This invention relates generally to methods for processing meat cuts and, more particularly, to an apparatus and method for trimming fat from a meat cut.
The contour of the fat/lean on a beef strip as well as on other meat cuts is erratic and testing has shown no correlation. Therefore humans need to physically remove the thick fat cover from the beef strip and similar cut of meat. The fat is extremely difficult to cut due to the thickness of the fat layer and meat cut and due to the cold temperature. A significant number of people are needed to do this trimming, and due to the physical stress involved with making the cut, the trimming process can often lead to repetitive strain injuries. Also, a downgrade of product is possible if a mis-cut is made due to the fact that an operator must “guess” at the location of the fat/lean interface.
Work has been done to develop fat trimming devices where the fat would be “machined” off the top of the cut with spinning cutters. The cutters perform poorly and do not accurately address the incurring problems such as; ridges of fat, pulling fat into the cutting tools, stalling the equipment and cutting into the lean. Some plants have tried devices where the trimming device only cuts with a fixed blade. Fixed blades are not effective due to variations in the fat thickness and contour from one meat cut to another. Also, special devices have been used to reduce forces encountered by a worker's hand, wrist, and arm when cutting with a straight knife to eliminate strain injuries.
The greatest disadvantage of using other machines is the variable profile of the fat/lean interface for a meat cut particularly that of the beef strip meat cut. Further, human cutting cannot determine the fat/lean interface until after the lean has been cut which may down grade the product.
The present invention is a meat cut classification and fat trimming method and apparatus for sensing or classifying the thickness of a layer of fat of a cut of meat and the various contours thereof as it travels along a conveyance path and providing the fat thickness or classification information to a downstream system for performing a fat trimming operation. The classification information that can be gathered by a series of probes can be provided as a continuous function three-dimensional map of the fat/lean interface contour. The meat cut classification and trimming system comprises a split/multi-belt conveyor having co-planar split/multi-belts proximately spaced apart and co-planar extending in the same direction and having a uniform equidistant end to end gap there between such that they are laterally aligned and said conveyor having a drive for conveying the meat cut through the classification system and a multi-probe mechanism assembly operable to position the probes between the multi-belts of the conveyor and extend the probes upward between the multi-belts to penetrate the meat cut for measuring the fat thickness. The probe assembly is further operable to translate in a direction and at a velocity that is synchronized with the direction and velocity of the meat cut being conveyed.
The meat cut classifier system can be positioned such that the multi-belt conveyor can receive incoming meat cuts from an upstream conveyor or other input means. The classifier system can have a sensor operable to sense when the first end of the meat cut arrives on the conveyor belts. When the first end is sensed the probe mechanism is translated from the home position and the translation direction and speed is synchronized with the trace of the meat cut upon insertion into the meat cut.
The probe can be an elongated instrument having a somewhat pointed end portion such that when it is pressed against the meat cut penetration occurs into the fat layer and extends through the fat to lean transition. The probe can be instrumented with a sensor that can determine when the probe extends through the fat to lean interface as well as instrumented with a linear encoder for sensing the amount of extension of the probe or the fat layer depth. The probe is further operable to send a signal representative of the fat thickness or the location of the fat to lean interface. Multiple probe insertions into the meat cut are utilized to gather multiple data points for creation of a continuous function three dimensional (3D) map.
This device can utilize optical probing or other probing technology to determine the fat/lean interface on a meat cut such as a beef strip loin. Multiple laterally aligned probes can be utilized to repetitively penetrate the meat cut. The output signal can be processed by a controller to form a map of the fat to lean interface contour. The controller then articulates the cutting blades to follow the fat/lean interface map. Other probing technologies could be utilized such as sonar and rf sensing.
There are several advantages to the present invention. One advantage is that the beef strip meat cuts are fed into the machine continuously and the probing devices are multiple in effect. Multiple probes ensure a better “mapping” of the profile since there is little consistency or correlation for the fat/lean contour from one beef strip to another beef strip. Another advantage is that the meat cut is mechanically secured and fed through the machine with a conveyor on the bottom side and an overhead hold-down conveyor on top. This method of movement provides constant movement of the product in a secured manner. A third advantage is controlled blades that are capable of following a three-dimensional fat/lean interface map. The present method and apparatus can be utilized for meat cuts other than the beef strip to determine the contour of a fat/lean interface.
These and other advantageous features of the present invention will be in part apparent and in part pointed out herein below.
For a better understanding of the present invention, reference may be made to the accompanying drawings in which.
a is an isometric view of a probe.
a is an isometric view of the split/multi belt conveyor.
