advantages of the present invention will be readily appreciated as they become better understood by reference to the following detailed description. The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be used and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
Embodiments of the present invention provide an automated biological indicator incubator for simple, dependable, automatic readout of self-contained biological indicators after an incubation period, along with providing other characteristics associated with the incubation and readout of biological indicators.
FIGS. 1 illustrates one exemplary embodiment of an automated incubator, suitable for use with biological indicators, according to the invention generally at 20. Automated incubator 20 is configured to control the temperature of the incubation test wells to a desired temperature range suitable for use with a self-contained biological indicator, control the incubation period, and detect a change in the biological indicator colored media through the measurement of light intensity as it is passed through the indicator. The automated incubator provides an indication of growth or lack of growth, and an outcome of the sterilization process. In other embodiments, the automated incubator is self-calibrating, and provides a communication interface to an external device, such as a computer. The communication interface is suitable for use to collect and analyze data associated with the biological indicator during the incubator period, and for making an automated determination of growth or lack of growth.
In one embodiment, automated incubator 20 includes one or more incubation test wells 24 (1-12 illustrated) for holding biological indicator vials 26 (one illustrated) to be tested. Automated incubator 20 also includes other control devices for operation of the incubator 20, such as the visual control displays 28 and 30, control buttons 32 and 34, and visual indicator 36 (e.g., an LED). One embodiment of automated incubator 20 and the operation of automated incubator 20 is described in further detail in the following paragraphs.
Temperature Control
In reference also to
Automated incubator 20 is programmable to operate at different temperature settings (e.g., two different temperature settings) by controlling the temperature of heater block 48 (illustrated in
Optical Detection System
The detection system 50 operates by measuring the light output change on photo-detector 54 received from light source 52. On side (a first side) of the biological indicator (BI) vial 26 there is a yellow LED 52 (Ii) (588 nM) placed about half way up, above BI spore strip material 62 and below information label 64. On the other side (a second side) of the BI vial 26, opposite the LED 52, is photo detector 54 to read the light level (Io). The LED 52 and detector 54 are mounted to PC boards 56,58 on each side of the BI holder, test well 24.
For each test well 24, a LED 52 and photo-detector 54 are captured in a drilled guide channel or hole 60. The guide hole 60 precisely aligns the emitter LED 52 with the detector LED 54. The guide holes 60 also operate to eliminate stray light from affecting the measurement.
Control System
Incubator 20 is configured to communicate with internal and external output devices, and has the ability to send and receive queries, receive inputs, generate outputs, etc.
The automated incubator control system 100 is configured so that only one LED is on at a time, to avoid any cross talk with any of the other channels. In one embodiment, each channel is turned on for about 4 milliseconds in sequence. This is done once each second to insure that the system knows if the tube is in place and knows how long it has been there. The resulting signal is used to verify that a tube is present as well as determine if a color change has occurred and if that color change is appropriate.
Calibration
System 50 is self-calibrating by continually measuring the intensity of the LED 52 when no BI vial 26 is in place. This value is stored in memory as the full-scale calibration value. The detector 54 is also read when the LED 52 is off to set the zero level, also known as the dark current. Knowing these two values, the other levels (BI vial present, and the positive BI color change point) can be computed from stored values in the program, and properly scaled for the detection points.
Other factors keep the system accuracy high. In one embodiment, the current to the LED 52 is controlled by a constant current source. The constant current source keeps the output of the LED 52 at a constant level, since the LED 52 is held at a constant temperature. The signal is adjusted by a 4-bit A to D converter to one of 15 levels. This allows the detector 54 signal to be scaled to utilize the maximum range of the detector without saturating the system. This is important since the LED 52 light output and detector 54 sensitivity can vary by over 200% to 300% each. Increases in control and scalability can be realized by increasing the D to A converter to successively higher bit sensitivities (8-bit, 16-bit) to better overcome the light output variances of LED 52 and detector 54.
Another factor for creating a high stability system is having the A to D converter referenced to the same power supply as the constant current source for the LED's. The resulting readings are also averaged over several conversion cycles to insure high accuracy. The multiple readings are superior to a single reading since any one reading could be in error due to system noise or ESD or any other type of disturbance.
Additionally, because the LED's and detectors are contained in the heated block, and reasonably insulated from the external environment, their parameters remain stable, since they are operating in a stable environment. Since the system has calibration between each BI vial placement and continuous zero calibration, along with a fixed temperature for the optics, and ratio-metric analog circuitry, system stability remains very high.
Calibration Process
In one embodiment, during the last 30 to 60 seconds of warm-up, the control system (e.g., via software) checks each test well 24 for BI (BI vial 26) presence (i.e., well filled). If no BI vial 26 is detected, and the accumulated, and normalized, average of the last N values is within ±5 counts of the current value, the LED current is set to the maximum value, and the “through” (empty, light-on) value is read from the A to D converter. If the value is above 1000 (1023 being the highest value possible), the LED current is stepped down one level. This stepping down is done, for each well, until each value is below 1000 and above 650. If the value drops below 650, the LED current is stepped up one level. At the same time, the “zero” is read by reading the detector with the LED off.
Once the LED/detection pair is out of saturation (below 1000), the BI detect (well filled) and yellow (growth) detection levels are calculated using the “just out of saturation” or Max value determined above. One set of possible or currently preferred ratios are:
This “calibration” is done for each empty well, every second to account for changes in LED intensity and detector sensitivity over changes in temperature and component aging.
