Over the past years, privacy and security policies, and related operations have become increasingly important. Breaches in security, leading to the unauthorized access of personal data (which may include sensitive personal data) have become more frequent among companies and other organizations of all sizes. Such personal data may include, but is not limited to, personally identifiable information (PII), which may be information that directly (or indirectly) identifies an individual or entity. Examples of PII include names, addresses, dates of birth, social security numbers, and biometric identifiers such as a person's fingerprints or picture. Other personal data may include, for example, customers' Internet browsing habits, purchase history, or even their preferences (e.g., likes and dislikes, as provided or obtained through social media).
Many organizations that obtain, use, and transfer personal data, including sensitive personal data, have begun to address these privacy and security issues. To manage personal data, many companies have attempted to implement operational policies and processes that comply with legal and industry requirements. However, there is an increasing need for improved systems and methods to manage personal data in a manner that complies with such policies.
Similarly, as individuals have become more aware of the risks associated with the theft or misuse of their personal data, they have sought additional tools to help them manage which entities process their personal data. There is currently a need for improved tools that would allow individuals to minimize the number of entities that process their personal data—especially entities that the individual doesn't actively do business with.
When a device or a data center that stores personal data experiences a failure, the operator of such a device or data center will typically desire to migrate the stored personal data and any other data to a backup device or data center. However, transfers of such data may be subject to jurisdictional rules and regulations that may govern the storage locations of such data. There is currently a need for systems and methods that facilitate the migration of data subject to regulatory restrictions while ensuring compliance with such restrictions.
A data subject access request processing system, according to various embodiments, comprises: one or more data subject access request management servers; a plurality of local storage nodes, each of the plurality of local storage nodes being physically located in a distinct geographic location; one or more processers; and memory. In some embodiments, the one or more processers are configured for: (1) receiving, from a remote computing device, at the one or more data subject access request management servers, a data subject access request for a data subject, the request comprising one or more request parameters; (2) identifying, based at least in part on the data subject access request, a particular local storage node of the plurality of local storage nodes; (3) routing the data subject access request from the one or more data subject access request management servers to the particular local storage node; (4) processing the request at the particular local storage node by identifying one or more pieces of personal data associated with the data subject, the one or more pieces of personal data being stored in one or more data repositories associated with a particular organization; and (5) taking one or more actions based at least in part on the data subject access request, the one or more actions including one or more actions related to the one or more pieces of personal data.
A computer-implemented data processing method for processing a data subject within a data system in order to fulfill a data subject access request, in particular embodiments, comprises: (1) receiving, by one or more processors, from a data subject, a data subject access request; identifying, based at least in part on the data subject access request, a particular local storage node of a plurality of local storage nodes; (2) routing the data subject access request to the particular local storage node; (3) processing the data subject access request at the local storage node by identifying the one or more pieces of personal data associated with the data subject, wherein identifying the one or more pieces of personal data associated with the data subject comprises scanning one or more data inventories stored within a data system for the one or more pieces of personal data; (4) in response to identifying the one or more pieces of personal data, at least temporarily storing the one or more pieces of personal data at the local storage node; and (5) providing access, to the data subject, to the one or more pieces of data at the local storage node.
A computer-implemented method for generating a visualization of one or more data transfers between one or more data assets, comprising: (1) identifying one or more data assets associated with a particular entity; (2) analyzing the one or more data assets to identify one or more data elements stored in the identified one or more data assets; (3) defining a plurality of physical locations and identifying, for each of the identified one or more data assets, a respective particular physical location of the plurality of physical locations; (4) analyzing the identified one or more data elements to determine one or more data transfers between the one or more data systems in different particular physical locations; (5) determining one or more regulations that relate to the one or more data transfers; and (6) generating a visual representation of the one or more data transfers based at least in part on the one or more regulations.
A computer-implemented method for assessing a risk associated with one or more data transfers between one or more data assets that comprises: (1) creating a data transfer record for a transfer of data between a first asset in a first location and a second asset in a second location; (2) accessing a set of data transfer rules that are associated with the data transfer record; (3) performing a data transfer assessment based at least in part on applying the set of data transfer rules on the data transfer record; (4) identifying one or more data transfer risks associated with the data transfer record, based at least in part on the data transfer assessment; (5) calculating a risk score for the data transfer based at least in part on the one or more data transfer risks associated with the data transfer record; (6) digitally storing the risk score for the data transfer.