According to the embodiment(s) of the present invention, various views are illustrated in
The details of the invention and various embodiments can be better understood by referring to the figures of the drawing. Referring to
One embodiment of the present invention comprises a split/multi-belt conveyor having multiple co-planar belts proximately spaced apart extending in the same direction and having a uniform lengthwise end to end equidistant gap there between and said conveyor having a drive for conveying the meat cut through the classification system and a multi-probe mechanism assembly operable to position the probes between the multi-belts of the conveyor and extend the probes upward between the multi-belts to penetrate the meat cut for measuring the fat thickness. The present invention teaches a novel apparatus and method for determining the contour of a lean/fat interface of a meat cut. The probe assembly is further operable to translate the probe in a direction and at a velocity that is with the direction and velocity of the meat cut being conveyed on split/multi-belt conveyor.
The classification station is downstream from a conveyor system operable to feed meat cuts to the classification station for classification of the meat cut based on the thickness and contour of the fat layer. The split/multi-belt conveyor of the classification station is positioned for receiving a meat cut from an upstream conveyor feed system onto the multi-belts of the conveyor system. The feed system can be any appropriate conveyance means such as a conveyor belt. When the meat cut is received on the multi-belts the meat cut is conveyed upstream along the path of conveyance to a point where it is detected by a sensor. When the sensor senses the presence of a meat cut, the probing and mapping can begin for classifying the meat cut.
Drive 120 drives the conveyor assembly with a pulley assembly. The conveyor assembly 108 comprises multiple endless conveyor belts, which are substantially coplanar and parallel along their lengths having end to end equidistant gaps therebetween and laterally aligned. The gaps allow the probes to extend upward therethrough to penetrate the meat cut. The conveyor assembly 108 further comprises a plurality of pulley assemblies for effecting conveyance of the conveyor belts as well as driving the multi-toothed conveyor chain, which is designed to grab the meat cut and pull it underneath the hold down assembly 112 downstream toward and into contact with the blades of the blade assembly. The conveyor assembly 108 has left and right side frame members for mounting the various conveyor assembly components. The hold down assembly 112 is mounted above the conveyor assembly. The hold down assembly also has a left and right side frame members for mounting the hold down assembly members thereon. The hold down assembly 112 is mounted to side frame members of the conveyor assembly.
When the presence of a meat cut is detected, upward elevation of the probe assembly is initiated along the substantially circular path which causes the probes to elevate upward and penetrate the oncoming meat cut. The probe assembly and probes, as they continue along the circular path, will then begin dissent while continuing to translate along the path of conveyance. The dissent along the substantially circular path will cause the probes to retract from the meat cut. The probe assembly frame and the probes will continue along the substantially circular path until the probes begin to elevate again to penetrate the meat cut. The speed of the motor or drive can be adjusted to penetrate the meat cut a plurality of time during a single pass. Increasing the drive speed, increases the number of penetrations of a given meat cut on a single pass. The preferred embodiment shows the laterally oriented probes operatively connected to air springs which act as a safety mechanism for a condition where the probe tip hits something hard such as a bone. The number of laterally aligned probes can vary to increase or decrease resolution of the map. The probes can also be longitudinally aligned or a matrix of probes can be utilized.
The probe assembly completes this cycle multiple times along the length of the meat cut thereby taking a plurality of measurements for the fat to lean interface along the length of the meat cut. This mechanism allows for multiple probe penetrations into the meat cut thereby gathering data to map the lean to fat interface contour. The probes can then communicate the data representative of the lean to fat interface to a controller which is operable to interpret the information and generate a signal responsive to the data or map of the contour that will vary the attack angle or angle of approach of the cutting blade to follow the contour of the lean to fat interface. Just prior to probing, the meat cut is engaged by a pulling chain having a plurality of teeth for grabbing the meat cut and pulling it along the path of conveyance while stabilizing the meat cut during the probing process. The controller can be operable to vary the position of a single blade element to follow the contour or can be operable to vary the position of multiple blade elements that are laterally aligned. The controller can be designed to independently vary each of the multiple elements each responsive to the contour map. The controller can also use an algorithm such as a smoothing function to vary the attack angle of the blades, which approximates the contour using the discrete data points captured by the multiple probes.
