The embodiments generally relate to storage and retrieval systems and, more particularly, to autonomous transports of the storage and retrieval systems.
Warehouses for storing case units may generally comprise a series of storage racks that are accessible by transport devices such as, for example, fork lifts, carts and elevators that are movable within aisles between or along the storage racks or by other lifting and transporting devices. These transport devices may be automated or manually driven. Generally the items transported to/from and stored on the storage racks are contained in carriers, for example storage containers such as trays, totes or shipping cases, or on pallets.
When transporting the cases to and from the storage racks with automated transports it would be advantageous to be able to minimize the number of drive motors of the automated transports and to control fingers of the automated transports' transfer arm for picking and placing case units to storage locations or conveyor locations.
The foregoing aspects and other features of the disclosed embodiments are explained in the following description, taken in connection with the accompanying drawings, wherein:
In accordance with the embodiments the storage and retrieval system 100 may operate in a retail distribution center or warehouse to, for example, fulfill orders received from retail stores for case units (where case units as used herein means items not stored in trays, on totes or on pallets, e.g. uncontained or items stored in trays, totes or on pallets). It is noted that the case units may include cases of items (e.g. case of soup cans, boxes of cereal, etc.) or individual items that are adapted to be taken off of or placed on a pallet. In accordance with the embodiments, shipping cases or case units (e.g. cartons, barrels, boxes, crates, jugs, totes, pallets or any other suitable device for holding case units) may have variable sizes and may be used to hold items in shipping and may be configured so they are capable of being palletized for shipping. It is noted that when, for example, bundles or pallets of case units arrive at the storage and retrieval system the content of each pallet may be uniform (e.g. each pallet holds a predetermined number of the same item—one pallet holds soup and another pallet holds cereal) and as pallets leave the storage and retrieval system the pallets may contain any suitable number and combination of different items (e.g. each pallet may hold different types of items—a pallet holds a combination of soup and cereal). It is noted that the storage and retrieval system described herein may be applied to any environment in which case units are stored and retrieved.
The storage and retrieval system 100 may be configured for installation in, for example, existing warehouse structures or adapted to new warehouse structures. In the embodiments, the storage and retrieval system may include in-feed and out-feed transfer stations 170, 160, multilevel vertical conveyors 150A, 150B, a storage structure 130, and a number of autonomous transport vehicles or robots 110 (referred to herein as “bots”). The storage and retrieval system may also include robot or bot transfer stations (as described in, for example, U.S. patent application Ser. No. 12/757,220, entitled “STORAGE AND RETRIEVAL SYSTEM” and filed on Apr. 9, 2010, the disclosure of which is incorporated by reference herein in its entirety) that may provide an indirect interface between the bots 110 and the multilevel vertical conveyor 150A, 150B. The in-feed transfer stations 170 and out-feed transfer stations 160 may operate together with their respective multilevel vertical conveyors 150A, 150B for bi-directionally transferring case units to and from one or more levels of the storage structure 130. It is noted that while the multilevel vertical conveyors are described herein as being dedicated inbound or in-feed conveyors 150A and outbound or out-feed conveyors 150B, each of the conveyors 150A, 150B may be used for both inbound and outbound transfer of case units/items from the storage and retrieval system. The multilevel vertical conveyors may be any suitable lifting devices for transporting case units between levels of the storage and retrieval system. It is noted that while multilevel vertical conveyors are described herein in other aspects the conveyors may be any suitable conveyors or transfer/picking devices having any suitable transport path orientation. Some non-limiting suitable examples of multilevel vertical conveyors can be found in, for example, U.S. Provisional Patent Application No. 61/423,298 entitled “LIFT INTERFACE FOR STORAGE AND RETRIEVAL SYSTEMS” and filed on Dec. 15, 2010 (now U.S. Pat. No. 8,998,554 filed on Dec. 15, 2011 and issued on Apr. 7, 2015), and U.S. patent application Ser. No. 12/757,354, entitled “LIFT INTERFACE FOR STORAGE AND RETRIEVAL SYSTEMS” and filed on Apr. 9, 2010, the disclosures of which are incorporated by reference herein in their entireties, and U.S. patent application Ser. No. 12/757,220, entitled “STORAGE AND RETRIEVAL SYSTEM,” (previously incorporated by reference). For example, the multilevel vertical conveyors may have any suitable number of support shelves for transporting the case units to a predetermined level of the storage and retrieval system. The support shelves may have slatted supports configured to allow fingers of the bots 110 or in-feed/out-feed transfer stations 170, 160 to pass between the slats for transferring case units to and from the conveyor. It is noted that the transfer of case units between the bots and the multilevel vertical conveyors may occur in any suitable manner.
As may be realized, the storage and retrieval system 100 may include multiple in-feed and out-feed multilevel vertical conveyors 150A, 150B that are accessible by, for example, bots 110 on each level of the storage and retrieval system 100 so that one or more case unit(s) can be transferred from a multilevel vertical conveyor 150A, 150B to each storage space on a respective level and from each storage space to any one of the multilevel vertical conveyors 150A, 150B on a respective level. The bots 110 may be configured to transfer the case units between the storage spaces and the multilevel vertical conveyors with one pick (e.g. substantially directly between the storage spaces and the multilevel vertical conveyors). By way of further example, the designated bot 110 picks the case unit(s) from a shelf of a multilevel vertical conveyor, transports the case unit(s) to a predetermined storage area of the storage structure 130 and places the case unit(s) in the predetermined storage area (and vice versa).
The bots 110 may be configured to place case units, such as the above described retail merchandise, into picking stock in the one or more levels of the storage structure 130 and then selectively retrieve ordered items for shipping the ordered items to, for example, a store or other suitable location. In the embodiments, the bots 110 may interface in any suitable manner with the multilevel vertical conveyors 150A, 150B such as through, for example, extension of a transfer arm or effector of the bot (which may have fingers for interfacing with slatted support shelves of the multi-level vertical conveyors) relative to a frame of the bot. Suitable examples of bots are described in U.S. patent application Ser. No. 12/757,312, entitled “AUTONOMOUS TRANSPORTS FOR STORAGE AND RETRIEVAL SYSTEMS” and filed on Apr. 9, 2010, U.S. Provisional Patent Application No. 61/423,220 entitled “BOT PAYLOAD ALIGNMENT AND SENSING” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,187,244 filed on Dec. 15, 2011 and issued on Nov. 17, 2015), U.S. Provisional Patent Application No. 61/423,388 entitled “AUTOMATED BOT TRANSFER ARM DRIVE SYSTEM” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,499,338 filed on Dec. 15, 2011 and issued on Nov. 22, 2016), U.S. Provisional Patent Application No. 61/423,359 entitled “BOT HAVING HIGH SPEED STABILITY” and filed on Dec. 15, 2010 (now U.S. Pat. No. 8,965,619 filed on Dec. 15, 2011 and issued on Feb. 24, 2015), and U.S. Provisional Patent Application No. 61/423,206 entitled “BOT POSITION SENSING” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,008,884 filed on Dec. 15, 2011 and issued on Apr. 14, 2105), the disclosures of which are incorporated by reference herein in their entireties.
