Automated bot with transfer arm

Information

  • Patent Grant
  • 11078017
  • Patent Number
    11,078,017
  • Date Filed
    Thursday, December 15, 2011
    13 years ago
  • Date Issued
    Tuesday, August 3, 2021
    3 years ago
Abstract
An autonomous transport vehicle is provided. The autonomous transport vehicle includes a payload bed and a transfer arm configured to extend along a first axis to transfer a pickface to and from the payload bed, the transfer arm including fingers that are independently movable along a second axis, substantially perpendicular to the first axis for picking and placing the pickface.
Description
BACKGROUND
1. Field

The embodiments generally relate to storage and retrieval systems and, more particularly, to autonomous transports of the storage and retrieval systems.


2. Brief Description of Related Developments

Warehouses for storing case units may generally comprise a series of storage racks that are accessible by transport devices such as, for example, fork lifts, carts and elevators that are movable within aisles between or along the storage racks or by other lifting and transporting devices. These transport devices may be automated or manually driven. Generally the items transported to/from and stored on the storage racks are contained in carriers, for example storage containers such as trays, totes or shipping cases, or on pallets.


When transporting the cases to and from the storage racks with automated transports it would be advantageous to be able to minimize the number of drive motors of the automated transports and to control fingers of the automated transports' transfer arm for picking and placing case units to storage locations or conveyor locations.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and other features of the disclosed embodiments are explained in the following description, taken in connection with the accompanying drawings, wherein:



FIG. 1 schematically illustrates an exemplary storage and retrieval system in accordance with the an aspect of embodiments;



FIG. 2 illustrates a schematic plan view of an exemplary storage and retrieval system in accordance with an aspect of the embodiments;



FIG. 3 illustrates a structural portion of a storage and retrieval system in accordance with an aspect of the embodiments;



FIGS. 4A and 4B illustrate storage shelves in accordance with an aspect of the embodiments;



FIGS. 5 and 5A are illustrations of exemplary autonomous transport vehicles in accordance with aspects of the embodiments;



FIGS. 6-9 are schematic illustrations of portions of the exemplary autonomous transport vehicle of FIG. 5 in accordance with an aspect of the embodiments;



FIG. 10 is a flow diagram in accordance with an aspect of the disclosed embodiments.





DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENT(S)


FIG. 1 schematically illustrates an exemplary storage and retrieval system in accordance with the embodiments. Although the disclosed embodiments will be described with reference to the embodiments shown in the drawings, it should be understood that the disclosed embodiments can be embodied in many alternate forms. In addition, any suitable size, shape or type of elements or materials could be used.


In accordance with the embodiments the storage and retrieval system 100 may operate in a retail distribution center or warehouse to, for example, fulfill orders received from retail stores for case units (where case units as used herein means items not stored in trays, on totes or on pallets, e.g. uncontained or items stored in trays, totes or on pallets). It is noted that the case units may include cases of items (e.g. case of soup cans, boxes of cereal, etc.) or individual items that are adapted to be taken off of or placed on a pallet. In accordance with the embodiments, shipping cases or case units (e.g. cartons, barrels, boxes, crates, jugs, totes, pallets or any other suitable device for holding case units) may have variable sizes and may be used to hold items in shipping and may be configured so they are capable of being palletized for shipping. It is noted that when, for example, bundles or pallets of case units arrive at the storage and retrieval system the content of each pallet may be uniform (e.g. each pallet holds a predetermined number of the same item—one pallet holds soup and another pallet holds cereal) and as pallets leave the storage and retrieval system the pallets may contain any suitable number and combination of different items (e.g. each pallet may hold different types of items—a pallet holds a combination of soup and cereal). It is noted that the storage and retrieval system described herein may be applied to any environment in which case units are stored and retrieved.


The storage and retrieval system 100 may be configured for installation in, for example, existing warehouse structures or adapted to new warehouse structures. In the embodiments, the storage and retrieval system may include in-feed and out-feed transfer stations 170, 160, multilevel vertical conveyors 150A, 150B, a storage structure 130, and a number of autonomous transport vehicles or robots 110 (referred to herein as “bots”). The storage and retrieval system may also include robot or bot transfer stations (as described in, for example, U.S. patent application Ser. No. 12/757,220, entitled “STORAGE AND RETRIEVAL SYSTEM” and filed on Apr. 9, 2010, the disclosure of which is incorporated by reference herein in its entirety) that may provide an indirect interface between the bots 110 and the multilevel vertical conveyor 150A, 150B. The in-feed transfer stations 170 and out-feed transfer stations 160 may operate together with their respective multilevel vertical conveyors 150A, 150B for bi-directionally transferring case units to and from one or more levels of the storage structure 130. It is noted that while the multilevel vertical conveyors are described herein as being dedicated inbound or in-feed conveyors 150A and outbound or out-feed conveyors 150B, each of the conveyors 150A, 150B may be used for both inbound and outbound transfer of case units/items from the storage and retrieval system. The multilevel vertical conveyors may be any suitable lifting devices for transporting case units between levels of the storage and retrieval system. It is noted that while multilevel vertical conveyors are described herein in other aspects the conveyors may be any suitable conveyors or transfer/picking devices having any suitable transport path orientation. Some non-limiting suitable examples of multilevel vertical conveyors can be found in, for example, U.S. Provisional Patent Application No. 61/423,298 entitled “LIFT INTERFACE FOR STORAGE AND RETRIEVAL SYSTEMS” and filed on Dec. 15, 2010 (now U.S. Pat. No. 8,998,554 filed on Dec. 15, 2011 and issued on Apr. 7, 2015), and U.S. patent application Ser. No. 12/757,354, entitled “LIFT INTERFACE FOR STORAGE AND RETRIEVAL SYSTEMS” and filed on Apr. 9, 2010, the disclosures of which are incorporated by reference herein in their entireties, and U.S. patent application Ser. No. 12/757,220, entitled “STORAGE AND RETRIEVAL SYSTEM,” (previously incorporated by reference). For example, the multilevel vertical conveyors may have any suitable number of support shelves for transporting the case units to a predetermined level of the storage and retrieval system. The support shelves may have slatted supports configured to allow fingers of the bots 110 or in-feed/out-feed transfer stations 170, 160 to pass between the slats for transferring case units to and from the conveyor. It is noted that the transfer of case units between the bots and the multilevel vertical conveyors may occur in any suitable manner.


As may be realized, the storage and retrieval system 100 may include multiple in-feed and out-feed multilevel vertical conveyors 150A, 150B that are accessible by, for example, bots 110 on each level of the storage and retrieval system 100 so that one or more case unit(s) can be transferred from a multilevel vertical conveyor 150A, 150B to each storage space on a respective level and from each storage space to any one of the multilevel vertical conveyors 150A, 150B on a respective level. The bots 110 may be configured to transfer the case units between the storage spaces and the multilevel vertical conveyors with one pick (e.g. substantially directly between the storage spaces and the multilevel vertical conveyors). By way of further example, the designated bot 110 picks the case unit(s) from a shelf of a multilevel vertical conveyor, transports the case unit(s) to a predetermined storage area of the storage structure 130 and places the case unit(s) in the predetermined storage area (and vice versa).


The bots 110 may be configured to place case units, such as the above described retail merchandise, into picking stock in the one or more levels of the storage structure 130 and then selectively retrieve ordered items for shipping the ordered items to, for example, a store or other suitable location. In the embodiments, the bots 110 may interface in any suitable manner with the multilevel vertical conveyors 150A, 150B such as through, for example, extension of a transfer arm or effector of the bot (which may have fingers for interfacing with slatted support shelves of the multi-level vertical conveyors) relative to a frame of the bot. Suitable examples of bots are described in U.S. patent application Ser. No. 12/757,312, entitled “AUTONOMOUS TRANSPORTS FOR STORAGE AND RETRIEVAL SYSTEMS” and filed on Apr. 9, 2010, U.S. Provisional Patent Application No. 61/423,220 entitled “BOT PAYLOAD ALIGNMENT AND SENSING” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,187,244 filed on Dec. 15, 2011 and issued on Nov. 17, 2015), U.S. Provisional Patent Application No. 61/423,388 entitled “AUTOMATED BOT TRANSFER ARM DRIVE SYSTEM” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,499,338 filed on Dec. 15, 2011 and issued on Nov. 22, 2016), U.S. Provisional Patent Application No. 61/423,359 entitled “BOT HAVING HIGH SPEED STABILITY” and filed on Dec. 15, 2010 (now U.S. Pat. No. 8,965,619 filed on Dec. 15, 2011 and issued on Feb. 24, 2015), and U.S. Provisional Patent Application No. 61/423,206 entitled “BOT POSITION SENSING” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,008,884 filed on Dec. 15, 2011 and issued on Apr. 14, 2105), the disclosures of which are incorporated by reference herein in their entireties.