A computer-implemented data processing method for identifying one or more pieces of personal data associated with a data subject within a data system in order to fulfill a data subject access request, according to various embodiments, comprises: (1) receiving, by one or more processors, from a data subject, a data subject access request; (2) determining, by one or more processors, based on the data subject access request, a location of the request; (3) routing, by one or more processors, the data subject access request to one or more local storage nodes based at least in part on the location of the request; (4) processing, by one or more processors at the one or more local storage nodes, the data subject access request by identifying the one or more pieces of personal data associated with the data subject. In some embodiments, identifying the one or more pieces of personal data associated with the data subject comprises accessing one or more data models defining a location of one or more data inventories stored within the data system for the one or more pieces of personal data. In some embodiments, the method further comprises, in response to identifying the one or more pieces of personal data, taking one or more actions such as, for example: deleting the one or more pieces of personal data from the data system; modifying at least one of the one or more pieces of personal data and storing the modified at least one of the one or more pieces of personal data in the data system; and generating a report comprising the one or more pieces of personal data and providing the report to the data subject.
A computer-implemented data processing method for automatically processing inquiries regarding how an entity handles personal data, according to particular embodiments, comprises: providing a chatbot executed by one or more computer processors that is configured for automatically processing one or more inquiries from one or more users regarding a general type of personal data that a particular entity stores for data subjects who have one or more specified types of relationships with a particular entity; receiving, via the chatbot, an inquiry regarding a process for submitting a DSAR to the particular entity, or what type of personal data the particular entity stores for a particular data subject; at least partially in response to receiving the request, using the chatbot to obtain generic information from the data subject comprising at least one relationship that the data subject has with the particular entity; determining, by one or more computer processors, based at least in part on the generic information, a general type of personal data that the particular entity stores for the data subject; and using the chatbot to communicate, to the data subject, the general type of personal data that the particular entity stores for the data subject.
In various embodiments, determining the general type of personal data that the particular entity stores for the data subject comprises determining the general type of personal data that the particular entity stores for data subjects that have the one or more relationships with the entity, as specified in the generic information. In various embodiments, using the generic information to determine the general type of personal data that the particular entity stores for the data subject is executed by the chatbot. In various embodiments, communicating the general type of personal data that the particular entity stores for the data subject is done in lieu of fulfilling a formal data subject access request. In particular embodiments, the relationship that the data subject has with the particular entity comprises at least one relationship selected from a group consisting of: (A) the data subject is a customer of the particular entity; (B) the data subject is on one or more mailing lists of the particular entity; and (C) the data subject uses one or more products or services of the particular entity. In various embodiments, one or more computer processors may further determine, based at least in part on the generic information, one or more ways that the particular entity uses the general type of personal data that the particular entity stores for the data subject, and using the chatbot to communicate, to the data subject, the one or more ways that the particular entity uses the general type of personal data that the particular entity stores for the data subject. In various embodiments, the data subject is a customer of the particular entity. In various embodiments, the data subject is on one or more mailing lists of the particular entity. In various embodiments, the inquiry comprises at least one question regarding the process for submitting a DSAR to the particular entity. In various embodiments, the inquiry comprises at least one question regarding what type of personal data the particular entity stores for a particular data subject. In various embodiments, the step of using the generic information to determine the general type of personal data that the particular entity stores for the data subject comprises using the generic information, in combination with data from a privacy-related data map, to determine the general type of personal data that the particular entity stores for entities that have generic information that corresponds to the generic information provided by the data subject. In various embodiments, the privacy-related data map identifies one or more electronic associations between at least two data assets within a data model comprising a respective digital inventory for each of the two or more data assets, each respective digital inventory comprising one or more respective inventory attributes selected from a group consisting of: one or more processing activities associated with each of the respective data assets; transfer data associated with each of the respective data assets; and respective identifiers of one or more pieces of personal data associated with each of the respective data assets.
A computer system for automatically processing inquiries regarding how a particular entity handles personal data, according to particular embodiments, comprises: at least one computer processor; and computer memory storing computer-executable instructions for: providing a chatbot that is executed by the at least one computer processor and that is configured for automatically processing one or more inquiries from one or more users regarding one or more privacy practices of the particular entity; receiving, via the chatbot, an inquiry regarding a process for submitting a DSAR to the particular entity, or to disclose what type of personal data the particular entity stores for a particular data subject; in response to receiving the request, using the chatbot to obtain particular information from the data subject comprising at least one relationship that the data subject has with the particular entity; using the particular information to determine one or more general types of personal data that the particular entity stores for the data subject; and using the chatbot to communicate, to the data subject, the one or more general types of personal data that the particular entity stores for the data subject.