The storage structure 130 may include multiple levels of storage rack modules where each level includes an array of storage spaces (arrayed on the multiple levels and in multiple rows on each level), picking aisles 130A formed between the rows of storage spaces, and transfer decks 130B. It is noted that each level may also include respective bot transfer stations for providing an indirect interface between the bots and the multilevel vertical conveyors. In the embodiments, the picking aisles 130A and transfer decks 130B may be arranged for allowing the bots 110 to traverse respective levels of the storage structure 130 for placing case units into picking stock and to retrieve the ordered case units. As may be realized, the storage and retrieval system may be configured to allow random accessibility to the storage spaces. For example, all storage spaces in the storage structure 130 may be treated substantially equally when determining which storage spaces are to be used when picking and placing case units from/to the storage structure 130 such that any storage space of sufficient size can be used to store items. The storage structure 130 of the embodiments may also be arranged such that there is no vertical or horizontal array partitioning of the storage structure. For example, each multilevel vertical conveyor 150A, 150B is common to all storage spaces (e.g. the array of storage spaces) in the storage structure 130 such that any bot 110 can access each storage space and any multilevel vertical conveyor 150A, 150B can receive case units from any storage space on any level so that the multiple levels in the array of storage spaces substantially act as a single level (e.g. no vertical partitioning). The multilevel vertical conveyors 150A, 150B can also receive case units from any storage space on any level of the storage structure 130 (e.g. no horizontal partitioning). It is noted that the storage and retrieval system may also be configured so that each multilevel vertical conveyor serves a predetermined area of the array of storage spaces.
The storage structure 130 may include charging stations 130C for replenishing, for example, a battery pack of the bots 110. In the embodiments, the charging stations 130C may be located at, for example, transfer areas 295 (
Referring also to
Referring to
Referring to
The frame 110F of the bot 110 forms a payload bed 1510 that is configured to hold case units (or a pickface where a pickface is one or more cases that are to be picked and carried by the bot 110) or any other suitable payload. The payload bed 1510 may include any suitable pickface support surface. One example, of the pickface support surface is the roller bed described in, for example, U.S. Provisional Patent Application No. 61/423,220 entitled “BOT PAYLOAD ALIGNMENT AND SENSING,” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,187,244 filed on Dec. 15, 2011 and issued on Nov. 17, 2015), previously incorporated by reference herein. A fence 1510F may be located at a side opening 1510P of the payload bed 1510. The fence 1510F may be attached to the frame 110F in any suitable manner such as with fasteners or welding. It is noted that the fence 1510F may also form part of the frame 110F or be of unitary construction with the frame 110F. The fence may include slots 1510FS disposed between stopping members 1510FM. The slots 1510FS may be configured to allow fingers 1540 of the bot arm to extend through the fence 1510F between the stopping members 1510FM in a substantially lowered position so that fingers 1540 of a transfer arm 1540A can be, for example, extended into a storage shelf 600 below a pickface. The stopping members 1510FM may be configured to extend above the payload bed 1510 to form a barrier that substantially prevents case units from exiting the payload bed 1510 once the case units are positioned on the payload bed 1510. In this example, the number of slots 1510FS is equal to the number of fingers 1540 but it should be understood that the fence 1510F may be configured such that more than one finger 1540 passes through a single slot (e.g. the number of slots is less than the number of fingers). It should be noted that the fence may have any suitable configuration for preventing case units from exiting the payload area when the case units are carried by the bot 110. For example, the fence may be movable so that the stopping members are retractable such that when in an extended configuration the fence prevents the case units from exiting the payload area.
The bot 110 may include a transfer arm or end effector 1540A. Referring to
Each finger 1540 may include a first end, a mounting member 1671 coupled to the first end, and a second cantilevered end distally located from the mounting member 1671. Each finger 1540 may be movably coupled, in a cantilevered manner, to the movable member 1535 so that the fingers may be extended and retracted (via movement of the movable member 1535) in the direction of arrow 1550 relative to the payload bed 1510. For example, the mounting member 1671 of each finger 1540 may extend from the first end of the finger 1540 and the movable member 1535 may include guides 1670 where each mounting member 1671 and a respective guide 1670 are configured such that the mounting member 1671 is slidable along the guide 1670 in the direction of arrow 1673 (e.g. substantially perpendicular to the direction 1550 of lateral travel of the fingers). As may be realized the interface between the mounting member 1671 and the guide 1670 may be a distributed interface configured to support a load, such as a pickface, carried by the fingers 1540. In the embodiments the guides 1670 are shown as rails but it should be understood that in the embodiments the guides may be any suitable member for allowing a respective finger to controllably move in the direction of arrow 1673. In this example, all of the fingers 1540 (regardless of whether the fingers are in the raised or lowered positions) move as a unit by single axis drive 1531 with the movable member 1535 when the fingers are laterally extended and retracted in the direction of arrow 1550. However, the movable member 1535 and/or fingers 1540 may be configured to allow each finger 1540 to move laterally in the direction of arrow 1550 independent of other fingers 1540. It is also noted that the movable member 1535 and/or fingers 1540 may be configured to allow groups of fingers to move laterally in the direction of arrow 1550 independent of other groups of fingers.