The storage structure 130 may include multiple levels of storage rack modules where each level includes an array of storage spaces (arrayed on the multiple levels and in multiple rows on each level), picking aisles 130A formed between the rows of storage spaces, and transfer decks 130B. It is noted that each level may also include respective bot transfer stations for providing an indirect interface between the bots and the multilevel vertical conveyors. In the embodiments, the picking aisles 130A and transfer decks 130B may be arranged for allowing the bots 110 to traverse respective levels of the storage structure 130 for placing case units into picking stock and to retrieve the ordered case units. As may be realized, the storage and retrieval system may be configured to allow random accessibility to the storage spaces. For example, all storage spaces in the storage structure 130 may be treated substantially equally when determining which storage spaces are to be used when picking and placing case units from/to the storage structure 130 such that any storage space of sufficient size can be used to store items. The storage structure 130 of the embodiments may also be arranged such that there is no vertical or horizontal array partitioning of the storage structure. For example, each multilevel vertical conveyor 150A, 150B is common to all storage spaces (e.g. the array of storage spaces) in the storage structure 130 such that any bot 110 can access each storage space and any multilevel vertical conveyor 150A, 150B can receive case units from any storage space on any level so that the multiple levels in the array of storage spaces substantially act as a single level (e.g. no vertical partitioning). The multilevel vertical conveyors 150A, 150B can also receive case units from any storage space on any level of the storage structure 130 (e.g. no horizontal partitioning). It is noted that the storage and retrieval system may also be configured so that each multilevel vertical conveyor serves a predetermined area of the array of storage spaces.


The storage structure 130 may include charging stations 130C for replenishing, for example, a battery pack of the bots 110. In the embodiments, the charging stations 130C may be located at, for example, transfer areas 295 (FIG. 2) of the transfer deck 130B so that the bots 110 can substantially simultaneously transfer items, for example, to and from a multilevel vertical conveyor 150A, 150B while being charged. It is noted that the charging stations may be located at any suitable location within the storage and retrieval system. The bots 110 and other suitable features of the storage and retrieval system 100 may be controlled in any suitable manner such as, for example, one or more central system control computers (e.g. control server) 120 through, for example, any suitable network 180. The network 180 may be a wired network, a wireless network or a combination of a wireless and wired network using any suitable type and/or number of communication protocols. It is noted that, in the embodiments, the system control server 120 may be configured to manage and coordinate the overall operation of the storage and retrieval system 100 and interface with, for example, a warehouse management system 125, which in turn manages the warehouse facility as a whole. The control server 120 may be substantially similar to that described in, for example, U.S. patent application Ser. No. 12/757,337, entitled “CONTROL SYSTEM FOR STORAGE AND RETRIEVAL SYSTEMS” and filed on Apr. 9, 2010, the disclosure of which is incorporated by reference herein in its entirety.


Referring also to FIG. 2, an exemplary configuration of the storage and retrieval system 100 is shown. Other suitable exemplary configurations of storage and retrieval systems can be found in, for example, U.S. patent application Ser. No. 12/757,381, entitled “STORAGE AND RETRIEVAL SYSTEM” and filed on Apr. 9, 2010, and U.S. Provisional Patent Application No. 61/423,340 entitled “Warehousing Scalable Storage Structure” and filed on Dec. 15, 2010 (now U.S. patent application Ser. No. 13/326,674 filed on Dec. 15, 2011), the disclosures of which are incorporated by reference herein in their entireties. It should be understood that in the storage and retrieval system may have any suitable configuration. As can be seen in FIG. 2, the storage and retrieval system 200 is configured, for exemplary purposes only, as a single-ended picking structure in which only one side of the system 200 has a transfer section or deck 130B. The single-ended picking structure may be used in, for example, a building or other structure having loading docks disposed only on one side of the building. The storage and retrieval system 200 includes transfer deck(s) 130B and picking aisles 130A that allow bots 110 to traverse an entirety of a level of the storage structure 130 on which that bot 110 is located for transporting items between any suitable storage locations/picking aisles 130A and any suitable multilevel vertical conveyors 150A, 150B. The multilevel vertical conveyors 150A, 150B provide transport of case units into the storage and retrieval system 200 through input workstations 210 and provide output of case units from the storage and retrieval system 200 through output workstations 220. The storage and retrieval system 200 includes a first and second storage section 230A, 230B located side by side so that the picking aisles of each section are substantially parallel with each other and facing the same direction (e.g. towards transfer deck 130B). It is noted that the storage and retrieval system may have any suitable number of storage sections arranged relative to each other in any suitable configuration.


Referring to FIGS. 1, 3, 4A and 4B, each of the storage bays 510, 511 of the storage structure 130 may hold the picking stock on storage shelves 600 that are separated by aisle spaces 130A. In the embodiments the storage bays 510, 511 and storage shelves 600 may be substantially similar to those described in, for example, U.S. patent application Ser. No. 12/757,220, entitled “STORAGE AND RETRIEVAL SYSTEM,” and U.S. patent application Ser. No. 12/757,381, entitled “STORAGE AND RETRIEVAL SYSTEM” (both of which being previously incorporated by reference). For example, the storage shelves 600 may include one or more support legs 620L1, 620L2 extending from, for example, the horizontal supports 610, 611, 613 (which are supported by vertical supports 612). The support legs 620L1, 620L2 may have any suitable configuration and may be part of, for example, a substantially U-shaped channel 620 such that the legs are connected to each other through channel portion 620B. The channel portion 620B may provide an attachment point between the channel 620 and one or more horizontal supports 610, 611, 613. It is noted that each support leg 620L1, 620L2 may be configured to individually mount to the horizontal supports 610, 611, 613. In the embodiments, each support leg 620L1, 620L2 includes a bent portion 620H1, 620H2 having a suitable surface area configured to support case units stored on the shelves 600. The bent portions 620H1, 620H2 may be configured to substantially prevent deformation of the case units stored on the shelves. It is noted that the leg portions 620H1, 620H2 may have any suitable thickness or have any other suitable shape and/or configuration for supporting case units stored on the shelves. As can be seen in FIGS. 4A and 4B, the support legs 620L1, 620L2 or channels 620 may form a slatted or corrugated shelf structure where spaces 620S between, for example, the support legs 620L1, 620L2 allow for arms or fingers of the bots 110 to reach into the shelving for transferring case units to and from the shelves. It is also noted that transfer of items to and from the multilevel vertical conveyors 150A, 150B (whether the transfer is made directly or indirectly by the bot 110) may occur in a substantially similar manner to that described above with respect to the storage shelves 600. It is noted that the spacing between the case units on the shelves may be any suitable spacing. It is also noted that transfer of case units to and from the multilevel vertical conveyors 150A, 150B (whether the transfer is made directly or indirectly by the bot 110) may occur in a substantially similar manner to that described above with respect to storage shelves 600.


Referring to FIG. 5 an exemplary bot 110 is shown. The bot 110 includes a longitudinally extended frame 110F that has a first end 1500 and a second end 1501 where the longitudinal axis 6000 extends from the first end 1500 to the second end 1501. At least one drive section 110D may be coupled to one of the first and/or second ends 1500, 1501 in any suitable manner for driving the bot 110 along the transfer deck(s) 130B and picking aisles 130A (FIG. 1). The drive 110D may include drive wheels, tracks or any other suitable drive mechanism for effecting travel of the bot along the transfer deck(s) 130B and picking aisles 130A. The other end of the bot 110 may have any suitable supports, such as caster wheels, fixed wheels, steerable wheels, and similar mechanisms for movably supporting the bot 110 as it travels along the transfer deck(s) 130B and picking aisles 130A. The bot 110 may have any suitable controller 1220 (FIG. 1) for effecting operation of the bot 110 (as described herein) and/or communication between the bot 110 and the control server 120 (FIG. 1). As may be realized the configuration of the bot shown in the drawings is merely exemplary and the bot may have any suitable configuration for carrying out the detection and positioning of case units relative to the bot 110 as described herein.


The frame 110F of the bot 110 forms a payload bed 1510 that is configured to hold case units (or a pickface where a pickface is one or more cases that are to be picked and carried by the bot 110) or any other suitable payload. The payload bed 1510 may include any suitable pickface support surface. One example, of the pickface support surface is the roller bed described in, for example, U.S. Provisional Patent Application No. 61/423,220 entitled “BOT PAYLOAD ALIGNMENT AND SENSING,” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,187,244 filed on Dec. 15, 2011 and issued on Nov. 17, 2015), previously incorporated by reference herein. A fence 1510F may be located at a side opening 1510P of the payload bed 1510. The fence 1510F may be attached to the frame 110F in any suitable manner such as with fasteners or welding. It is noted that the fence 1510F may also form part of the frame 110F or be of unitary construction with the frame 110F. The fence may include slots 1510FS disposed between stopping members 1510FM. The slots 1510FS may be configured to allow fingers 1540 of the bot arm to extend through the fence 1510F between the stopping members 1510FM in a substantially lowered position so that fingers 1540 of a transfer arm 1540A can be, for example, extended into a storage shelf 600 below a pickface. The stopping members 1510FM may be configured to extend above the payload bed 1510 to form a barrier that substantially prevents case units from exiting the payload bed 1510 once the case units are positioned on the payload bed 1510. In this example, the number of slots 1510FS is equal to the number of fingers 1540 but it should be understood that the fence 1510F may be configured such that more than one finger 1540 passes through a single slot (e.g. the number of slots is less than the number of fingers). It should be noted that the fence may have any suitable configuration for preventing case units from exiting the payload area when the case units are carried by the bot 110. For example, the fence may be movable so that the stopping members are retractable such that when in an extended configuration the fence prevents the case units from exiting the payload area.