The value used for calibration is normalized and averaged. The last ten readings are stored in a buffer. The buffer is sorted high to low and the two highest, and two lowest values are discarded. The middle 6 values are summed and divided by 6 to produce the average.
In another embodiment, the above configuration was compared with a second one where the light was read back from the same side as the illuminator LED, using the reflective properties of the fluid and to investigate the ability to read from a colorimetric baseline comparative of a non-opaque indicator.
Another embodiment also added a second LED. This LED was a violet color (405 nM) to match the negative BI color. The violet color change from negative to a positive BI was not very high, as compared to the yellow color change.
An alternative embodiment to the LED's utilized would increase the angle of light emission and detection. The purpose of this alternative embodiment is to increase the range of visible signal to potentially account for any localized intensity blockage due to label or spore strip location as well as the effects of glass shard light dispersion.
In another embodiment, the automated incubator also includes a wireless communication module and is configured for wireless communication with external devices (e.g., a computer). Further, the automated incubator can include a scanner module for scan-in capability of items such as barcodes and RFID transmitters.
In another embodiment, the automated incubator includes a “colorimeter” slot and module (i.e., similar to a credit card reader) that can assess the completeness of an external card's sterilization sensitive ink color change. In this embodiment, light may be reflected and compared against a base value to assess an acceptable color range.
Example Operation
The following paragraphs illustrate one exemplary embodiment of operation of the automated incubator 20. Reference is also made to
Two displays 28, 30 (LCD screens) that are incorporated into the face of incubator 20, one for the left six incubation wells 24 (wells 1-6) and one for the right six incubation wells 24 (wells 7-12). The “main” or primary screen is the LCD display 28 on the left hand side of the unit. Two buttons 32, 34 are centered between the LCD display screens 28, 30; both buttons 32, 34 are used according to the directions given on the left LCD screen during set-up and operations. The top button also serves as the alarm silence button. Above the two buttons is an LED 36, that provides a visual correspondence to system operations, outputs and alarms.
The lower portion of each BI testing well box displays the incubation time for the well represented. When the test is complete, the time indication will remain displayed until the results are confirmed and the biological indicator is removed from the well. If there is no biological indicator vial in the well, this portion will be blank.
The middle portion of each biological indicator testing well box displays the status of the well. If there is no vial in the well, this portion will be blank. If the vial has been placed in the well and the test is running, a clock icon will be displayed. The clock icon is animated to highlight its status as actively testing or “Testing in Progress.”
After a result is determined, a plus, minus or “?” icon will be displayed.
If a biological indicator vial is removed before a result is determined (i.e., premature removal of vial), an animated vial is displayed and the test time field below will change to a 20 second countdown or time-out period. If the vial is returned before the time-out period, testing will continue, if not, the well status will be replaced by a result of “?” and testing will cease. Replacement after the time-out period will initiate a new test sequence.
If the user selects “TEST” as the BI type, then the “Predictor screen” subline query is initiated to prompt the user to document the response of any available early-readout prediction to the test BI, indicated in
When PASS or FAIL is selected, this information is stored for this sample tied to the target well. This screen should hold for 15 seconds, then if no button is pressed/selected, it defaults to “inconclusive” in the “predictor” field.
Confirmation of Results: Once the testing on any active well is completed and the status section of the BI testing well boxes is populated by a “+”, “−”, or “?”, the system queries the user to input the acceptance of the final condition as a visual fail safe to the automated results determination, illustrated in
The system accepts a YES or NO response based on the button selection aligned with the appropriate highlighted answer. The screen will stay in place until an input is keyed on the unit or through an external interface/database system.
If the incubator unit powers-up and the temperature is out of range, and there are vials in the wells, the power fault alarm will be displayed. The alarm will also sound a short tone periodically to indicate this condition. The alarm can be silenced by pressing the ALARM button (upper button).
In one embodiment, the incubator unit is configured with an RS-232 serial port and a USB port. These ports allow data to be exchanged with an external interface device, such as a personal computer.
Test Result
If a field is not supported, it will be empty
Field Separator: ,
End of Message Delimiter: Carriage Return & Line Feed [CrLf]
Sample Message: R, 1, 3, 45, ?[CrLf]
The following input messages can be generated through direct interface with the incubator unit, or through an external interfacing device, such. as a personal computer.
Unit ID
If a field is not supported, it will be empty
Field Separator: ,
End of Message Delimiter: Carriage Return & Line Feed [CrLf]
Sample Message: S, 1, 3, STEAM, 20041005, 1200[CrLf]
Additional diagnostic messages are provided by the incubator. The diagnostic messages are used to get information for the purposes of testing and diagnostics. In one embodiment, the diagnostic messages include well database read, stream temperature, abort warm-up (abort warm-up and disable low temperature alarm), incubator mode, and disable read output.
In one embodiment, the incubator according to the invention is capable of determining characteristics of the biological indicator other than just successful sterilization. Incubator 20 provides output data to graphical user interface (GUI) 104 (e.g., a computer). In one embodiment, GUI 104 provides an output determining a SURVIVE or a KILL. In one embodiment, the output is in the form of a graph. A growth response graph is generated via GUI 104 using software. Alternatively, GUI 104 is integrated or part of with incubator 20.
In one embodiment illustrated in
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent implementations may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof.
This non-provisional application claims the benefit of the filing date of Provisional U.S. Patent Application Ser. No. 60/651,815, entitled “AUTOMATED BIOLOGICAL INDICATOR INCUBATOR,” having Attorney Docket No. C270.101.101, and having a filing date of Feb. 10, 2005, and which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60651815 | Feb 2005 | US |