At least one drive unit 1672 may be mounted to the movable member 1535 and coupled to the first end of one or more fingers 1540 in any suitable manner for driving the one or more fingers along the guides 1670 in the direction of arrow 1673 along the lift axis. In the embodiments, each finger may have a respective drive unit 1672 so that each finger 1540 can be independently raised and lowered or a single drive unit may drive more than one finger along its respective guide (or e.g. some fingers may individually moveable while others are movable in groups). The drive unit 1672 may be any suitable drive unit capable of driving the finger(s) in the direction of arrow 1673. One example, of a suitable drive unit is described in, for example, U.S. Provisional Patent Application No. 61/423,388 entitled “AUTOMATED BOT TRANSFER ARM DRIVE SYSTEM,” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,499,338 filed on Dec. 15, 2011 and issued on Nov. 22, 2016), the disclosures of which are incorporated by reference herein in their entireties. It is noted that the drive unit and guide may be incorporated with each other as a unit such as, for exemplary purposes only, in the case of a chain/belt and sprocket/pulley where the chain or belt is arranged to carry the finger in the direction of arrow 1673. In the embodiments, each drive unit 1672 may be selectable by, for example, the bot controller 1220 and independently operable for lifting a respective finger 1540. It is noted, however, that any suitable controller, such as for example, the control server 120 may select the drive units to actuate. In one aspect the storage and retrieval system may include case unit and or pickface sensors for determining one or more dimensions of one or more of the case units and pickfaces formed by the case units. For example, the in-feed transfer stations 170 may include any suitable sensors CS (
In other aspects, referring to
The case unit contact member 1530 may be movably located at least partially within the payload area. It is noted that the case unit contact member 1530 may include any suitable slots 1680 that allow each finger to be lifted in the direction of arrow 1673 without substantially contacting the case unit contact member 1530. In this example, the case unit contact member has a slot 1680 for each finger 1540 but it should be understood that the slots 1680 may have any suitable configuration such as for example, a configuration that allocates one slot to more than one finger 1540. The case unit contact member 1530 may be driven in the direction of arrow 1550 by any suitable drive 1531. For exemplary purposes only, the drive 1531 may be a belt and pulley drive (
Referring to
In the embodiments the protrusion and recess may be in the form of a key 3004 and keyhole 3002 as shown in
In the embodiments the protrusion may be in the form of one or more pins 3000 that extend from the mounting member 1671 and the recess may be in the form of one or more slots 3001 located in the case unit contact member 1530. The one or more slots 3001 may be disposed adjacent one or more of the mounting members 1671 when the case unit contact member 1530 is in a substantially retracted position as shown in
As may be realized, the pin 3000 and slot 3001 engagement may be used separately from or in conjunction with the key 3004 and keyhole 3002 engagement in any suitable manner. For example, the mounting members 1671 of outermost fingers 1540 may be configured with pins 3000 to engage the recesses 3001 located adjacent the ends 1530E1, 1530E2 of the case unit contact member 1530 while the mounting members 1671 of inner fingers (located between the outermost fingers) are configured with keys 3004 for engaging keyholes 3002 located between the ends 1530E1, 1530E2 of the case unit contact member 1530. It is noted that in the embodiments the engagement between the case unit contact member 1530 and the movable member 1535 may be accomplished in any suitable manner. As may also be realized, the releasable coupling between the movable member 1535 (e.g. the bot transfer arm) and the case unit contact member 1530 may be effected by lifting any suitable number of the fingers 1540. For example, the coupling may be effected by lifting one of the outermost fingers, both of the outermost fingers, one of the inner fingers, more than one inner finger or any suitable combination of inner and outer fingers. Further, the slots 3001 and keyholes 3002 may be configured to allow coupling of the movable member 1535 and the case unit contact member 1530 through only a partial lifting of one or more of the fingers 1540. For example, coupling engagement of the slots and keyholes with their respective pins and keys may occur when the fingers are raised to a position for insertion into the storage shelf 600 beneath a pickface. The slots and keyholes may further be configured to allow further lifting of the fingers 1540 (e.g. the keys and pins are slidable within an engagement portion of the respective keyhole and slot) so that the pickface can be lifted off of the storage shelf 600 and transferred to the payload bed 1510 of the bot 110.
Referring now to
When the case unit(s) 1700A are transferred onto the payload bed 1510 of the bot 110, clearance C is needed between the edge 1706 of the case unit 1700A and the fence 1510F so that the case unit 1700A does not hit the fence 1510F or trip a case overhang sensor 1703 as the case unit is lowered onto the payload bed 1510. The amount of clearance C may be determined by subtracting both the underpick distance U and the finger length L from the depth D of the payload bed 1510 (e.g. C=D-L-U). In one example the underpick distance U may be a predetermined distance such as about 9 mm or any other suitable distance and the depth D of the payload bed 1510 may be a constant value. As such, to increase the amount of clearance C between the edge 1706 of the case unit 1700A and the fence 1510F the length L of the fingers 1540 has to decrease. Alternatively, if the clearance C is a predetermined distance and the depth D of the payload bed 1510 remains constant, the finger length L has to decrease to increase the underpick distance U (e.g. U=D-L-C). As may be realized, the underpick U and clearance C may be adjusted without changing the finger length L, but the underpick U and clearance C may not be changed independently without changing the arm length L.
In accordance with a first aspect of the exemplary embodiments an autonomous transport vehicle is provided. The transport vehicle includes a payload bed and a transfer arm disposed in the payload bed and configured to extend along a first axis to transfer a pickface to and from the payload bed. The transfer arm includes fingers that are independently movable relative to each other along a second axis, substantially perpendicular to the first axis for picking and placing the pickface.
In accordance with the first aspect of the exemplary embodiments, the autonomous transport vehicle includes a drive unit for each of the fingers where the drive unit is configured to selectively move a respective finger along the second axis.
In accordance with a first sub-aspect of the first aspect of the exemplary embodiments, the autonomous transport vehicle includes a movable member to which the fingers are mounted such that the fingers are cantilevered from the movable member for unitary movement along the first axis.
In accordance with the first sub-aspect of the first aspect of the exemplary embodiments, the autonomous transport vehicle includes a driven member configured to be selectively coupled to the movable member for effecting movement of the transfer arm along the first axis.
In accordance with the first sub-aspect of the first aspect of the exemplary embodiments, one or more of the fingers includes a protrusion and the driven member includes at least one corresponding recess, where when the one or more fingers are raised the protrusion engages the recess for coupling the movable member to the driven member.
In accordance with a second aspect of the exemplary embodiments, an autonomous transport vehicle is provided. The autonomous transport vehicle includes a driven member, a movable member and a positionable coupling configured to selectively couple the movable member to the driven member, the positionable coupling is capable of being coupled and uncoupled wherein when uncoupled the driven member is movable along a first axis independent of the movable member and when coupled the driven member and the movable member move along the first axis as a unit.
In accordance with the second aspect of the exemplary embodiments, the autonomous transport vehicle further includes a payload bed where the driven member is configured to at least orient case units on the payload bed and the movable member in part transfers the case units to and from the payload bed.
In accordance with a first sub-aspect of the second aspect of the exemplary embodiments, the movable member includes fingers that are movable along a second axis, the second axis being substantially perpendicular to the first axis where one or more of the fingers engages the driven member for coupling the movable member to the driven member.
In accordance with the first sub-aspect of the second aspect of the exemplary embodiments the autonomous transport vehicle includes a controller configured to determine an amount of travel of the fingers along the first axis such that cantilevered tips of the fingers are spaced from a distal end of a case unit being picked so as not to extend beyond an edge of the case unit.
In accordance with the second aspect of the exemplary embodiments, the movable member includes at least one side blade configured to substantially contact a side of one or more case units for aligning the one or more case units for transfer to a storage shelf.