The bot 110 may include a transfer arm or end effector 1540A. Referring to FIGS. 5 and 6, the transfer arm 1540A may include the fingers 1540 and a movable member 1535. The finger 1540 may extend substantially laterally relative to the longitudinal axis 6000 of the bot and be configured to interface with the slatted shelf structure of the storage shelves 600 (FIGS. 4A and 4B). The fingers 1540 are capable of movement in the direction of arrow 1673 along a lift axis (e.g. in a direction substantially perpendicular to the direction 1550 of extension and retraction of the fingers) between a lowered position and a raised position. It is noted that when in a lowered position the fingers 1540 may be disposed below a surface of the payload bed 1510 or form at least a portion of the payload bed 1510. The fingers may be driven individually or in unison by any suitable drive, as described below, for lifting pickfaces disposed on the fingers over the fence 1510F and into/out of the payload bed 1510 of the bot 110.


Each finger 1540 may include a first end, a mounting member 1671 coupled to the first end, and a second cantilevered end distally located from the mounting member 1671. Each finger 1540 may be movably coupled, in a cantilevered manner, to the movable member 1535 so that the fingers may be extended and retracted (via movement of the movable member 1535) in the direction of arrow 1550 relative to the payload bed 1510. For example, the mounting member 1671 of each finger 1540 may extend from the first end of the finger 1540 and the movable member 1535 may include guides 1670 where each mounting member 1671 and a respective guide 1670 are configured such that the mounting member 1671 is slidable along the guide 1670 in the direction of arrow 1673 (e.g. substantially perpendicular to the direction 1550 of lateral travel of the fingers). As may be realized the interface between the mounting member 1671 and the guide 1670 may be a distributed interface configured to support a load, such as a pickface, carried by the fingers 1540. In the embodiments the guides 1670 are shown as rails but it should be understood that in the embodiments the guides may be any suitable member for allowing a respective finger to controllably move in the direction of arrow 1673. In this example, all of the fingers 1540 (regardless of whether the fingers are in the raised or lowered positions) move as a unit by single axis drive 1531 with the movable member 1535 when the fingers are laterally extended and retracted in the direction of arrow 1550. However, the movable member 1535 and/or fingers 1540 may be configured to allow each finger 1540 to move laterally in the direction of arrow 1550 independent of other fingers 1540. It is also noted that the movable member 1535 and/or fingers 1540 may be configured to allow groups of fingers to move laterally in the direction of arrow 1550 independent of other groups of fingers.


At least one drive unit 1672 may be mounted to the movable member 1535 and coupled to the first end of one or more fingers 1540 in any suitable manner for driving the one or more fingers along the guides 1670 in the direction of arrow 1673 along the lift axis. In the embodiments, each finger may have a respective drive unit 1672 so that each finger 1540 can be independently raised and lowered or a single drive unit may drive more than one finger along its respective guide (or e.g. some fingers may individually moveable while others are movable in groups). The drive unit 1672 may be any suitable drive unit capable of driving the finger(s) in the direction of arrow 1673. One example, of a suitable drive unit is described in, for example, U.S. Provisional Patent Application No. 61/423,388 entitled “AUTOMATED BOT TRANSFER ARM DRIVE SYSTEM,” and filed on Dec. 15, 2010 (now U.S. Pat. No. 9,499,338 filed on Dec. 15, 2011 and issued on Nov. 22, 2016), the disclosures of which are incorporated by reference herein in their entireties. It is noted that the drive unit and guide may be incorporated with each other as a unit such as, for exemplary purposes only, in the case of a chain/belt and sprocket/pulley where the chain or belt is arranged to carry the finger in the direction of arrow 1673. In the embodiments, each drive unit 1672 may be selectable by, for example, the bot controller 1220 and independently operable for lifting a respective finger 1540. It is noted, however, that any suitable controller, such as for example, the control server 120 may select the drive units to actuate. In one aspect the storage and retrieval system may include case unit and or pickface sensors for determining one or more dimensions of one or more of the case units and pickfaces formed by the case units. For example, the in-feed transfer stations 170 may include any suitable sensors CS (FIG. 1) for determining one or more dimensions of the case units and/or pickfaces (FIG. 10, Block 9000). The bot 110 may also include any suitable sensors PS (FIG. 5) located, for example, in the payload bed for determining one or more dimensions of the case unit(s) and/or pickface(s) carried by the bot 110. In other aspects any suitable sensors may be disposed in any suitable location of the storage and retrieval system for determining one or more dimensions of the case units and/or pickfaces. The sensors CS, PS may be in communication with one or more of the bot controller and control server 120 where the dimensions of the case unit(s) and/or pickface(s) may be stored in any suitable memory of the bot controller and/or control server 120. As noted above, when the drives 1672 for lifting the fingers 1540 are actuated the bot controller and/or control server 120 may use case/pickface data obtained from one or more of the sensors CS, PS for determining which drives 1672 to actuate (e.g. which fingers to lift) depending on a dimension of the case as determined by the case/pickface data (FIG. 10, Block 9010). As may be realized, data from a position of the case unit(s)/pickface(s) in the payload bed, e.g. as determined by the sensors PS, of the bot may also be used in determining which drives 1672/fingers 1540 to actuate/lift. In the embodiments each drive unit 1672 may be selectably coupled to the respective finger 1540 by releasable couplings 1672D (e.g. mechanical, magnetic, etc.) or the drive units 1672 may be substantially permanently coupled to the respective fingers such as through a pivotable or otherwise movable joint or coupling.


In other aspects, referring to FIG. 5A, the bot 110 may include one or more side blades 1535G mounted to the bot arm 110A. One or more of the blades 1535G may be moved along the longitudinal axis 6000 of the bot 110 in the direction of arrow 1550X for aligning the pickface (e.g. one or more case units 1705) on the bot arm 110A. The translational movement of the one or more side blades 1535G may allow for the positioning of the bot payload anywhere along the longitudinal axis of the bot within the bot payload area and may provide fine adjustment for case positioning onto the storage shelves 600. It is noted that in this aspect the side blades 1535G may not carry, transport or lift the case units 1705 but may aid in case unit 1705 control during picking and placing the case units. It is noted that one side blade 1535G may be fixed and act as a datum for aligning the case units 1705.


The case unit contact member 1530 may be movably located at least partially within the payload area. It is noted that the case unit contact member 1530 may include any suitable slots 1680 that allow each finger to be lifted in the direction of arrow 1673 without substantially contacting the case unit contact member 1530. In this example, the case unit contact member has a slot 1680 for each finger 1540 but it should be understood that the slots 1680 may have any suitable configuration such as for example, a configuration that allocates one slot to more than one finger 1540. The case unit contact member 1530 may be driven in the direction of arrow 1550 by any suitable drive 1531. For exemplary purposes only, the drive 1531 may be a belt and pulley drive (FIG. 7) but it should be understood that the drive may be any suitable drive for causing movement of the case unit contact member in the direction of arrow 1550. In the embodiments both of the case unit contact member 1530 and the movable member 1535 are configured to move in the direction of arrow 1550 along rails 1530R1, 1530R2. The rails 1530R1, 1530R2 may be mounted to the frame 110F in any suitable manner for guiding the movement of the case unit contact member 1530 and the movable member 1535. It should be understood that in the embodiments the movement of the case unit contact member 1530 and the movable member 1535 in the direction of arrow 1550 may be guided in any suitable manner such as by separate rail systems (e.g. each of the case unit contact member 1530 and the movable member 1535 have their own distinct rails). For exemplary purposes only, referring to FIGS. 5 and 7, each of the case unit contact member 1530 and the movable member 1535 may have respective slide members 1530D1, 1530D2, 1535D1, 1535D2 for movably coupling the case unit contact member 1530 and the movable member 1535 to the rails 1530R1, 1530R2. The one or more of the slide members 1530D1, 1530D2, 1535D1, 1535D2 may be distributed or suitably sized to extend along the rails for supporting a pickface that is supported on the cantilevered fingers 1540 of the transfer arm 1540A. The case unit contact member 1530 may be independently movable in the direction of arrow 1550 for engaging or otherwise orienting case units disposed on the payload bed 1510 as described in, for example, U.S. Provisional Patent Application No. 61/423,220 entitled “BOT PAYLOAD ALIGNMENT AND SENSING,” (now U.S. Pat. No. 9,187,244 filed on Dec. 15, 2011 and issued on Nov. 17, 2015), previously incorporated by reference herein.


