1. Field of the Invention
This invention relates to the strapping of bulk boxes, and more particularly, to a machine for the automated strapping of bulk boxes.
2. Prior Art
Containers have been developed in the prior art for the bulk storage and shipment of a variety of materials, including meat products, agricultural produce, flowable goods, and other consumer and industrial products. These containers are commonly referred to as bulk bins or bulk boxes, typically varying in size from forty to sixty inches deep and thirty to forty inches wide, and capable of holding and supporting in excess of four thousand pounds of goods.
Bulk boxes are made of various materials, but commonly employ corrugated cardboard in their construction. Liners are sometimes used to improve the strength of the boxes and to insure leakproof containment of the goods held therein.
The internal contents of these boxes, often fluid, provide minimal support of their own weight and rely upon the structural integrity of the container to support the full weight of the contents. Bulk boxes, unlike most corrugated containers, must resist strong forces in both horizontal and vertical directions. These conditions can cause the sidewalls to bulge outwardly and possibly fail. To alleviate this problem, one or more, typically four to eight, external reinforcing bands or straps of plastic or metal are sometimes applied to the boxes.
In the prior art, the reinforcing straps are manually applied to the boxes, generally with the boxes in a knocked-down or flattened state. This process is time-consuming and expensive, with the ratio of the cost of labor to the cost of materials often as much as 4:1.
Machines are known in the prior art for applying strapping around objects, including boxes, for bundling them together. The heaviest, or largest, strapping that can be handled with these machines is four hundred pounds. Reinforcing strapping as used in the present invention is typically six hundred pound strapping. Applicant is not aware of any prior art machine that applies reinforcing strapping to a container, or any bundling strapper that is capable of handling strapping larger than four hundred pounds.
Accordingly, there is need for an economical system and method for applying external reinforcing straps to bulk boxes.
In accordance with the invention, an automated system and method are provided for economically applying reinforcing straps to bulk containers.
With other costs remaining constant, the system and method of the invention enables external reinforcing straps to be applied to bulk boxes at a ratio of the cost of labor to the cost of materials of about 1:3, or a 12:1 improvement over the prior art.
The invention comprises an automatic strapping machine that applies one or more straps externally to a bulk box to reinforce the box. More specifically, the strapping machine of the invention applies a plurality of reinforcing straps around the outside of the box in spaced apart relationship along the length or height of the box, while the box is in its knocked-down or flattened condition. The straps can be uniformly spaced apart, or the straps nearer the bottom of the box can be spaced more closely together than the straps toward the top of the box, depending upon the requirements of a particular application. From four to eight straps are generally applied to a box, although this number can vary as desired or required.
The strapping machine of the invention has a plurality of strapping stations or stages through which the box, in a knocked-down or flattened state, passes for sequential application of the straps to different locations on the box. The straps are applied by strapping head assemblies positioned at the strapping stations, each of which receives a length of strapping material from a supply reel, encircles the box with a strap, secures the strap in encircling relationship to the box, and cuts the strap encircling the box from the length of supply strapping in preparation for continued movement of the box to the next station. Suitable sensing means, such as photocells or microswitches and the like, are positioned at each station to sense the position of the box and stop it in a predetermined location for application of the straps.
Each station may be constructed as a separate module having two strapping head assemblies. A single disconnectable data and power connection is provided. Each module will be large enough to hold an entire bulk box in process. All of the modules can be identical and interchangeable with one another, but the last module in a series preferably comprises a recovery module to apply any straps that were missed in an earlier station.
Further, the modules can operate independently of one another. That is, inoperability of one module, or one or more strapping heads at a module, will not affect the operation of another, except that a recovery module can apply any missing straps. This enables one or more strapping heads or modules to be taken out of service and the machine can still operate. Straps that would have been applied by the inoperable strapping head are applied by the recovery module, which can apply all of the straps if all of the preceding heads are inoperable.
In a preferred embodiment, two strapping head assemblies are provided at each station, with each head assembly arranged to position a strap at a predetermined location on the box. The head assemblies at subsequent stations are positioned to apply further straps at different predetermined locations on the box. A last station that normally is not utilized may be provided to apply a strap or straps that were inadvertently not applied at a preceding station.
An infeed can be provided to supply boxes to the machine to be strapped, or boxes can be hand fed to the machine. A stacker preferably is positioned to receive strapped boxes from the machine. As a box is called into the machine, any boxes in the system all shift one module toward the outlet. After module 1 has called for a box and all boxes have shifted downstream into place, all strapping head assemblies will activate. For a four station machine, with the fourth station serving as a recovery module, there will be six boxes in process at any given time. Each module will have a box ready for strapping, one box will be in the infeed ready for the next start cycle, and one box will be in the stacker. Each module, except the fourth in this example, will apply two straps on the box. The recovery (fourth) module will apply any missing straps. The cycle time for each strapping station is about 6.4 seconds, and approximately 545 boxes per hour can be strapped.
The placement of positioning of the straps, and initiation of operation of the strapping heads at each module, are controlled by sensors that detect the position of each box at a station and operate to cause a limit stop to move into the path of the box to halt its movement through the station at a predetermined position for placement of the straps applied at that station in specific locations on the box. After the straps have been applied, the limit stop is moved out of the way of the box and it is moved to the next station where another sensor and limit stop operate to position the box for placement of an further pair of straps at predetermined different locations on the box. This process is repeated at each station until all straps have been applied.
Control means senses when a strap or straps have been missed, and operates to cause the box to be stopped at one or more positions in the recovery station for application of the missing strap or straps.