In accordance with a third aspect of the exemplary embodiments, an autonomous transport vehicle is provided. The autonomous transport vehicle includes a frame including a transport area, a drive system, and a transfer arm having fingers disposed in the transport area and connected to the frame through the drive system, wherein the drive system is configured to move the fingers along a first axis as a unit and move each finger independently relative to other fingers of the transfer arm along a second axis that is substantially perpendicular to the first axis.
In accordance with the third aspect of the exemplary embodiments, the drive system comprises a single axis drive common to all fingers and configured to move the fingers along the first axis.
In accordance with the third aspect of the exemplary embodiments, the drive system comprises a linear drive for each finger, where each linear drive is configured to individually move a respective finger along the second axis independently of other ones of the fingers.
In accordance with the third aspect of the exemplary embodiments, the drive system comprises a linear drive selectively coupled to each of the fingers, where the linear drive is configured to move one or more fingers along the second axis.
In accordance with a first sub-aspect of the third aspect of the exemplary embodiments, movement of the fingers along the second axis couples the fingers to the drive system for movement along the first axis.
In accordance with the first sub-aspect of the third aspect of the exemplary embodiments, the autonomous transport vehicle further includes a movable member configured to interface with a payload of the autonomous transport vehicle wherein the drive system is configured move one or more fingers along the second axis to selectively couple the one or more fingers to the movable member and move the one or more fingers along the first axis by driving the movable member along the first axis.
In accordance with the third aspect of the exemplary embodiments, the fingers are cantilevered from the frame.
It should be understood that the exemplary embodiments disclosed herein can be used individually or in any suitable combination thereof. It should also be understood that the foregoing description is only illustrative of the embodiments. Various alternatives and modifications can be devised by those skilled in the art without departing from the embodiments. Accordingly, the present embodiments are intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims.
This application is a non-provisional of and claims the benefit of U.S. provisional patent application No. 61/423,365 filed on Dec. 15, 2010, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1845962 | Dorr | Feb 1932 | A |
1887667 | Wheeler | Nov 1932 | A |
2606508 | Van Nes | Aug 1952 | A |
2656995 | Wolf | Oct 1953 | A |
2673689 | Bonanno | Mar 1954 | A |
2792234 | Page | May 1957 | A |
2996621 | Barrett, Jr. | Apr 1958 | A |
2840248 | Grove et al. | Jun 1958 | A |
2877575 | Stedt | Mar 1959 | A |
2923421 | de Senignon de Roumefort | Feb 1960 | A |
2945604 | Kroll et al. | Jul 1960 | A |
3161303 | Burrows | Dec 1964 | A |
3162459 | Marmorine et al. | Dec 1964 | A |
3269744 | Dobson | Aug 1966 | A |
3369648 | Weintz | Feb 1968 | A |
3370492 | Treff | Feb 1968 | A |
3512625 | Burgess et al. | May 1970 | A |
3519149 | Saul | Jul 1970 | A |
3554390 | Saul | Jan 1971 | A |
3636586 | Bollinger et al. | Jan 1972 | A |
3677421 | Kintner | Jul 1972 | A |
3732828 | Wanner | May 1973 | A |
3737056 | Hathcock, Jr. | Jun 1973 | A |
3738506 | Cornford et al. | Jun 1973 | A |
3744945 | Metrailer | Jul 1973 | A |
3746189 | Burch et al. | Jul 1973 | A |
3751758 | Higbee et al. | Aug 1973 | A |
3774543 | Welsh | Nov 1973 | A |
3782565 | Doran et al. | Jan 1974 | A |
3789765 | Schultz | Feb 1974 | A |
3802580 | Castaldi | Apr 1974 | A |
3811383 | Butzow | May 1974 | A |
3822647 | Hill et al. | Jul 1974 | A |
3850111 | Hansen | Nov 1974 | A |
3876087 | Osta | Apr 1975 | A |
3876095 | Stedt | Apr 1975 | A |
3896955 | Collins et al. | Jul 1975 | A |
3904216 | Metrailer | Sep 1975 | A |
3940105 | Metrailer | Feb 1976 | A |
3970840 | de Bruine | Jul 1976 | A |
3976302 | Hammarstrand | Aug 1976 | A |
3984012 | Ennis et al. | Oct 1976 | A |
4007843 | Lubbers et al. | Feb 1977 | A |
4026365 | Andersson et al. | May 1977 | A |
4037291 | Huempfner et al. | Jun 1977 | A |
4057019 | Shaffer | Nov 1977 | A |
4064986 | Bertovich | Dec 1977 | A |
4072203 | Pierson | Feb 1978 | A |
4079955 | Thorpe et al. | Mar 1978 | A |
4087116 | Morimoto | May 1978 | A |
4174854 | Spicka et al. | Nov 1979 | A |
4183304 | Furster | Jan 1980 | A |
4213396 | Mehren et al. | Jul 1980 | A |
4214535 | Gerhard | Jul 1980 | A |
4219296 | Fujii et al. | Aug 1980 | A |
4223611 | Dawson et al. | Sep 1980 | A |