Referring to FIGS. 6, 8A and 8B, the case unit contact member 1530 may be releasably coupled to the movable member 1535 in any suitable manner for engaging the movable member 1535. Engagement of the case unit contact member 1530 with the movable member 1535 allows the case unit contact member 1530 and the movable member 1535 (and hence the arm/fingers of the bot) to be driven by a single axis drive and move as a unit in the direction of arrow 1550 for extending and retracting the fingers 1540 with the driven movement of the case unit contact member 1530. The releasable coupling between the movable member 1535 and the case unit contact member 1530 may be passively effected through the lifting and lowering of at least one of the fingers 1540 where the coupling is engaged when at least one of the fingers 1540 is lifted and the coupling is disengaged when the fingers 1540 are in their substantially lowered positions. It is noted that when the fingers are lowered (e.g. the coupling is disengaged) the case unit contact member 1530 is movable independent of the movable member 1535 to for example, justify pickfaces on the payload bed or to grip the pickface as described in, for example, U.S. Provisional Patent Application No. 61/423,220 entitled “BOT PAYLOAD ALIGNMENT AND SENSING,” (now U.S. Pat. No. 9,187,244 filed on Dec. 15, 2011 and issued on Nov. 17, 2015), previously incorporated by reference herein. Each mounting member 1671 may include any suitable protrusion which, when the mounting member 1671 is lifted to raise the respective finger, engages a complimentary recess of the case unit contact member 1530. As described above, because the mounting members 1671 are mounted to and slidable relative to the movable member 1535 only in the direction of arrow 1673 (e.g. substantially perpendicular to the direction of travel 1550 of the case unit contact member 1530) engagement of the protrusion within the recess causes the movable member 1535 to be selectively coupled to the case unit contact member 1530 so that when the case unit contact member is driven by drive 1531 (FIG. 7) the movable member 1535 is also driven to extend and retract the fingers 1540.


In the embodiments the protrusion and recess may be in the form of a key 3004 and keyhole 3002 as shown in FIG. 8B. However, it should be understood that in the embodiments the protrusion and recess may have any suitable configuration. Here the key 3004 may extend from a side of one or more of the mounting members 1671 facing the case unit contact member 1530 so that when the case unit contact member 1530 is in a retracted position (e.g. closest to the movable member 1535) the key(s) 3004 extends through a respective key hole 3002 in the case unit contact member 1530. As one or more mounting members 1671 (e.g. finger 1540) is lifted the key 3004 of the one or more mounting members 1671 moves into a slot of the respective keyhole 3002 so that a portion of the key 3004 overhangs the keyhole slot to substantially engage a surface 1530S of the case unit contact member 1530. In one example, the keyhole and key may be positioned within a recess 1530R of the case unit contact member 1530 so as not to interfere with any pickfaces that may be in substantial contact with the case unit contact member 1530. It is noted that the case unit contact member 1530 may include raised portions or ribs 1533 that extend from a face of the case unit contact member 1530 for substantially preventing interference between the keyhole and key and any pickfaces located on the fingers 1540 or payload bed 1510.


In the embodiments the protrusion may be in the form of one or more pins 3000 that extend from the mounting member 1671 and the recess may be in the form of one or more slots 3001 located in the case unit contact member 1530. The one or more slots 3001 may be disposed adjacent one or more of the mounting members 1671 when the case unit contact member 1530 is in a substantially retracted position as shown in FIGS. 8A and 8B. When the case unit contact member 1530 is in the retracted position the slot 3001 is substantially aligned with the pin 3000 in the direction 1673 so that when the mounting member 1671 (e.g. finger 1540) is lifted by a respective one of the drives 1672 the pin 3000 is moved into and engages the slot 3001. In the embodiments at least one slot 3001 is located adjacent the ends 1530E1, 1530E2 of the case unit contact member 1530 such that only the mounting members 1671 of the outermost fingers 1540 are capable of engaging the slots 3001 for coupling the movable member 1535 to the case unit contact member 1530. Here the pickface may be positioned on the payload bed 1510 (FIG. 5) so that the pickface is aligned with at least one of the outermost fingers 1540 during transfer of the pickface to and from the bot 110. It is noted that there may be slots disposed along the length of the case unit contact member so that any one of the mounting members 1671 can effect coupling of the movable member 1535 to the case unit contact member 1530 when a respective finger 1540 is raised.


As may be realized, the pin 3000 and slot 3001 engagement may be used separately from or in conjunction with the key 3004 and keyhole 3002 engagement in any suitable manner. For example, the mounting members 1671 of outermost fingers 1540 may be configured with pins 3000 to engage the recesses 3001 located adjacent the ends 1530E1, 1530E2 of the case unit contact member 1530 while the mounting members 1671 of inner fingers (located between the outermost fingers) are configured with keys 3004 for engaging keyholes 3002 located between the ends 1530E1, 1530E2 of the case unit contact member 1530. It is noted that in the embodiments the engagement between the case unit contact member 1530 and the movable member 1535 may be accomplished in any suitable manner. As may also be realized, the releasable coupling between the movable member 1535 (e.g. the bot transfer arm) and the case unit contact member 1530 may be effected by lifting any suitable number of the fingers 1540. For example, the coupling may be effected by lifting one of the outermost fingers, both of the outermost fingers, one of the inner fingers, more than one inner finger or any suitable combination of inner and outer fingers. Further, the slots 3001 and keyholes 3002 may be configured to allow coupling of the movable member 1535 and the case unit contact member 1530 through only a partial lifting of one or more of the fingers 1540. For example, coupling engagement of the slots and keyholes with their respective pins and keys may occur when the fingers are raised to a position for insertion into the storage shelf 600 beneath a pickface. The slots and keyholes may further be configured to allow further lifting of the fingers 1540 (e.g. the keys and pins are slidable within an engagement portion of the respective keyhole and slot) so that the pickface can be lifted off of the storage shelf 600 and transferred to the payload bed 1510 of the bot 110.


Referring now to FIGS. 4A and 9 an exemplary operation of the bot 110 will be described. The bot controller 1220 may direct the bot to a predetermined pickface location at, for example, a storage rack 600 (or multilevel vertical conveyor). The pickface location may include a pickface 1700P where each case unit 1700A, 1700B of the pickface 1700P is located on the storage rack 600 so that the a position of the front and back edges 1705, 1706 of case unit 1700A are known and the front and back edges 1707, 1708 of case unit 1700B are known by, for example, the bot controller 1220 and/or the control server 120. While pickface 1700P is shown as having two case units 1700A, 1700B it is noted that the pickface may include any suitable number of case units. The bot controller 1220 may cause one or more fingers 1540 to raise a predetermined distance (e.g. only partially raised to allow insertion of the fingers into the storage shelf 600 beneath the pickface 1700P) so that the movable member 1535 is coupled to the case unit contact member 1530. The one or more fingers 1540 may be extended into the slats of the storage shelf beneath the case unit(s) to be picked. The bot controller 1220 or any other suitable controller may be configured to determine the amount of arm extension so that the cantilevered tips of the raised fingers 1540 “underpick” the furthest case unit (from the bot along an axis of extension of the fingers 1540) to be transferred to the bot 110. For example, if the bot 110 is instructed to pick case 1700A only, the fingers 1540 may be extended into the storage rack so that the tip of the cantilevered fingers 1540 are located a predetermined distance U (e.g. the underpick) away from the back edge 1706 of the case unit 1700A. If the bot 110 is instructed to pick cases 1700A and 1700B, the fingers 1540 may be extended into the storage rack so that the tip of the cantilevered fingers 1540 are located a predetermined distance U away from the back edge 1708 of the case unit 1700B. The underpick U allows one or more cases to be picked without disturbing the next case in the pickface. For example, case unit 1700A can be picked without disturbing case unit 1700B. Once underneath the case unit(s) to be picked (which for exemplary purposes only is case unit 1700A) the fingers are raised to pick the case unit 1700A off of the shelf and the fingers are retracted in the direction of arrow 1550 so that the case unit 1700B is transferred to the bot payload area in a manner substantially similar to that described in, for example, U.S. Provisional Patent Application No. 61/423,220 entitled “BOT PAYLOAD ALIGNMENT AND SENSING,” (now U.S. Pat. No. 9,187,244 filed on Dec. 15, 2011 and issued on Nov. 17, 2015), previously incorporated by reference herein.


When the case unit(s) 1700A are transferred onto the payload bed 1510 of the bot 110, clearance C is needed between the edge 1706 of the case unit 1700A and the fence 1510F so that the case unit 1700A does not hit the fence 1510F or trip a case overhang sensor 1703 as the case unit is lowered onto the payload bed 1510. The amount of clearance C may be determined by subtracting both the underpick distance U and the finger length L from the depth D of the payload bed 1510 (e.g. C=D-L-U). In one example the underpick distance U may be a predetermined distance such as about 9 mm or any other suitable distance and the depth D of the payload bed 1510 may be a constant value. As such, to increase the amount of clearance C between the edge 1706 of the case unit 1700A and the fence 1510F the length L of the fingers 1540 has to decrease. Alternatively, if the clearance C is a predetermined distance and the depth D of the payload bed 1510 remains constant, the finger length L has to decrease to increase the underpick distance U (e.g. U=D-L-C). As may be realized, the underpick U and clearance C may be adjusted without changing the finger length L, but the underpick U and clearance C may not be changed independently without changing the arm length L.