The pulling chain also grabs the meat cut and pulls it into engagement of the blade assembly. Also, just prior to probing, the meat cut is engaged by an endless conveyor track of a hold down assembly which applies a downward pressure to the meat cut and during the probing and cutting of the meat. The meat cut is held down by the track of the hold down assembly such that the probes can penetrate the meat cut without the meat cut being lifted from the conveyor. The track of the hold down assembly also conveys the meat cut from above at substantially the same speed as the conveyor. Optionally, to properly control the meat travel, the speed of conveyance of the hold-down assembly can be slightly faster or slower than the speed of conveyance of the lower multi-belt assembly.
The controller sends a signal representative of the fat to lean interface which will control the blade assembly to variably position the blade to follow the contour of the lean to fat interface. As indicated above, multiple blades can be utilized in order to conform more closely to the three-dimensional path or contour described by the fat/lean interface map. The blades do not necessarily correspond to a given probe, but is preferably designed to be controlled independent of a given probe to follow the contour of the map. The blade position can be controlled by an articulating arm. See Fig. The controller can send a signal responsive to the probe data to control an actuator which in turn controls the articulating arm for positioning the blade. The blade can be operatively mounted to the articulating arm such that it is spring loaded with a level of compliance. The blades are designed with a range to dive and climb. The blade can also be mounted such that a range of pitch is provided and such that a range of cutting depths is possible. The multiple blades are positioned based on the control signal received from the controller. The position of the blades are variably adjusted based on each set of mapped probing data. The blades are adjusted each time new data is gathered by the probe assembly. As the meat cut travels over the blade, thereby trimming the fat from the lean, the meat cut is then grabbed and conveyed by the secondary conveyor, and secondary grabbing chain and conveyed and pulled downstream on the downstream side of the blade. Once trimming is complete, the meat cut is conveyed off the exit end of the meat cut fat trimming system.
Referring again to
Referring to
The probes 206 are mounted in the frame 204 on plunger rods 214 which extend from shock absorbing safety springs 216. The probes 206 have probe leads 207 which further comprise a probe tip 208 and a probe base portion 210. The probe leads 207 extend upward through guide holes 212 of the frame 204. The probe assembly 118 is designed such that the probes 206 extend upward as a unit within the frame 204. The upward movement of the probes for penetration of the meat cut is affected by rotation of the second sprocket wheel 223. The sprocket wheel 223 affects rotation of the crank lift members 226 and 227. The lift members 226 and 227 lift the side bars 230 of the frame 204 such that the entire frame and probes are elevated upward as a unit such that the probes penetrate the meat cut. The bottom of the frame 204 travels in a circular motion. This results in a circular motion of the probe tips. However, the probe tips are free to tip forward along the path of conveyance or move along direction A—A in addition to the circular range of motion. The range of motion along A—A is made possible by the slotted swing arm 244. The swing arm 244 has a linear slot 246 and is connected to the frame 204 by a follower member 248 which is slideably mounted in slot 246. The swing arm 244 pivots about pivot point 242. The swing arm 244 has an extension 240 which is pivotally mounted in a slotted joint member 238.
The slotted joint member 238 is mounted to a plunger rod 236 extending from cylinder 234. The cylinder 234 is pivotally mounted on the opposing end to the stabilizing bracket 244. The probe frame 204 and therefore the probe tips 208 are free to move along direction A—A pivoting on pivot point 228 as long as there is no pressure in the cylinder 234. The cylinder 234 also does not cause upward movement of the probe frame 206, but only allows the probes to move along with the meat cut. Therefore, when the probe tips 208 penetrate the meat cut, the meat cut carries the probe tip along the path of conveyance as the meat cut is being conveyed. When the probe tips are fully retracted from the meat cut by virtue of the rotation of lift arm 226, the cylinder 234 pushes the probes back to an upstream position and then releases them such that the process can be repeated. However, when the probes are inserted into the meat cut the cylinder 234 exerts no force.
The paddle 232 mounted on the shaft of the second sprocket wheel 223 passes over a proximity switch 250 which tells the controller the position of the probes. This allows the systems controller to coordinate the probe movement with the meat travel as it is conveyed along the path of conveyance.