4265582 | Theobald | May 1981 | A |
4268207 | Pipes | May 1981 | A |
4271764 | Braun et al. | Jun 1981 | A |
4273234 | Bourgeois | Jun 1981 | A |
4307938 | Page et al. | Dec 1981 | A |
4307988 | Page et al. | Dec 1981 | A |
4346659 | Binder | Aug 1982 | A |
4349937 | Fontana | Sep 1982 | A |
4349938 | Fontana | Sep 1982 | A |
4353572 | McCain | Oct 1982 | A |
4372219 | Gibbs | Feb 1983 | A |
4372724 | Stolzer | Feb 1983 | A |
4394104 | Camerini et al. | Jul 1983 | A |
4395181 | Loomer | Jul 1983 | A |
4406570 | Duncan et al. | Sep 1983 | A |
4428708 | Burt | Jan 1984 | A |
4445440 | Geiss | May 1984 | A |
4459078 | Chiantella et al. | Jul 1984 | A |
4470742 | Schindler | Sep 1984 | A |
4492504 | Hainsworth | Jan 1985 | A |
4505630 | Kaschner et al. | Mar 1985 | A |
4527486 | Baird et al. | Jul 1985 | A |
4538950 | Shiomi et al. | Sep 1985 | A |
4621526 | Carr et al. | Nov 1986 | A |
4678390 | Bonneton et al. | Jul 1987 | A |
4679149 | Merz | Jul 1987 | A |
4715662 | van Zanten et al. | Dec 1987 | A |
4716530 | Ogawa et al. | Dec 1987 | A |
4726725 | Baker et al. | Feb 1988 | A |
4733740 | Bigowsky et al. | Mar 1988 | A |
4750429 | Mordaunt et al. | Jun 1988 | A |
4773807 | Kroll et al. | Sep 1988 | A |
4786229 | Henderson | Nov 1988 | A |
4811229 | Wilson | Mar 1989 | A |
4812985 | Hambrick et al. | Mar 1989 | A |
4856956 | Zur | Aug 1989 | A |
4862807 | Guadagno | Sep 1989 | A |
4878876 | Ishimoto | Nov 1989 | A |
4883401 | Kavieff | Nov 1989 | A |
4887016 | Malick | Dec 1989 | A |
4905783 | Bober | Mar 1990 | A |
4909697 | Bernard, II et al. | Mar 1990 | A |
4936738 | Brennan et al. | Jun 1990 | A |
4942826 | Erickson | Jul 1990 | A |
4966242 | Baillargeon | Oct 1990 | A |
4966513 | Motoda | Oct 1990 | A |
4993905 | Potocnjak | Feb 1991 | A |
5002449 | Kita et al. | Mar 1991 | A |
5004399 | Sullivan et al. | Apr 1991 | A |
5015145 | Angell et al. | May 1991 | A |
5069592 | Galperin | Dec 1991 | A |
5096355 | Schroder | Mar 1992 | A |
5134353 | Kita et al. | Jul 1992 | A |
5134940 | Fujita et al. | Aug 1992 | A |
5135344 | Kita et al. | Aug 1992 | A |
5140787 | Corcoran | Aug 1992 | A |
5149654 | Gross et al. | Sep 1992 | A |
5156639 | Bostrom | Oct 1992 | A |
5163001 | Luke, Jr. | Nov 1992 | A |
5165838 | Kallansrude et al. | Nov 1992 | A |
5165815 | Corner et al. | Dec 1992 | A |
5168815 | Comer et al. | Dec 1992 | A |
5179329 | Nishikawa et al. | Jan 1993 | A |
5187664 | Yardley et al. | Feb 1993 | A |
5199840 | Castaldi et al. | Apr 1993 | A |
5213463 | Rothlisberger | May 1993 | A |
5218909 | Ng | Jun 1993 | A |
5219264 | McClure et al. | Jun 1993 | A |
5226782 | Rigling | Jul 1993 | A |
5238100 | Rose, Jr. et al. | Aug 1993 | A |
5265944 | Gloceri | Nov 1993 | A |
5271703 | Lindqvist et al. | Dec 1993 | A |
5273392 | Bernard, II et al. | Dec 1993 | A |
5281901 | Yardley et al. | Jan 1994 | A |
5286157 | Vainio et al. | Feb 1994 | A |
5307888 | Urvoy | May 1994 | A |
5327354 | Tsujimoto | Jul 1994 | A |
5328316 | Hoffmann | Jul 1994 | A |
5333982 | Tanizawa et al. | Aug 1994 | A |
5333983 | Hatouchi et al. | Aug 1994 | A |
5337880 | Claycomb et al. | Aug 1994 | A |
5362197 | Rigling | Nov 1994 | A |
5370492 | Gleyze et al. | Dec 1994 | A |
5377851 | Asano et al. | Jan 1995 | A |
5377910 | Newton et al. | Jan 1995 | A |
5379229 | Parsons et al. | Jan 1995 | A |
5380139 | Pohjonen et al. | Jan 1995 | A |
5388955 | Schroder | Feb 1995 | A |
5397212 | Watanabe et al. | Mar 1995 | A |
5403147 | Tanaka | Apr 1995 | A |
5405232 | Llyod et al. | Apr 1995 | A |
5410969 | Rene et al. | May 1995 | A |
5418732 | McFadin | May 1995 | A |
5421265 | Suigmoto et al. | Jun 1995 | A |
5421685 | Elmer et al. | Jun 1995 | A |
5421697 | Ostwald | Jun 1995 | A |
5425612 | Ebstein | Jun 1995 | A |
5434490 | Ishida et al. | Jul 1995 | A |
5445485 | Poutet | Aug 1995 | A |
5450797 | Becker et al. | Sep 1995 | A |
5460476 | Gazza | Oct 1995 | A |
5472309 | Bernard, II et al. | Dec 1995 | A |
5501295 | Muller et al. | Mar 1996 | A |
5525884 | Sugiura et al. | Jun 1996 | A |
5529165 | Shupert | Jun 1996 | A |
5548516 | Gudat et al. | Aug 1996 | A |
5564880 | Lederer | Oct 1996 | A |
5588796 | Ricco et al. | Dec 1996 | A |
5601395 | Lichti, Sr. et al. | Feb 1997 | A |
5611422 | Harkonen | Mar 1997 | A |
5615992 | Proske et al. | Apr 1997 | A |
5626362 | Mottola | May 1997 | A |
5632350 | Gauvin | May 1997 | A |
5650703 | Yardley et al. | Jul 1997 | A |
5664688 | Kitanaka et al. | Sep 1997 | A |
5667230 | Riley et al. | Sep 1997 | A |
5668724 | Ehrert et al. | Sep 1997 | A |
5707199 | Faller | Jan 1998 | A |
5718322 | Mulhern | Feb 1998 | A |
5718551 | Ebstein | Feb 1998 | A |
5725063 | Ceragioli et al. | Mar 1998 | A |
5743562 | Mottola | Apr 1998 | A |
5764014 | Jakeway et al. | Jun 1998 | A |
5801506 | Netzler | Sep 1998 | A |
5802980 | Hofmiller | Sep 1998 | A |
5806870 | Hull et al. | Sep 1998 | A |