In accordance with a first aspect of the exemplary embodiments an autonomous transport vehicle is provided. The transport vehicle includes a payload bed and a transfer arm disposed in the payload bed and configured to extend along a first axis to transfer a pickface to and from the payload bed. The transfer arm includes fingers that are independently movable relative to each other along a second axis, substantially perpendicular to the first axis for picking and placing the pickface.


In accordance with the first aspect of the exemplary embodiments, the autonomous transport vehicle includes a drive unit for each of the fingers where the drive unit is configured to selectively move a respective finger along the second axis.


In accordance with a first sub-aspect of the first aspect of the exemplary embodiments, the autonomous transport vehicle includes a movable member to which the fingers are mounted such that the fingers are cantilevered from the movable member for unitary movement along the first axis.


In accordance with the first sub-aspect of the first aspect of the exemplary embodiments, the autonomous transport vehicle includes a driven member configured to be selectively coupled to the movable member for effecting movement of the transfer arm along the first axis.


In accordance with the first sub-aspect of the first aspect of the exemplary embodiments, one or more of the fingers includes a protrusion and the driven member includes at least one corresponding recess, where when the one or more fingers are raised the protrusion engages the recess for coupling the movable member to the driven member.


In accordance with a second aspect of the exemplary embodiments, an autonomous transport vehicle is provided. The autonomous transport vehicle includes a driven member, a movable member and a positionable coupling configured to selectively couple the movable member to the driven member, the positionable coupling is capable of being coupled and uncoupled wherein when uncoupled the driven member is movable along a first axis independent of the movable member and when coupled the driven member and the movable member move along the first axis as a unit.


In accordance with the second aspect of the exemplary embodiments, the autonomous transport vehicle further includes a payload bed where the driven member is configured to at least orient case units on the payload bed and the movable member in part transfers the case units to and from the payload bed.


In accordance with a first sub-aspect of the second aspect of the exemplary embodiments, the movable member includes fingers that are movable along a second axis, the second axis being substantially perpendicular to the first axis where one or more of the fingers engages the driven member for coupling the movable member to the driven member.


In accordance with the first sub-aspect of the second aspect of the exemplary embodiments the autonomous transport vehicle includes a controller configured to determine an amount of travel of the fingers along the first axis such that cantilevered tips of the fingers are spaced from a distal end of a case unit being picked so as not to extend beyond an edge of the case unit.


In accordance with the second aspect of the exemplary embodiments, the movable member includes at least one side blade configured to substantially contact a side of one or more case units for aligning the one or more case units for transfer to a storage shelf.


In accordance with a third aspect of the exemplary embodiments, an autonomous transport vehicle is provided. The autonomous transport vehicle includes a frame including a transport area, a drive system, and a transfer arm having fingers disposed in the transport area and connected to the frame through the drive system, wherein the drive system is configured to move the fingers along a first axis as a unit and move each finger independently relative to other fingers of the transfer arm along a second axis that is substantially perpendicular to the first axis.


In accordance with the third aspect of the exemplary embodiments, the drive system comprises a single axis drive common to all fingers and configured to move the fingers along the first axis.


In accordance with the third aspect of the exemplary embodiments, the drive system comprises a linear drive for each finger, where each linear drive is configured to individually move a respective finger along the second axis independently of other ones of the fingers.


In accordance with the third aspect of the exemplary embodiments, the drive system comprises a linear drive selectively coupled to each of the fingers, where the linear drive is configured to move one or more fingers along the second axis.


In accordance with a first sub-aspect of the third aspect of the exemplary embodiments, movement of the fingers along the second axis couples the fingers to the drive system for movement along the first axis.


In accordance with the first sub-aspect of the third aspect of the exemplary embodiments, the autonomous transport vehicle further includes a movable member configured to interface with a payload of the autonomous transport vehicle wherein the drive system is configured move one or more fingers along the second axis to selectively couple the one or more fingers to the movable member and move the one or more fingers along the first axis by driving the movable member along the first axis.


In accordance with the third aspect of the exemplary embodiments, the fingers are cantilevered from the frame.


It should be understood that the exemplary embodiments disclosed herein can be used individually or in any suitable combination thereof. It should also be understood that the foregoing description is only illustrative of the embodiments. Various alternatives and modifications can be devised by those skilled in the art without departing from the embodiments. Accordingly, the present embodiments are intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims.

