The present invention relates to an automated CPR device for cyclically compressing a patient's chest.
Cardiopulmonary resuscitation (CPR) is a well known and valuable method of first aid. CPR is used to resuscitate people who have suffered from cardiac arrest after heart attack, electric shock, chest injury and many other causes. During cardiac arrest, the heart stops pumping blood, and a person suffering cardiac arrest will soon suffer brain damage from lack of blood supply to the brain. Thus, CPR requires repetitive chest compression to squeeze the heart and the thoracic cavity to pump blood through the body. It has been widely noted that CPR and chest compression can save cardiac arrest victims, especially when applied immediately after cardiac arrest.
Chest compression requires that the person providing chest compression repetitively push down on the sternum of the victim at 80-100 compressions per minute. However, when chest compression is required for long periods of time, it is difficult if not impossible to maintain adequate compression of the heart and rib cage. Even experienced paramedics cannot maintain adequate chest compression for more than a few minutes.
Since CPR quality is of great importance for the patient's survival, there is a need to have a mechanical, automated CPR device to replace less reliable and long duration manual chest compressions. These devices compress and decompress a subject's chest in a cyclical fashion. One such automated CPR device is described in EP1915980. A transmission device transforms an alternate rotational movement of an alternately rotating element into a linear reciprocating movement in a resuscitation device. The alternate rotating element inputs rotation energy from e.g. an electric motor, or a hydraulic system. A major drawback of EP1915980 is that the motor is not running near its most optimal working region. This is not the most optimal solution for an automated CPR device where the power consumption is not optimal due to the mismatch of motor and human thorax characteristics. Because the automated CPR device needs to be portable, weight and energy efficiency are important factors. The following has to be considered.
To apply automated CPR, the thorax needs to be pressed with a certain desired trapezium like displacement profile. An example of such a profile is depicted in
The force-compression relation of the human thorax is shown in
An important aspect of power consumption is the repetitive acceleration and de-acceleration of the motor to obtain the required compression profile shown in
First consider a system with a DC brushless motor driven by a current controlled servo amplifier with given voltage compliance. The highest rpm and motor torque are determined by the maximum voltage and current, respectively. The transmission ratio T between the motor angle or number of motor revolutions and the chest pad position X, is assumed constant. When T is small the motor will run at very high rpm n and has a small torque. Consequently, fast acceleration of the chest pad is possible but large moments and forces cannot be exerted. This is acceptable for a small compression depth, but at larger compression depth the reaction force and the reaction moment will be very large. Consequently, the motor cannot efficiently deliver this high torque and the desired compression depth is not achieved while very large current is consumed; the motor operation is hence inefficient.
For a large T the motor will run at low rpm n. Hence acceleration of the chest pad is low, and a high moment and high force can be delivered. For high acceleration a large motor voltage is required and the motor is not in its most efficient region. For optimum efficiency it has been shown that the motor should operate around 80-85% of its maximum angular velocity. A compression pulse with short rise time of approximately 100 ms is however required for high quality CPR; hence the large T is not acceptable.
From the above it is clear that the correct choice of T is not straightforward. The trade-off between acceleration and required force is required; as a consequence a fixed transmission is not optimal for the highly non-linear human mechanical load. Moreover, the optimum T may vary significantly from person to person as there is a high variability in thorax properties from person to person.
The object of the present invention is to provide an automated CPR device which is performing in a more optimal working region, i.e. it is more energy-efficient.
According to one aspect the present invention relates to an automated CPR device for cyclically compressing a patient's chest comprising:
There are several advantages with the CPR device according to the present invention. Starting from the upper position of the chest pad, the vertical displacement of the chest pad is larger than the horizontal displacement of the movable units. This is favorable for the motor acceleration, since a relatively small change in motor angle is required to obtain a relatively large movement of the chest pad. The trade-off is that the force in the vertical direction is correspondingly reduced. With increasing vertical displacement of the chest pad, the angle between the two arms decreases and as a result the ratio between vertical and horizontal displacement decreases and the ratio between forces in the vertical and horizontal direction increases. The transmission has thus a variable relation between displacement and force as a function of the compression depth. At a small compression depth, a small force and high acceleration is achieved, and at a larger compression depth, a higher delivered force and a low acceleration is achieved, as desired. The transmission ratio is thus small in the initial phase of the compression and it increases with the compression depth. Because the transmission ratio varies as a function of the compression depth in a continuous way, it may thus be described as continuously variable transmission. Such a transmission is a better match for the highly non-linear human mechanical load and it facilitates treatment of persons having varying thorax properties. In this manner the CPR device is performing in a more optimal working region, i.e. it is more energy-efficient and consumes less power. Hence, a smaller battery is required, thus saving in on weight and size of the CPR device according to the invention. This V-shaped transmission configuration therefore fulfills the needs for transmission of an automated CPR device.
In a preferred embodiment, the front structure of the automated CPR device comprises a threaded, driven spindle, and said first and second movable units are arranged to engage with the threaded spindle so as to move back and forth along said front structure. Using a spindle with threads, or a screw-like configuration, allows for a speedy and precise control of the movable units and hence of the chest pad against the patient's chest. In this manner, a rotational motion of the spindle, driven by e.g. a rotational motor, is converted into a translational, or linear motion of the chest pad. This embodiment allows the movable units to engage with multiple spindles, if desired.