5810540 | Castaldi | Sep 1998 | A |
5829096 | Perry | Nov 1998 | A |
5833431 | Rosse, III et al. | Nov 1998 | A |
5839872 | Goto et al. | Nov 1998 | A |
5847537 | Parmley, Sr. | Dec 1998 | A |
5857413 | Ward | Jan 1999 | A |
5866469 | Pinto et al. | May 1999 | A |
5918951 | Rudd, III | Jul 1999 | A |
5927926 | Yagi et al. | Jul 1999 | A |
5928058 | Francis et al. | Jul 1999 | A |
5988306 | Ooishi | Nov 1999 | A |
6000502 | Leasor et al. | Dec 1999 | A |
6021367 | Pilutti et al. | Feb 2000 | A |
6024381 | Mottola | Feb 2000 | A |
6036427 | Kita et al. | Mar 2000 | A |
6038501 | Kawakami | Mar 2000 | A |
6061607 | Bradley et al. | May 2000 | A |
6062942 | Ogihara | May 2000 | A |
6116842 | Harris et al. | Sep 2000 | A |
6135697 | Isaacs et al. | Oct 2000 | A |
6149366 | Deandrea | Nov 2000 | A |
6158566 | Pollock | Dec 2000 | A |
6220676 | Rudd, III | Apr 2001 | B1 |
6257597 | Galazin | Jul 2001 | B1 |
6272406 | Alofs et al. | Aug 2001 | B2 |
6324994 | Glenn | Dec 2001 | B1 |
6325586 | Loy | Dec 2001 | B1 |
6341269 | Dulaney et al. | Jan 2002 | B1 |
6345217 | Zeitler et al. | Feb 2002 | B1 |
6352035 | Kashiwase et al. | Mar 2002 | B1 |
6354430 | Oe | Mar 2002 | B1 |
6360673 | Herrin et al. | Mar 2002 | B1 |
6389981 | Strothmann et al. | May 2002 | B1 |
6390756 | Isaacs et al. | May 2002 | B1 |
6391226 | Chauvette et al. | May 2002 | B1 |
6425723 | Okada et al. | Jul 2002 | B1 |
6439131 | Higgins | Aug 2002 | B1 |
6439955 | Feketo | Aug 2002 | B1 |
6503043 | Smith et al. | Jan 2003 | B1 |
6508102 | Margolis et al. | Jan 2003 | B1 |
6563128 | Lublin | May 2003 | B2 |
6600418 | Francis et al. | Jul 2003 | B2 |
6601435 | Hong | Aug 2003 | B2 |
6629502 | Matsukawa | Oct 2003 | B2 |
6631321 | Ciprian | Oct 2003 | B1 |
6645355 | Hanson et al. | Nov 2003 | B2 |
6652213 | Mitchell et al. | Nov 2003 | B1 |
6655297 | Kawato et al. | Dec 2003 | B2 |
6692211 | Yuyama et al. | Feb 2004 | B2 |
6695328 | Cope | Feb 2004 | B2 |
6721638 | Zeitler | Apr 2004 | B2 |
6748292 | Mountz | Jun 2004 | B2 |
6763767 | Jackson et al. | Jul 2004 | B2 |
6808058 | Shiohara | Oct 2004 | B2 |
6851921 | Haag | Feb 2005 | B2 |
6861154 | Olson et al. | Mar 2005 | B2 |
6864489 | Chen et al. | Mar 2005 | B2 |
6880202 | Thompson et al. | Apr 2005 | B2 |
6928336 | Peshkin et al. | Aug 2005 | B2 |
6929440 | Grond | Aug 2005 | B1 |
6948899 | Lee | Sep 2005 | B2 |
6950722 | Mountz | Sep 2005 | B2 |
6988451 | Marcotte et al. | Jan 2006 | B2 |
6997665 | Bouche et al. | Feb 2006 | B2 |
7002698 | Hanson et al. | Feb 2006 | B2 |
7002772 | Yardy | Feb 2006 | B2 |
7003375 | Inui | Feb 2006 | B2 |
7008164 | Rokkaku | Mar 2006 | B2 |
7011487 | Kafka et al. | Mar 2006 | B2 |
7017228 | Silverstein et al. | Mar 2006 | B2 |
7025191 | Lichti et al. | Apr 2006 | B2 |
7058866 | Flanagan et al. | Jun 2006 | B2 |
7074151 | Thompson | Jul 2006 | B2 |
7085097 | Starr et al. | Aug 2006 | B2 |
7100294 | Goldsobel et al. | Sep 2006 | B1 |
7101139 | Benedict | Sep 2006 | B1 |
7102848 | Kumpon et al. | Sep 2006 | B2 |
7110855 | Leishman | Sep 2006 | B2 |
7119982 | Starr et al. | Oct 2006 | B2 |
7128521 | Hansl | Oct 2006 | B2 |
7135992 | Karlsson et al. | Nov 2006 | B2 |
7137593 | Baatz | Nov 2006 | B2 |
7128196 | Oldford et al. | Dec 2006 | B2 |
7145478 | Gonclaves et al. | Dec 2006 | B2 |
7145747 | Brace et al. | Dec 2006 | B2 |
7155308 | Jones | Dec 2006 | B2 |
7184855 | Stingel, III et al. | Feb 2007 | B2 |
7192034 | Radke et al. | Mar 2007 | B2 |
7221998 | Brust et al. | May 2007 | B2 |
7266422 | DeMotte et al. | Sep 2007 | B1 |
7319320 | Kawashima et al. | Jan 2008 | B2 |
7329081 | Baker et al. | Feb 2008 | B2 |
7381022 | King | Jun 2008 | B1 |
7386379 | Naik et al. | Jun 2008 | B2 |
7402018 | Mountz et al. | Jul 2008 | B2 |
7426970 | Olsen | Sep 2008 | B2 |
7433759 | Nangoy | Oct 2008 | B2 |
7495561 | Bodin et al. | Feb 2009 | B2 |
7506404 | Block et al. | Mar 2009 | B2 |
7520376 | Bar | Apr 2009 | B2 |
7536283 | Potter et al. | May 2009 | B2 |
7539557 | Yamaguchi | May 2009 | B2 |
7584812 | Radke et al. | Sep 2009 | B2 |
7587260 | Bruemmer et al. | Sep 2009 | B2 |
7591630 | Lert, Jr. | Sep 2009 | B2 |
7620477 | Bruemmer | Nov 2009 | B2 |
7636982 | Jones et al. | Dec 2009 | B2 |
7641014 | Hu | Jan 2010 | B2 |
7648002 | Easton et al. | Jan 2010 | B2 |
7661920 | Kantola et al. | Feb 2010 | B2 |
7668621 | Bruemmer | Feb 2010 | B2 |
7671293 | Fry et al. | Mar 2010 | B2 |
7682122 | Maynard et al. | Mar 2010 | B2 |
7686560 | Laurin et al. | Mar 2010 | B2 |
7689318 | Draper | Mar 2010 | B2 |
7695235 | Rallis | Apr 2010 | B1 |
7730781 | Zhang et al. | Jun 2010 | B2 |
7751928 | Antony et al. | Jul 2010 | B1 |
7769513 | Breed et al. | Aug 2010 | B2 |
7771152 | Waltersbacher | Aug 2010 | B2 |
7792350 | Kiley et al. | Sep 2010 | B2 |
7793742 | Donaldson et al. | Sep 2010 | B2 |
7801644 | Bruemmer et al. | Sep 2010 | B2 |