Claims
  • 1. An autonomous guided transport vehicle comprising: an autonomous transport vehicle payload bed; anda transfer arm disposed in the autonomous transport vehicle payload bed and defining at least a portion of the autonomous transport vehicle payload bed so that a payload pickface is seated on and stably held in the autonomous transport vehicle payload bed by at least a portion of the transfer arm for autonomous guided transport vehicle travel, the transfer arm being configured to extend along a first axis to transfer the payload pickface to and from the autonomous transport vehicle payload bed, the transfer arm including fingers that define a payload bed support surface of the autonomous transport vehicle payload bed, the fingers facing and defining an engagement interface against the payload pickface so as to uphold weight generated by the payload pickface seated on over the payload bed support surface defined by the fingers and stably held in the autonomous transport vehicle payload bed, the fingers move independently relative to each other linearly along a second axis, substantially perpendicular to the first axis for picking and placing the payload pickface.
  • 2. The autonomous transport vehicle of claim 1, further comprising a drive unit for each of the fingers where the drive unit is configured to selectively move a respective finger along the second axis.
  • 3. The autonomous transport vehicle of claim 1, further comprising a movable member to which the fingers are mounted such that the fingers are cantilevered from the movable member for unitary movement along the first axis.
  • 4. The autonomous transport vehicle of claim 3, further comprising a driven member configured to be selectively coupled to the movable member for effecting movement of the transfer arm along the first axis.
  • 5. The autonomous transport vehicle of claim 4, wherein one or more of the fingers includes a protrusion and the driven member includes at least one corresponding recess, where when the one or more fingers are raised the protrusion engages the recess for coupling the movable member to the driven member.
  • 6. An autonomous guided transport vehicle comprising: a frame having a payload bed;a driven member connected to the frame;a movable member connected to the frame and defining at least a portion of the payload bed so that a payload pickface is seated on and stably held in the payload bed by at least a portion of the movable member for autonomous guided transport vehicle travel; andan automatic mechanical coupling connected to the frame and configured to selectively mechanically couple from an uncoupled condition and decouple from a coupled condition the movable member to the driven member, the automatic mechanical coupling having a first position being configured to mechanically couple and a second position configured to mechanically uncouple wherein when mechanically uncoupled the driven member moves along a first linear axis independent of the movable member and when mechanically coupled the driven member and the movable member move along the first linear axis as a unit, the automatic mechanical coupling being configured to automatically select between being in the first position and the second position automatically mechanically coupling and mechanically uncoupling the driven member and the movable member.
  • 7. The autonomous transport vehicle of claim 6, where the driven member is configured to at least orient case units on the payload bed and the movable member in part transfers the case units to and from the payload bed.
  • 8. The autonomous transport vehicle of claim 6, wherein the movable member includes fingers that are configured to move along a second axis, the second axis being substantially perpendicular to the first linear axis where one or more of the fingers engages the driven member for mechanically coupling the movable member to the driven member.
  • 9. The autonomous transport vehicle of claim 8, further comprising a controller configured to determine an amount of travel of the fingers along the first linear axis such that cantilevered tips of the fingers are spaced from a distal end of a case unit being picked so as not to extend beyond an edge of the case unit.
  • 10. The autonomous transport vehicle of claim 6, wherein the movable member includes at least one gripper configured to substantially contact a side of one or more case units for transferring the one or more case units between the autonomous transport vehicle and a storage shelf.
  • 11. An autonomous guided transport vehicle comprising: an autonomous transport vehicle frame including a transport area;a drive system; anda transfer arm having fingers disposed in the transport area and defining at least a portion of the transport area so that a payload pickface is seated on and stably held in a payload bed of the transport area by at least a portion of the transfer arm for autonomous guided transport vehicle travel, the fingers define a payload bed support surface of the payload bed, the fingers facing and defining an engagement interface against the payload pickface so as to uphold weight generated by the payload pickface seated on over the payload bed surface defined by the fingers and stably held in the payload bed, the transfer arm being connected to the autonomous transport vehicle frame through the drive system, wherein the drive system is configured to move the fingers along a first axis as a unit and move each finger independently relative to other fingers of the transfer arm linearly along a second axis that is substantially perpendicular to the first axis.
  • 12. The autonomous transport vehicle of claim 11, wherein the drive system comprises a single axis drive common to all fingers and configured to move the fingers along the first axis.
  • 13. The autonomous transport vehicle of claim 11 wherein the drive system comprises a linear drive for each finger, where each linear drive is configured to individually move a respective finger along the second axis independently of other ones of the fingers.
  • 14. The autonomous transport vehicle of claim 11 wherein the drive system comprises a linear drive selectively coupled to each of the fingers, where the linear drive is configured to move one or more fingers along the second axis.
  • 15. The autonomous transport vehicle of claim 11, wherein movement of the fingers along the second axis couples the fingers to the drive system for movement along the first axis.
  • 16. The autonomous transport vehicle of claim 15, further comprising a movable member configured to interface with the payload pickface of the autonomous transport vehicle wherein the drive system is configured move one or more fingers along the second axis to selectively couple the one or more fingers to the movable member and move the one or more fingers along the first axis by driving the movable member along the first axis.
  • 17. The autonomous transport vehicle of claim 11, wherein the fingers are cantilevered from the autonomous transport vehicle frame.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a non-provisional of and claims the benefit of U.S. provisional patent application No. 61/423,365 filed on Dec. 15, 2010, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (448)
Number Name Date Kind
1845962 Dorr Feb 1932 A
1887667 Wheeler Nov 1932 A
2606508 Van Nes Aug 1952 A
2656995 Wolf Oct 1953 A
2673689 Bonanno Mar 1954 A
2792234 Page May 1957 A
2996621 Barrett, Jr. Apr 1958 A
2840248 Grove et al. Jun 1958 A
2877575 Stedt Mar 1959 A
2923421 de Senignon de Roumefort Feb 1960 A
2945604 Kroll et al. Jul 1960 A
3161303 Burrows Dec 1964 A
3162459 Marmorine et al. Dec 1964 A
3269744 Dobson Aug 1966 A
3369648 Weintz Feb 1968 A
3370492 Treff Feb 1968 A
3512625 Burgess et al. May 1970 A
3519149 Saul Jul 1970 A
3554390 Saul Jan 1971 A
3636586 Bollinger et al. Jan 1972 A
3677421 Kintner Jul 1972 A
3732828 Wanner May 1973 A
3737056 Hathcock, Jr. Jun 1973 A
3738506 Cornford et al. Jun 1973 A
3744945 Metrailer Jul 1973 A
3746189 Burch et al. Jul 1973 A
3751758 Higbee et al. Aug 1973 A
3774543 Welsh Nov 1973 A
3782565 Doran et al. Jan 1974 A
3789765 Schultz Feb 1974 A
3802580 Castaldi Apr 1974 A