The probe assembly is designed such that the probes are inserted and retracted as a unit. The bottom of the probe bank travels in a circular motion as commanded by the controller system. However, the circular motion of the probe tips is not conducive for matching the continuous conveyance of the meat cut along the path of conveyance. As indicated above, the probe tips are free to move along direction A—A pivoting about point 228. This allows the meat cut to carry the probe tip along the path of conveyance during penetration. As the left arm continues its rotation it will retract probes from the meat cut and the cylinder 234 will push the probes as a unit back to an upstream position in order to repeat the process. The safety cylinders 216 or safety springs provide shock absorption in case the probe tip engages a hard structure, such as a bone, as it penetrates the meat cut. The paddle 232 which rotates along with the lift member provides an indication to the proximity switch 250 such that the controller recognizes the position of the probe. Therefore, the controller can control the position and speed of the probe in order to coordinate with the travel of the meat cut. The sequence is as follows:
Referring to
Referring to
The main lower conveyor drive 304 transfers drive via a pulley assembly to the lower drive input shaft 305 for driving the main lower conveyor. The upper hold-down conveyor drive 302 transfers drive via a pulley assembly to the upper hold-down conveyor drive shaft 303 for driving the hold down conveyor. The upper hold down conveyor frame assembly 306 has a height adjustment carriage 330 and a jack screw adjustment rod 332. Raising and lowering one end of the carriage with the adjustment rod 332 causes the frame flex about the junction between the carriage portion and the main portion of the frame 306.
Referring to
Referring to
Referring to
The preferred embodiment shown in
Referring to
The rocker arms are adapted to pivot about a pivot point such as pivot point 630. The spring-loaded rocking action of the rocker arms allows the tension being applied downwardly to the meat cut to be varied. The pairs of track wheels have their respective rocker arms connected by a shaft member such as item 632 about which the track wheels rotate. Each pair of elbow shaped rocker arms such as rocker arms 610 and 611, are attached by an axle bearing member such as Item 632, which extends between one end of the rocker arms. The opposing end of the rocker arms are attached by a shaft member such as item 634. The track wheels rotate about axle bearing members such as Item 632. The shaft such as shaft 634 is attached to a cylinder such as cylinder 616 and 618, such that the cylinders can controllably be extended or retracted, thereby causing the rocker arm to rock about a pivot member, such as pivot member 630. This allows the track wheels to increase or decrease the downward pressure applied to the meat cut as it is being conveyed. Track wheel 314 as discussed above acts as an idler to vary the tension of the endless track (not shown).
Referring to
The various fat trimming system examples shown above illustrate a novel method and apparatus for classification of a fat to lean interface of a meat cut and trimming the fat therefrom. A user of the present invention may choose any of the above embodiments, or an equivalent thereof, depending upon the desired application. In this regard, it is recognized that various forms of the subject invention could be utilized without departing from the spirit and scope of the present invention.
As is evident from the foregoing description, certain aspects of the present invention are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art. It is accordingly intended that the claims shall cover all such modifications and applications that do not depart from the sprit and scope of the present invention.
Other aspects, objects and advantages of the present invention can be obtained from a study of the drawings, the disclosure and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3546737 | Neebel et al. | Dec 1970 | A |
3613154 | Townsend | Oct 1971 | A |
3789456 | Doerfer et al. | Feb 1974 | A |
3849836 | Bernard et al. | Nov 1974 | A |
3940830 | Anderson et al. | Mar 1976 | A |
4209878 | Albert | Jul 1980 | A |
4246837 | Chenery | Jan 1981 | A |
4628806 | Murphy | Dec 1986 | A |
4815166 | Martin et al. | Mar 1989 | A |
4939574 | Petersen et al. | Jul 1990 | A |
4970755 | Leblanc | Nov 1990 | A |
4979269 | Norrie | Dec 1990 | A |
5090939 | Leblanc | Feb 1992 | A |
5429548 | Long et al. | Jul 1995 | A |
5470274 | Kadi et al. | Nov 1995 | A |
5476417 | Long et al. | Dec 1995 | A |
5580306 | Young et al. | Dec 1996 | A |
5738577 | Long | Apr 1998 | A |
5882252 | Boody et al. | Mar 1999 | A |
6089968 | Andre et al. | Jul 2000 | A |
6104966 | Haagensen | Aug 2000 | A |
6129625 | Cate et al. | Oct 2000 | A |
6213863 | Basile et al. | Apr 2001 | B1 |
6277019 | Veldkamp et al. | Aug 2001 | B1 |
6547658 | Boody et al. | Apr 2003 | B1 |
6558242 | Veldkamp et al. | May 2003 | B1 |
6607431 | Torrelli | Aug 2003 | B1 |
6638155 | Jensen et al. | Oct 2003 | B1 |
Number | Date | Country |
---|---|---|
0 411 743 | Feb 1991 | EP |
0 422 877 | Apr 1991 | EP |
0 484 933 | May 1992 | EP |
0 484 933 | Aug 1994 | EP |
0 402 877 | Sep 1996 | EP |
WO 9402803 | Feb 1994 | WO |
WO 0178515 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050079815 A1 | Apr 2005 | US |