7826919 | D'Andrea et al. | Nov 2010 | B2 |
7826926 | Myeung et al. | Nov 2010 | B2 |
7861844 | Hayduchok et al. | Jan 2011 | B2 |
7866671 | Madler | Jan 2011 | B2 |
7885750 | Lu | Feb 2011 | B2 |
7909562 | Mead | Mar 2011 | B2 |
7926145 | Liao | Apr 2011 | B2 |
7931431 | Benedict et al. | Apr 2011 | B2 |
7960973 | Zeller et al. | Jun 2011 | B2 |
7965871 | Ihara et al. | Jun 2011 | B2 |
7967354 | Faulkner et al. | Jun 2011 | B2 |
7974738 | Bruemmer et al. | Jul 2011 | B2 |
7991505 | Lert, Jr. et al. | Aug 2011 | B2 |
8000835 | Eriz et al. | Aug 2011 | B2 |
8001837 | Larson et al. | Aug 2011 | B2 |
8006824 | Wada et al. | Aug 2011 | B2 |
8007221 | More et al. | Aug 2011 | B1 |
8024066 | Reverte et al. | Sep 2011 | B2 |
8031086 | Thacher et al. | Oct 2011 | B2 |
8041456 | Blackwell et al. | Oct 2011 | B1 |
8042627 | Yang et al. | Oct 2011 | B2 |
8060257 | Close et al. | Nov 2011 | B2 |
8136650 | Frich et al. | Mar 2012 | B2 |
8280548 | Zuber | Oct 2012 | B2 |
8364309 | Bailey | Jan 2013 | B1 |
8378825 | Dahms et al. | Feb 2013 | B2 |
8425173 | Lert et al. | Apr 2013 | B2 |
8480347 | Schafer | Jul 2013 | B2 |
8515575 | Pfeiffer | Aug 2013 | B2 |
8594835 | Lert et al. | Nov 2013 | B2 |
8965619 | Sullivan et al. | Feb 2015 | B2 |
9020639 | Bewley et al. | Apr 2015 | B2 |
9037286 | Lert | May 2015 | B2 |
9327903 | Toebes et al. | May 2016 | B2 |
20020029719 | Matsukawa | Mar 2002 | A1 |
20020037208 | Patrito | Mar 2002 | A1 |
20020076307 | Fallin et al. | Jun 2002 | A1 |
20030033217 | Cutlip | Feb 2003 | A1 |
20030051544 | Hong | Mar 2003 | A1 |
20030074125 | Walenty et al. | Apr 2003 | A1 |
20030185656 | Hansl | Oct 2003 | A1 |
20030200129 | Klaubauf et al. | Oct 2003 | A1 |
20040093116 | Mountz | May 2004 | A1 |
20040136821 | Berger et al. | Jul 2004 | A1 |
20040167667 | Goncalves et al. | Aug 2004 | A1 |
20040238326 | Lichti | Dec 2004 | A1 |
20050029029 | Thorne | Feb 2005 | A1 |
20050047895 | Lert, Jr. | Mar 2005 | A1 |
20050095095 | Hansl | May 2005 | A1 |
20050131645 | Panopoulos | Jun 2005 | A1 |
20050151360 | Bertrand et al. | Jul 2005 | A1 |
20050166787 | Astrom | Aug 2005 | A1 |
20050212478 | Takenaka | Sep 2005 | A1 |
20050217532 | Conneally | Oct 2005 | A1 |
20050238455 | Toteff | Oct 2005 | A1 |
20050238465 | Ruazumov | Oct 2005 | A1 |
20060018996 | Pollock et al. | Jan 2006 | A1 |
20060058921 | Okamoto | Mar 2006 | A1 |
20060104712 | Bufano et al. | May 2006 | A1 |
20060210382 | Mountz et al. | Sep 2006 | A1 |
20060216137 | Sakata et al. | Sep 2006 | A1 |
20060220335 | Damm | Oct 2006 | A1 |
20060232025 | Braud | Oct 2006 | A1 |
20060245862 | Hansl | Nov 2006 | A1 |
20060257236 | Stingel et al. | Nov 2006 | A1 |
20070021864 | Mountz et al. | Jan 2007 | A1 |
20070059132 | Akamatsu et al. | Mar 2007 | A1 |
20070065258 | Benedict et al. | Mar 2007 | A1 |
20070071585 | Henkel | Mar 2007 | A1 |
20070125727 | Winkler | Jun 2007 | A1 |
20070177011 | Lewin et al. | Aug 2007 | A1 |
20070276535 | Haag | Nov 2007 | A1 |
20070288123 | D'Andrea et al. | Dec 2007 | A1 |
20070290040 | Wurman et al. | Dec 2007 | A1 |
20070293978 | Wurman et al. | Dec 2007 | A1 |
20070297879 | Yuyama et al. | Dec 2007 | A1 |
20080001372 | Hoffman et al. | Jan 2008 | A1 |
20080065265 | Ozick et al. | Mar 2008 | A1 |
20080154429 | Lee et al. | Jun 2008 | A1 |
20080161987 | Breed | Jul 2008 | A1 |
20080166217 | Fontana | Jul 2008 | A1 |
20080215180 | Kota | Sep 2008 | A1 |
20080269960 | Kostmann | Oct 2008 | A1 |
20080275609 | Boydell | Nov 2008 | A1 |
20080281717 | Kortelainen | Nov 2008 | A1 |
20090074545 | Lert, Jr. et al. | Mar 2009 | A1 |
20090099879 | Ouimet | Apr 2009 | A1 |
20090114115 | Minges | May 2009 | A1 |
20090185884 | Wurman et al. | Jul 2009 | A1 |
20090188774 | Tsujimoto | Jul 2009 | A1 |
20090216366 | Zuber et al. | Aug 2009 | A1 |
20090265031 | Tachibana et al. | Nov 2009 | A1 |
20100043665 | Brigham | Feb 2010 | A1 |
20100044124 | Radke et al. | Feb 2010 | A1 |
20100044977 | Hughes et al. | Feb 2010 | A1 |
20100076591 | Lert, Jr. | Mar 2010 | A1 |
20100086385 | Shani | Apr 2010 | A1 |
20100102532 | Timoney et al. | Apr 2010 | A1 |
20100131182 | Deegan et al. | May 2010 | A1 |
20100135759 | Dillon | Jun 2010 | A1 |
20100141483 | Thacher et al. | Jun 2010 | A1 |
20100145507 | Blust et al. | Jun 2010 | A1 |
20100167556 | Totsu et al. | Jul 2010 | A1 |
20100218697 | Sugimoto | Sep 2010 | A1 |
20100224427 | Nuchter et al. | Sep 2010 | A1 |
20100234995 | Zini et al. | Sep 2010 | A1 |
20100272546 | Wolkerstorfer | Oct 2010 | A1 |
20100286905 | Goncalves et al. | Nov 2010 | A1 |
20100290874 | Wolkerstorfer | Nov 2010 | A1 |
20100316468 | Lert et al. | Dec 2010 | A1 |
20100316469 | Lert | Dec 2010 | A1 |
20100324815 | Hirlta et al. | Dec 2010 | A1 |
20110008138 | Yamashita | Jan 2011 | A1 |
20110068943 | Lane, Jr. | Mar 2011 | A1 |
20110090064 | Dahms et al. | Apr 2011 | A1 |