3811383 Butzow May 1974 A
3822647 Hill et al. Jul 1974 A
3850111 Hansen Nov 1974 A
3876087 Osta Apr 1975 A
3876095 Stedt Apr 1975 A
3896955 Collins et al. Jul 1975 A
3904216 Metrailer Sep 1975 A
3940105 Metrailer Feb 1976 A
3970840 de Bruine Jul 1976 A
3976302 Hammarstrand Aug 1976 A
3984012 Ennis et al. Oct 1976 A
4007843 Lubbers et al. Feb 1977 A
4026365 Andersson et al. May 1977 A
4037291 Huempfner et al. Jun 1977 A
4057019 Shaffer Nov 1977 A
4064986 Bertovich Dec 1977 A
4072203 Pierson Feb 1978 A
4079955 Thorpe et al. Mar 1978 A
4087116 Morimoto May 1978 A
4174854 Spicka et al. Nov 1979 A
4183304 Furster Jan 1980 A
4213396 Mehren et al. Jul 1980 A
4214535 Gerhard Jul 1980 A
4219296 Fujii et al. Aug 1980 A
4223611 Dawson et al. Sep 1980 A
4265582 Theobald May 1981 A
4268207 Pipes May 1981 A
4271764 Braun et al. Jun 1981 A
4273234 Bourgeois Jun 1981 A
4307938 Page et al. Dec 1981 A
4307988 Page et al. Dec 1981 A
4346659 Binder Aug 1982 A
4349937 Fontana Sep 1982 A
4349938 Fontana Sep 1982 A
4353572 McCain Oct 1982 A
4372219 Gibbs Feb 1983 A
4372724 Stolzer Feb 1983 A
4394104 Camerini et al. Jul 1983 A
4395181 Loomer Jul 1983 A
4406570 Duncan et al. Sep 1983 A
4428708 Burt Jan 1984 A
4445440 Geiss May 1984 A
4459078 Chiantella et al. Jul 1984 A
4470742 Schindler Sep 1984 A
4492504 Hainsworth Jan 1985 A
4505630 Kaschner et al. Mar 1985 A
4527486 Baird et al. Jul 1985 A
4538950 Shiomi et al. Sep 1985 A
4621526 Carr et al. Nov 1986 A
4678390 Bonneton et al. Jul 1987 A
4679149 Merz Jul 1987 A
4715662 van Zanten et al. Dec 1987 A
4716530 Ogawa et al. Dec 1987 A
4726725 Baker et al. Feb 1988 A
4733740 Bigowsky et al. Mar 1988 A
4750429 Mordaunt et al. Jun 1988 A
4773807 Kroll et al. Sep 1988 A
4786229 Henderson Nov 1988 A
4811229 Wilson Mar 1989 A
4812985 Hambrick et al. Mar 1989 A
4856956 Zur Aug 1989 A
4862807 Guadagno Sep 1989 A
4878876 Ishimoto Nov 1989 A
4883401 Kavieff Nov 1989 A
4887016 Malick Dec 1989 A
4905783 Bober Mar 1990 A
4909697 Bernard, II et al. Mar 1990 A
4936738 Brennan et al. Jun 1990 A
4942826 Erickson Jul 1990 A
4966242 Baillargeon Oct 1990 A
4966513 Motoda Oct 1990 A
4993905 Potocnjak Feb 1991 A
5002449 Kita et al. Mar 1991 A
5004399 Sullivan et al. Apr 1991 A
5015145 Angell et al. May 1991 A
5069592 Galperin Dec 1991 A
5096355 Schroder Mar 1992 A
5134353 Kita et al. Jul 1992 A
5134940 Fujita et al. Aug 1992 A
5135344 Kita et al. Aug 1992 A
5140787 Corcoran Aug 1992 A
5149654 Gross et al. Sep 1992 A
5156639 Bostrom Oct 1992 A
5163001 Luke, Jr. Nov 1992 A
5165838 Kallansrude et al. Nov 1992 A
5165815 Corner et al. Dec 1992 A
5168815 Comer et al. Dec 1992 A
5179329 Nishikawa et al. Jan 1993 A
5187664 Yardley et al. Feb 1993 A
5199840 Castaldi et al. Apr 1993 A
5213463 Rothlisberger May 1993 A
5218909 Ng Jun 1993 A
5219264 McClure et al. Jun 1993 A
5226782 Rigling Jul 1993 A
5238100 Rose, Jr. et al. Aug 1993 A
5265944 Gloceri Nov 1993 A
5271703 Lindqvist et al. Dec 1993 A
5273392 Bernard, II et al. Dec 1993 A
5281901 Yardley et al. Jan 1994 A
5286157 Vainio et al. Feb 1994 A
5307888 Urvoy May 1994 A
5327354 Tsujimoto Jul 1994 A
5328316 Hoffmann Jul 1994 A
5333982 Tanizawa et al. Aug 1994 A
5333983 Hatouchi et al. Aug 1994 A
5337880 Claycomb et al. Aug 1994 A
5362197 Rigling Nov 1994 A
5370492 Gleyze et al. Dec 1994 A
5377851 Asano et al. Jan 1995 A
5377910 Newton et al. Jan 1995 A
5379229 Parsons et al. Jan 1995 A
5380139 Pohjonen et al. Jan 1995 A
5388955 Schroder Feb 1995 A
5397212 Watanabe et al. Mar 1995 A
5403147 Tanaka Apr 1995 A
5405232 Llyod et al. Apr 1995 A
5410969 Rene et al. May 1995 A
5418732 McFadin May 1995 A
5421265 Suigmoto et al. Jun 1995 A
5421685 Elmer et al. Jun 1995 A
5421697 Ostwald Jun 1995 A
5425612 Ebstein Jun 1995 A
5434490 Ishida et al. Jul 1995 A
5445485 Poutet Aug 1995 A
5450797 Becker et al. Sep 1995 A
5460476 Gazza Oct 1995 A
5472309 Bernard, II et al. Dec 1995 A
5501295 Muller et al. Mar 1996 A
5525884 Sugiura et al. Jun 1996 A
5529165 Shupert Jun 1996 A
5548516 Gudat et al. Aug 1996 A
5564880 Lederer Oct 1996 A
5588796 Ricco et al. Dec 1996 A
5601395 Lichti, Sr. et al. Feb 1997 A
5611422 Harkonen Mar 1997 A
5615992 Proske et al. Apr 1997 A
5626362 Mottola May 1997 A
5632350 Gauvin May 1997 A
5650703 Yardley et al. Jul 1997 A
5664688 Kitanaka et al. Sep 1997 A
5667230 Riley et al. Sep 1997 A
5668724 Ehrert et al. Sep 1997 A
5707199 Faller Jan 1998 A
5718322 Mulhern Feb 1998 A
5718551 Ebstein Feb 1998 A
5725063 Ceragioli et al. Mar 1998 A
5743562 Mottola Apr 1998 A
5764014 Jakeway et al. Jun 1998 A
5801506 Netzler Sep 1998 A
5802980 Hofmiller Sep 1998 A
5806870 Hull et al. Sep 1998 A
5810540 Castaldi Sep 1998 A
5829096 Perry Nov 1998 A
5833431 Rosse, III et al. Nov 1998 A
5839872 Goto et al. Nov 1998 A
5847537 Parmley, Sr. Dec 1998 A
5857413 Ward Jan 1999 A
5866469 Pinto et al. May 1999 A
5918951 Rudd, III Jul 1999 A
5927926 Yagi et al. Jul 1999 A
5928058 Francis et al. Jul 1999 A
5988306 Ooishi Nov 1999 A
6000502 Leasor et al. Dec 1999 A
6021367 Pilutti et al. Feb 2000 A
6024381 Mottola Feb 2000 A
6036427 Kita et al. Mar 2000 A
6038501 Kawakami Mar 2000 A
6061607 Bradley et al. May 2000 A
6062942 Ogihara May 2000 A
6116842 Harris et al. Sep 2000 A
6135697 Isaacs et al. Oct 2000 A
6149366 Deandrea Nov 2000 A
6158566 Pollock Dec 2000 A
6220676 Rudd, III Apr 2001 B1
6257597 Galazin Jul 2001 B1
6272406 Alofs et al. Aug 2001 B2
6324994 Glenn Dec 2001 B1
6325586 Loy Dec 2001 B1
6341269 Dulaney et al. Jan 2002 B1
6345217 Zeitler et al. Feb 2002 B1
6352035 Kashiwase et al. Mar 2002 B1
6354430 Oe Mar 2002 B1
6360673 Herrin et al. Mar 2002 B1
6389981 Strothmann et al. May 2002 B1
6390756 Isaacs et al. May 2002 B1
6391226 Chauvette et al. May 2002 B1
6425723 Okada et al. Jul 2002 B1
6439131 Higgins Aug 2002 B1
6439955 Feketo Aug 2002 B1
6503043 Smith et al. Jan 2003 B1
6508102 Margolis et al. Jan 2003 B1
6563128 Lublin May 2003 B2
6600418 Francis et al. Jul 2003 B2
6601435 Hong Aug 2003 B2
6629502 Matsukawa Oct 2003 B2
6631321 Ciprian Oct 2003 B1
6645355 Hanson et al. Nov 2003 B2
6652213 Mitchell et al. Nov 2003 B1
6655297 Kawato et al. Dec 2003 B2
6692211 Yuyama et al. Feb 2004 B2
6695328 Cope Feb 2004 B2
6721638 Zeitler Apr 2004 B2
6748292 Mountz Jun 2004 B2
6763767 Jackson et al. Jul 2004 B2
6808058 Shiohara Oct 2004 B2
6851921 Haag Feb 2005 B2
6861154 Olson et al. Mar 2005 B2
6864489 Chen et al. Mar 2005 B2
6880202 Thompson et al. Apr 2005 B2
6928336 Peshkin et al. Aug 2005 B2
6929440 Grond Aug 2005 B1
6948899 Lee Sep 2005 B2
6950722 Mountz Sep 2005 B2
6988451 Marcotte et al. Jan 2006 B2
6997665 Bouche et al. Feb 2006 B2
7002698 Hanson et al. Feb 2006 B2
7002772 Yardy Feb 2006 B2
7003375 Inui Feb 2006 B2
7008164 Rokkaku Mar 2006 B2
7011487 Kafka et al. Mar 2006 B2
7017228 Silverstein et al. Mar 2006 B2
7025191 Lichti et al. Apr 2006 B2
7058866 Flanagan et al. Jun 2006 B2
7074151 Thompson Jul 2006 B2
7085097 Starr et al. Aug 2006 B2
7100294 Goldsobel et al. Sep 2006 B1
7101139 Benedict Sep 2006 B1
7102848 Kumpon et al. Sep 2006 B2
7110855 Leishman Sep 2006 B2
7119982 Starr et al. Oct 2006 B2
7128521 Hansl Oct 2006 B2
7135992 Karlsson et al. Nov 2006 B2
7137593 Baatz Nov 2006 B2
7128196 Oldford et al. Dec 2006 B2
7145478 Gonclaves et al. Dec 2006 B2
7145747 Brace et al. Dec 2006 B2
7155308 Jones Dec 2006 B2
7184855 Stingel, III et al. Feb 2007 B2
7192034 Radke et al. Mar 2007 B2
7221998 Brust et al. May 2007 B2
7266422 DeMotte et al. Sep 2007 B1
7319320 Kawashima et al. Jan 2008 B2
7329081 Baker et al. Feb 2008 B2
7381022 King Jun 2008 B1
7386379 Naik et al. Jun 2008 B2
7402018 Mountz et al. Jul 2008 B2
7426970 Olsen Sep 2008 B2
7433759 Nangoy Oct 2008 B2
7495561 Bodin et al. Feb 2009 B2
7506404 Block et al. Mar 2009 B2
7520376 Bar Apr 2009 B2
7536283 Potter et al. May 2009 B2
7539557 Yamaguchi May 2009 B2
7584812 Radke et al. Sep 2009 B2
7587260 Bruemmer et al. Sep 2009 B2
7591630 Lert, Jr. Sep 2009 B2
7620477 Bruemmer Nov 2009 B2
7636982 Jones et al. Dec 2009 B2
7641014 Hu Jan 2010 B2
7648002 Easton et al. Jan 2010 B2
7661920 Kantola et al. Feb 2010 B2
7668621 Bruemmer Feb 2010 B2
7671293 Fry et al. Mar 2010 B2
7682122 Maynard et al. Mar 2010 B2
7686560 Laurin et al. Mar 2010 B2
7689318 Draper Mar 2010 B2
7695235 Rallis Apr 2010 B1
7730781 Zhang et al. Jun 2010 B2