In another preferred embodiment the spindle comprises two parts with an opposite lead direction so as to move said first and second movable units in opposite directions. Advantageously, one spindle may be used having two parts with opposite threads, such that a driven rotation of the spindle in one direction move the movable units towards each other, and a driven rotation in the opposite direction move them away from each other. Correspondingly, the chest pad compresses and decompresses the patient's chest. Using only one spindle saves weight and money, allows a simple construction with one motor driving one spindle, and it facilitates a synchronized movement of the two arms, and thus a symmetric, desired movement of the chest pad against the patient's chest.
In another preferred embodiment the front structure of the automated CPR device comprises a belt system comprising a belt and a pulley, the belt being arranged to be driven by and looped around the pulley, and said first and second movable units are coupled to said belt so as to move back and forth along said front structure. Advantageously, a belt-driven system is cheaper, has lower friction and produces less mechanical noise than the spindle-configuration. Lower friction leads to less heat production and less power consumption; hence, less battery capacity and a smaller driving means, or motor, are required. Furthermore, omitting the spindle and the threading-engaging movable units also leads to lower weight and a very compact building height having a lower centre of gravity.
In another preferred embodiment, the belt system comprises another pulley for the belt to be looped around, the belt system extending along the front structure, and said first and said second movable units are each arranged to be coupled on a respective, mutually exclusive side of the belt system so as to move in opposite directions in relation to each other. Advantageously, a driven rotation of the belt in one direction moves the movable units towards each other and a driven rotation in the opposite direction moves them away from each other. Correspondingly, the chest pad compresses and decompresses the patient's chest.
In other preferred embodiments, a chain and a chain-wheel are used instead of a belt and a pulley as described in the two previous embodiments. This has the advantage of being durable and rigid. It also prevents any slipping of the chain in relation to the chain-wheel, thus having a quick response-time and being accurate.
In another preferred embodiment, the front structure comprises rigid means for guiding said first and second movable units back and forth along said front structure. Due to the belt system having a somewhat more flexible structure than the spindle-configuration, it may be advantageous to use e.g. some kind of rails for guiding the movement of the movable units.
In another preferred embodiment, the driving means is selected from the group consisting of an electromagnetic, a pneumatic, or a hydraulic motor, which provides either a rotational force, or a linear force. The present invention advantageously makes use of the rotational or linear motion and converts it into a translational or linear motion, of the chest pad in the direction of the chest. One advantage of using an electromagnetic motor, and especially one that is servo controlled, is that an optimum force pulse is obtained for a desired compression waveform, i.e. the force is personalized for the specific patient and his body/thorax properties.
Another automated CPR device is the LUCAS machine described in US 2004/0230140. This device includes a pneumatically driven compressor unit which reciprocally drives a chest contact pad to mechanically compress/decompress the subject's chest. The subject is rested in a supine position during CPR administration. The compressor unit is mechanically supported vertically above the subject's chest so that the contact pad is in mechanical contact with the subject's chest about the sternum. In favor of the present invention it has been demonstrated to provide a better controlled compression depth, i.e. it provides a more personalized compression force, is more stable and safe due to having a lower weight and a lower centre of gravity, has a longer operating time due to being more energy-efficient, and produces less acoustic noise.
Embodiments of the invention will be described, by way of example only, with reference to the drawings, in which:
In
A typical required compression depth is between 4 and 6 centimeters and the required force can be as large as 800 N. Calculations show that translation of the rotary motion of the motor to a translational motion may deliver around 1000N. In
In
For the chain system, the principle of operation is similar as the previous embodiment, with the difference that the pulley and the belt are replaced by a chain-wheel and a chain, respectively.
Certain specific details of the disclosed embodiment are set forth for purposes of explanation rather than limitation, so as to provide a clear and thorough understanding of the present invention. However, it should be understood by those skilled in this art, that the present invention might be practiced in other embodiments that do not conform exactly to the details set forth herein, without departing significantly from the spirit and scope of this disclosure. For example, the present invention is not limited to claiming a CPR device with only two arms, two movable units, two pulleys, or two chain-wheels. Further, in this context, and for the purposes of brevity and clarity, detailed descriptions of well-known apparatuses, circuits and methodologies have been omitted so as to avoid unnecessary detail and possible confusion.
Number | Date | Country | Kind |
---|---|---|---|
08167817 | Oct 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/054692 | 10/23/2009 | WO | 00 | 8/9/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/049861 | 5/6/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3489140 | Mullikin | Jan 1970 | A |
5066106 | Sakamoto et al. | Nov 1991 | A |
5171267 | Ratner et al. | Dec 1992 | A |
6174295 | Cantrell | Jan 2001 | B1 |
20020026131 | Halperin | Feb 2002 | A1 |
20040220501 | Kelly et al. | Nov 2004 | A1 |
20040230140 | Steen | Nov 2004 | A1 |
20040262683 | Bohr et al. | Dec 2004 | A1 |
20080092677 | Tjolsen | Apr 2008 | A1 |
20080119766 | Havardsholm et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
1915980 | Apr 2008 | EP |
2007011798 | Jan 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20140005578 A1 | Jan 2014 | US |