20110106339 | Phillips et al. | May 2011 | A1 |
20110130974 | Yngve et al. | Jun 2011 | A1 |
20110176895 | Kortelainen | Jul 2011 | A1 |
20110185975 | van den Berg et al. | Aug 2011 | A1 |
20110202175 | Romanov et al. | Aug 2011 | A1 |
20110231016 | Goulding | Sep 2011 | A1 |
20110271469 | Ziegler et al. | Nov 2011 | A1 |
20120099953 | Hortig et al. | Apr 2012 | A1 |
20120185122 | Sullivan et al. | Jul 2012 | A1 |
20120186192 | Tobes et al. | Jul 2012 | A1 |
20120189409 | Toebes et al. | Jul 2012 | A1 |
20120189416 | Toebes et al. | Jul 2012 | A1 |
20120247239 | Hortig et al. | Oct 2012 | A1 |
20120277940 | Kumar et al. | Nov 2012 | A1 |
20120299260 | Goertzen et al. | Nov 2012 | A1 |
20130061420 | Vanderstegen-Drake et al. | Mar 2013 | A1 |
20130094926 | Olszak et al. | Apr 2013 | A1 |
20130142599 | McDowell, Jr. et al. | Jun 2013 | A1 |
20140350725 | Lafary et al. | Nov 2014 | A1 |
20150081089 | Kapust et al. | Mar 2015 | A1 |
20150150429 | Yoo et al. | Jun 2015 | A1 |
20150314446 | Day et al. | Nov 2015 | A1 |
20150336741 | Ahammer et al. | Nov 2015 | A1 |
20160000282 | Vanderstegen-Drake et al. | Jan 2016 | A1 |
20160121486 | Lipinski et al. | May 2016 | A1 |
20160214808 | Cyrulik et al. | Jul 2016 | A1 |
20170083020 | Purwin et al. | Mar 2017 | A1 |
20170320522 | Lorenz et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2752234 | Jan 2006 | CN |
2920788 | Jul 2007 | CN |
202321418 | Jul 2012 | CN |
4104527 | Aug 1992 | DE |
20011661 | Dec 2000 | DE |
10142395 | Nov 2002 | DE |
102011012950 | Sep 2012 | DE |
0466004 | Jan 1992 | EP |
0499276 | Aug 1992 | EP |
0647575 | Apr 1995 | EP |
0733563 | Sep 1996 | EP |
0737630 | Oct 1996 | EP |
1193195 | Apr 2002 | EP |
1598291 | Nov 2005 | EP |
1627830 | Feb 2006 | EP |
1775240 | Apr 2007 | EP |
2039580 | Jan 2008 | EP |
2852006 | Mar 2015 | EP |
2730715 | Feb 1995 | FR |
4735387 | Sep 1972 | JP |
49131671 | Aug 1973 | JP |
5310055 | Mar 1978 | JP |
5931297 | Feb 1984 | JP |
62041705 | Feb 1987 | JP |
6337007 | Feb 1988 | JP |
63160204 | Oct 1988 | JP |
1179321 | Mar 1993 | JP |
061309 | Jan 1994 | JP |
07157013 | Jun 1995 | JP |
07187330 | Jul 1995 | JP |
07187331 | Jul 1995 | JP |
081553 | Jan 1996 | JP |
08091795 | Apr 1996 | JP |
08113321 | May 1996 | JP |
08133426 | May 1996 | JP |
08258763 | Oct 1996 | JP |
0948507 | Feb 1997 | JP |
09148401 | Jun 1997 | JP |
11124298 | May 1999 | JP |
11180697 | Jul 1999 | JP |
11296226 | Oct 1999 | JP |
2000118615 | Apr 2000 | JP |
2000118639 | Apr 2000 | JP |
2000122720 | Apr 2000 | JP |
3189545 | Jul 2001 | JP |
20011344020 | Dec 2001 | JP |
2002356207 | Dec 2002 | JP |
2003012117 | Jan 2003 | JP |
2003063610 | Mar 2003 | JP |
2003316437 | Nov 2003 | JP |
2003321102 | Nov 2003 | JP |
2004043109 | Feb 2004 | JP |
3102245 | Jul 2004 | JP |
2004249895 | Sep 2004 | JP |
2005082331 | Mar 2005 | JP |
2006138956 | Jun 2005 | JP |
2005206259 | Aug 2005 | JP |
2005297809 | Oct 2005 | JP |
2006137577 | Jun 2006 | JP |
2006160523 | Jun 2006 | JP |
3867866 | Jan 2007 | JP |
2007099424 | Apr 2007 | JP |
2007283958 | Nov 2007 | JP |
2008023639 | Feb 2008 | JP |
2008238959 | Feb 2008 | JP |
2008510673 | Apr 2008 | JP |
2008100825 | May 2008 | JP |
2009513457 | Apr 2009 | JP |
60153309 | Aug 2009 | JP |
2009284944 | Dec 2009 | JP |
2010049987 | Mar 2010 | JP |
2010158942 | Jul 2010 | JP |
2007131383 | May 2017 | JP |
20110074901 | Jul 2011 | KR |
506936 | Oct 2002 | TW |
588712 | May 2004 | TW |
201003347 | Jan 2010 | TW |
201022108 | Jun 2010 | TW |
198501493 | Apr 1985 | WO |
9534491 | Dec 1995 | WO |
0187648 | Nov 2001 | WO |
2005009324 | Feb 2005 | WO |
2005056943 | Jun 2005 | WO |
2006024035 | Mar 2006 | WO |
2006095047 | Sep 2006 | WO |
2007011814 | Jan 2007 | WO |
2008152245 | Dec 2008 | WO |
2009098573 | Aug 2009 | WO |
2009106988 | Sep 2009 | WO |
2009150684 | Dec 2009 | WO |
2010080539 | Jul 2010 | WO |
2010118412 | Oct 2010 | WO |
2012044734 | Apr 2012 | WO |
2016118955 | Jul 2016 | WO |
Entry |
---|
International Search Report, International Application No. PCT/U52014/030217, dated Jul. 7, 2014 (1 page. |
International Search Report, International Application No. PCT/U52014/055563, dated Mar. 16, 2015. |
European Search Report, European Application No. 11190634, dated Mar. 22, 2016. |
European Search Report, European Application No. 14843969, dated Apr. 19, 2017. |
International Search Report, International Application No. PCT/US2011/065238, dated Mar. 21, 2012. |
International Search Report, International Application No. PCT/US2011/065243, dated 21 Mar. 21, 2012. |
International Search Report, International Application No. PCT/US2011/065238 dated Mar. 21, 2013. |
European Search Report, European Application No. 16164914 dated Dec. 20, 2016. |
Number | Date | Country | |
---|---|---|---|
20120189416 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61423365 | Dec 2010 | US |