7751928 Antony et al. Jul 2010 B1
7769513 Breed et al. Aug 2010 B2
7771152 Waltersbacher Aug 2010 B2
7792350 Kiley et al. Sep 2010 B2
7793742 Donaldson et al. Sep 2010 B2
7801644 Bruemmer et al. Sep 2010 B2
7826919 D'Andrea et al. Nov 2010 B2
7826926 Myeung et al. Nov 2010 B2
7861844 Hayduchok et al. Jan 2011 B2
7866671 Madler Jan 2011 B2
7885750 Lu Feb 2011 B2
7909562 Mead Mar 2011 B2
7926145 Liao Apr 2011 B2
7931431 Benedict et al. Apr 2011 B2
7960973 Zeller et al. Jun 2011 B2
7965871 Ihara et al. Jun 2011 B2
7967354 Faulkner et al. Jun 2011 B2
7974738 Bruemmer et al. Jul 2011 B2
7991505 Lert, Jr. et al. Aug 2011 B2
8000835 Eriz et al. Aug 2011 B2
8001837 Larson et al. Aug 2011 B2
8006824 Wada et al. Aug 2011 B2
8007221 More et al. Aug 2011 B1
8024066 Reverte et al. Sep 2011 B2
8031086 Thacher et al. Oct 2011 B2
8041456 Blackwell et al. Oct 2011 B1
8042627 Yang et al. Oct 2011 B2
8060257 Close et al. Nov 2011 B2
8136650 Frich et al. Mar 2012 B2
8280548 Zuber Oct 2012 B2
8364309 Bailey Jan 2013 B1
8378825 Dahms et al. Feb 2013 B2
8425173 Lert et al. Apr 2013 B2
8480347 Schafer Jul 2013 B2
8515575 Pfeiffer Aug 2013 B2
8594835 Lert et al. Nov 2013 B2
8965619 Sullivan et al. Feb 2015 B2
9020639 Bewley et al. Apr 2015 B2
9037286 Lert May 2015 B2
9327903 Toebes et al. May 2016 B2
20020029719 Matsukawa Mar 2002 A1
20020037208 Patrito Mar 2002 A1
20020076307 Fallin et al. Jun 2002 A1
20030033217 Cutlip Feb 2003 A1
20030051544 Hong Mar 2003 A1
20030074125 Walenty et al. Apr 2003 A1
20030185656 Hansl Oct 2003 A1
20030200129 Klaubauf et al. Oct 2003 A1
20040093116 Mountz May 2004 A1
20040136821 Berger et al. Jul 2004 A1
20040167667 Goncalves et al. Aug 2004 A1
20040238326 Lichti Dec 2004 A1
20050029029 Thorne Feb 2005 A1
20050047895 Lert, Jr. Mar 2005 A1
20050095095 Hansl May 2005 A1
20050131645 Panopoulos Jun 2005 A1
20050151360 Bertrand et al. Jul 2005 A1
20050166787 Astrom Aug 2005 A1
20050212478 Takenaka Sep 2005 A1
20050217532 Conneally Oct 2005 A1
20050238455 Toteff Oct 2005 A1
20050238465 Ruazumov Oct 2005 A1
20060018996 Pollock et al. Jan 2006 A1
20060058921 Okamoto Mar 2006 A1
20060104712 Bufano et al. May 2006 A1
20060210382 Mountz et al. Sep 2006 A1
20060216137 Sakata et al. Sep 2006 A1
20060220335 Damm Oct 2006 A1
20060232025 Braud Oct 2006 A1
20060245862 Hansl Nov 2006 A1
20060257236 Stingel et al. Nov 2006 A1
20070021864 Mountz et al. Jan 2007 A1
20070059132 Akamatsu et al. Mar 2007 A1
20070065258 Benedict et al. Mar 2007 A1
20070071585 Henkel Mar 2007 A1
20070125727 Winkler Jun 2007 A1
20070177011 Lewin et al. Aug 2007 A1
20070276535 Haag Nov 2007 A1
20070288123 D'Andrea et al. Dec 2007 A1
20070290040 Wurman et al. Dec 2007 A1
20070293978 Wurman et al. Dec 2007 A1
20070297879 Yuyama et al. Dec 2007 A1
20080001372 Hoffman et al. Jan 2008 A1
20080065265 Ozick et al. Mar 2008 A1
20080154429 Lee et al. Jun 2008 A1
20080161987 Breed Jul 2008 A1
20080166217 Fontana Jul 2008 A1
20080215180 Kota Sep 2008 A1
20080269960 Kostmann Oct 2008 A1
20080275609 Boydell Nov 2008 A1
20080281717 Kortelainen Nov 2008 A1
20090074545 Lert, Jr. et al. Mar 2009 A1
20090099879 Ouimet Apr 2009 A1
20090114115 Minges May 2009 A1
20090185884 Wurman et al. Jul 2009 A1
20090188774 Tsujimoto Jul 2009 A1
20090216366 Zuber et al. Aug 2009 A1
20090265031 Tachibana et al. Nov 2009 A1
20100043665 Brigham Feb 2010 A1
20100044124 Radke et al. Feb 2010 A1
20100044977 Hughes et al. Feb 2010 A1
20100076591 Lert, Jr. Mar 2010 A1
20100086385 Shani Apr 2010 A1
20100102532 Timoney et al. Apr 2010 A1
20100131182 Deegan et al. May 2010 A1
20100135759 Dillon Jun 2010 A1
20100141483 Thacher et al. Jun 2010 A1
20100145507 Blust et al. Jun 2010 A1
20100167556 Totsu et al. Jul 2010 A1
20100218697 Sugimoto Sep 2010 A1
20100224427 Nuchter et al. Sep 2010 A1
20100234995 Zini et al. Sep 2010 A1
20100272546 Wolkerstorfer Oct 2010 A1
20100286905 Goncalves et al. Nov 2010 A1
20100290874 Wolkerstorfer Nov 2010 A1
20100316468 Lert et al. Dec 2010 A1
20100316469 Lert Dec 2010 A1
20100324815 Hirlta et al. Dec 2010 A1
20110008138 Yamashita Jan 2011 A1
20110068943 Lane, Jr. Mar 2011 A1
20110090064 Dahms et al. Apr 2011 A1
20110106339 Phillips et al. May 2011 A1
20110130974 Yngve et al. Jun 2011 A1
20110176895 Kortelainen Jul 2011 A1
20110185975 van den Berg et al. Aug 2011 A1
20110202175 Romanov et al. Aug 2011 A1
20110231016 Goulding Sep 2011 A1
20110271469 Ziegler et al. Nov 2011 A1
20120099953 Hortig et al. Apr 2012 A1
20120185122 Sullivan et al. Jul 2012 A1
20120186192 Tobes et al. Jul 2012 A1
20120189409 Toebes et al. Jul 2012 A1
20120189416 Toebes et al. Jul 2012 A1
20120247239 Hortig et al. Oct 2012 A1
20120277940 Kumar et al. Nov 2012 A1
20120299260 Goertzen et al. Nov 2012 A1
20130061420 Vanderstegen-Drake et al. Mar 2013 A1
20130094926 Olszak et al. Apr 2013 A1
20130142599 McDowell, Jr. et al. Jun 2013 A1
20140350725 Lafary et al. Nov 2014 A1
20150081089 Kapust et al. Mar 2015 A1
20150150429 Yoo et al. Jun 2015 A1
20150314446 Day et al. Nov 2015 A1
20150336741 Ahammer et al. Nov 2015 A1
20160000282 Vanderstegen-Drake et al. Jan 2016 A1
20160121486 Lipinski et al. May 2016 A1
20160214808 Cyrulik et al. Jul 2016 A1
20170083020 Purwin et al. Mar 2017 A1
20170320522 Lorenz et al. Nov 2017 A1
Foreign Referenced Citations (94)
Number Date Country
2752234 Jan 2006 CN
2920788 Jul 2007 CN
202321418 Jul 2012 CN
4104527 Aug 1992 DE
20011661 Dec 2000 DE
10142395 Nov 2002 DE
102011012950 Sep 2012 DE
0466004 Jan 1992 EP
0499276 Aug 1992 EP
0647575 Apr 1995 EP
0733563 Sep 1996 EP
0737630 Oct 1996 EP
1193195 Apr 2002 EP
1598291 Nov 2005 EP
1627830 Feb 2006 EP
1775240 Apr 2007 EP
2039580 Jan 2008 EP
2852006 Mar 2015 EP
2730715 Feb 1995 FR
4735387 Sep 1972 JP
49131671 Aug 1973 JP
5310055 Mar 1978 JP
5931297 Feb 1984 JP
62041705 Feb 1987 JP
6337007 Feb 1988 JP
63160204 Oct 1988 JP
1179321 Mar 1993 JP
061309 Jan 1994 JP
07157013 Jun 1995 JP
07187330 Jul 1995 JP
07187331 Jul 1995 JP
081553 Jan 1996 JP
08091795 Apr 1996 JP
08113321 May 1996 JP
08133426 May 1996 JP
08258763 Oct 1996 JP
0948507 Feb 1997 JP
09148401 Jun 1997 JP
11124298 May 1999 JP
11180697 Jul 1999 JP
11296226 Oct 1999 JP
2000118615 Apr 2000 JP
2000118639 Apr 2000 JP
2000122720 Apr 2000 JP
3189545 Jul 2001 JP
20011344020 Dec 2001 JP
2002356207 Dec 2002 JP
2003012117 Jan 2003 JP
2003063610 Mar 2003 JP
2003316437 Nov 2003 JP
2003321102 Nov 2003 JP
2004043109 Feb 2004 JP
3102245 Jul 2004 JP
2004249895 Sep 2004 JP
2005082331 Mar 2005 JP
2006138956 Jun 2005 JP
2005206259 Aug 2005 JP
2005297809 Oct 2005 JP
2006137577 Jun 2006 JP
2006160523 Jun 2006 JP
3867866 Jan 2007 JP
2007099424 Apr 2007 JP
2007283958 Nov 2007 JP
2008023639 Feb 2008 JP
2008238959 Feb 2008 JP
2008510673 Apr 2008 JP
2008100825 May 2008 JP
2009513457 Apr 2009 JP
60153309 Aug 2009 JP
2009284944 Dec 2009 JP
2010049987 Mar 2010 JP
2010158942 Jul 2010 JP
2007131383 May 2017 JP
20110074901 Jul 2011 KR
506936 Oct 2002 TW
588712 May 2004 TW
201003347 Jan 2010 TW
201022108 Jun 2010 TW
198501493 Apr 1985 WO
9534491 Dec 1995 WO
0187648 Nov 2001 WO
2005009324 Feb 2005 WO
2005056943 Jun 2005 WO
2006024035 Mar 2006 WO
2006095047 Sep 2006 WO
2007011814 Jan 2007 WO
2008152245 Dec 2008 WO
2009098573 Aug 2009 WO
2009106988 Sep 2009 WO
2009150684 Dec 2009 WO
2010080539 Jul 2010 WO
2010118412 Oct 2010 WO
2012044734 Apr 2012 WO
2016118955 Jul 2016 WO
Non-Patent Literature Citations (8)
Entry
International Search Report, International Application No. PCT/U52014/030217, dated Jul. 7, 2014 (1 page.
International Search Report, International Application No. PCT/U52014/055563, dated Mar. 16, 2015.
European Search Report, European Application No. 11190634, dated Mar. 22, 2016.
European Search Report, European Application No. 14843969, dated Apr. 19, 2017.
International Search Report, International Application No. PCT/US2011/065238, dated Mar. 21, 2012.
International Search Report, International Application No. PCT/US2011/065243, dated 21 Mar. 21, 2012.
International Search Report, International Application No. PCT/US2011/065238 dated Mar. 21, 2013.
European Search Report, European Application No. 16164914 dated Dec. 20, 2016.
Related Publications (1)
Number Date Country
20120189416 A1 Jul 2012 US
Provisional Applications (1)
Number Date Country
61423365 Dec 2010 US