In a specific example of the machine, the strapping heads in the strapping head assemblies are based on the EAM Mosca KSR bundle strapper, which is capable of threading, cutting and welding a six hundred pound strap. These heads have been modified in the present invention to increase the throat size to accommodate an eighty-four inch throat.
The foregoing, as well as other objects and advantages of the invention, will become apparent from the following detailed description when considered in conjunction with the accompanying drawings, wherein like reference characters designate like parts throughout the several views, and wherein:
Referring more specifically to the drawings, a bulk box strapping machine according to the invention is indicated generally at 10 in
Further, as illustrated and described herein the strapping stations are modular, whereby the stations may be increased or decreased in number, individually adjusted, replaced, disabled or enabled without disturbing the other stations. It should be understood, however, that the strapping stations need not be modular, but a desired number of individual strapping head assemblies may be appropriately spaced from one another in the machine, depending upon the number of straps desired on the bulk box, with or without resorting to modular design.
Folded-flat bulk boxes B are supplied to the machine via a suitable infeed system 20, although the boxes could be hand fed to the machine, if desired. The infeed system 20 includes an elevator means 21 for supporting a stack S of folded flat boxes B and for continuously moving the stack upwardly to position another box to be fed to the machine, and a reciprocating arm 22 connected with a source of vacuum (not shown) for picking up the top box in the stack and positioning it to be grabbed between a pinch roll 23 and drive roll or belt 24.
After being fed into the machine, the boxes are continuously carried forward by suitable drive means such as, for example, the endless belts 24, as shown in
Suitable sensors (not shown), such as photocells, microswitches, or the like, are positioned at each strapping station to detect the presence and position of a box at that station and cause a limit stop 28 to be moved into the path of the box to halt its movement at a predetermined position for applying straps at that station in specific locations on the box. The limit stop may comprise, for example, a pneumatic, hydraulic or electric drive 29 which moves a plunger into the path of the box in response to a signal from the sensor. The stops are located at predetermined distances downstream of their respective stations for stopping the boxes in a different position at each station to apply straps at different locations on the box than the straps applied at a preceding or succeeding station.
The boxes may be fed into the machine with either their top end or bottom end leading, but if the spacing of the straps is to be varied between the top and bottom ends of the box, appropriate adjustment will need to be made of the stop means and sensor means for each module.
For instance, at the first strapping station 11, a pair of straps S3 and S6 are applied to the box at predetermined locations (see
A folded-flat strapped box B′ is shown in FIG. 2. Obviously, a greater or lesser number of straps can be applied by increasing or decreasing the number of stations or strapping head assemblies, or by inactivating one or more of the strapping stations or strapping head assemblies.
The strapped boxes, in their folded-flat condition, may then be shipped to a customer, where the boxes may be quickly and easily erected, as shown at B″ in
The strapping head assemblies are identical to one another, and each includes an accumulator section 30 which forms a base to support the strapping head 31 and also provides a receptacle to store pieces of strapping material cut off when a strap is secured around a box. A supply reel 32 and control panel 33 are supported near the strapping head assembly for supplying strapping to the strapping head assembly and controlling operation of the machine, respectively. As shown in
It will be noted from
The supply reels 32 are secured by a single fastener so that they may be quickly removed and replaced with fresh reels as the strapping becomes exhausted on the first reel. The free end of the strapping is then grasped by the operator and inserted into the strapping head, which grips the strapping and automatically threads it through the tracks and back to the head.
As depicted in
It will be noted that the boxes are supplied to the machine in spaced apart relationship. This relationship is maintained throughout the sequence of steps in applying the desired number of straps by appropriate location and operation of the sensors, limit stops and feed means.
The control system detects whether any given strapping head assembly has or has not correctly applied a reinforcing strap to the box, and if a strap has been missed sends an appropriate command to the machine to stop the box at an appropriate position at the recovery station 14 so that the strapping head assemblies 17 and 18 at the recovery station can apply the missing strap or straps.
As seen best in
To facilitate maintenance, adjustment, replacement, etc., of the strapping head assemblies 15, 16, 17 and 18, the head assemblies are mounted via rollers 50 on tracks 51 so that the heads may be moved laterally at least partially out of the machine.
The strapping head assembly and the machine of the invention enable boxes to be strapped much more quickly and economically than is possible with prior art systems and methods. Moreover, the machine may be quickly and easily adjusted to apply a greater or a lesser number of straps, and to position the straps with different spacing on the boxes.
While particular embodiments of the invention have been illustrated and described in detail herein, it should be understood that various changes and modifications may be made to the invention without departing from the spirit and intent of the invention as defined by the scope of the appended claims.
This application is a divisional application of U.S. Ser. No. 09/757,172, filed on Jan. 9, 2001, now U.S. Pat. No. 6,688,084 which claims benefit of U.S. provisional application Ser. No. 60/192,152, filed on Mar. 24, 2000.
Number | Name | Date | Kind |
---|---|---|---|
3901138 | Bilt | Aug 1975 | A |
3941639 | Maroschak | Mar 1976 | A |
4951562 | Ribaldo | Aug 1990 | A |
5289668 | Meyer | Mar 1994 | A |
5400706 | Tipton et al. | Mar 1995 | A |
5761889 | Blaisdell et al. | Jun 1998 | A |
6044620 | Hernke et al. | Apr 2000 | A |
6074331 | Ruggiere et al. | Jun 2000 | A |
Number | Date | Country | |
---|---|---|---|
20040107673 A1 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
60192152 | Mar 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09757172 | Jan 2001 | US |
Child | 10727129 | US |