In various embodiments, the particular information is generic information about the data subject, which is not usable to identify the data subject. In various embodiments, the step of using the generic information to determine the general type of personal data that the particular entity stores for the data subject comprises using the generic information, in combination with data from a privacy-related data map, to determine at least one general type of personal data that the particular entity stores for entities that have generic information that corresponds to the generic information provided by the data subject. In various embodiments, the privacy-related data map identifies one or more electronic associations between at least two data assets within a data model comprising a respective digital inventory for each of the two or more data assets, each respective digital inventory comprising one or more respective inventory attributes selected from a group consisting of: one or more processing activities associated with each of the respective data assets; transfer data associated with each of the respective data assets; and respective identifiers of one or more pieces of personal data associated with each of the respective data assets. In various embodiments, the step of using the information to determine the general type of personal data that the particular entity stores for the data subject is executed by the chatbot. In various embodiments, the relationship that the data subject has with the particular entity comprises at least one relationship selected from a group consisting of: (A) the data subject is a customer of the particular entity; (B) the data subject is on one or more mailing lists of the particular entity; and (C) the data subject uses one or more products of the particular entity. In various embodiments, the data subject is a customer of the particular entity. In various embodiments, the data subject is on one or more mailing lists of the particular entity. In various embodiments, the computer memory stores computer-executable instructions for: determining, by one or more computer processors, based at least in part on the particular information, one or more ways that the particular entity uses the one or more general types of personal data that the particular entity stores for the data subject; and using the chatbot to communicate, to the data subject, the one or more ways that the particular entity uses the one or more general types of personal data that the particular entity stores for the data subject. In various embodiments, the inquiry comprises at least one question regarding what general type of personal data the particular entity stores for a particular data subject.
A computer-readable medium storing computer-executable instructions, according to particular embodiments, comprises instructions for: providing a chatbot, executed by one or more computer processors, that is configured for automatically processing one or more inquiries from one or more users regarding a general type of personal data that a particular entity stores for data subjects who have one or more specified types of relationships with a particular entity; receiving, via the chatbot, an inquiry regarding what general type of personal data the particular entity stores for a particular data subject; in response to receiving the request, using the chatbot to obtain generic information from the data subject comprising at least one relationship that the data subject has with the particular entity; determining, by one or more computer processors, based at least in part on the generic information and at least one privacy-related data map, a general type of personal data that the particular entity stores for the data subject; and using the chatbot to communicate, to the data subject, the general type of personal data that the particular entity stores for the data subject, wherein: the privacy-related data map identifies one or more electronic associations between at least two data assets within a data model comprising a respective digital inventory for each of the two or more data assets, each respective digital inventory comprising one or more respective inventory attributes selected from a group consisting of: one or more processing activities associated with each of the respective data assets; transfer data associated with each of the respective data assets; and respective identifiers of one or more pieces of personal data associated with each of the respective data assets.
In various embodiments, communicating the general type of personal data that the particular entity stores for the data subject is done in lieu of fulfilling a formal data subject access request. In various embodiments, the step of using the generic information and at least one data map to determine the general type of personal data that the particular entity stores for the data subject is executed by the chatbot. In various embodiments, the relationship that the data subject has with the particular entity comprises at least one relationship selected from a group consisting of: (A) the data subject is a customer of the particular entity; (B) the data subject is on one or more mailing lists of the particular entity; and (C) the data subject uses one or more products of the particular entity. In various embodiments, the data subject is a customer of the particular entity. In various embodiments, the data subject is on one or more mailing lists of the particular entity. In various embodiments, the computer-executable instructions further comprise instructions for: determining, by one or more computer processors, based at least in part on the generic information, one or more ways that the particular entity uses the general type of personal data that the particular entity stores for the data subject; and using the chatbot to communicate, to the data subject, the one or more ways that the particular entity uses the general type of personal data that the particular entity stores for the data subject.
A computer-implemented data processing method for processing data subject access requests, according to particular embodiments, comprises: receiving, by at least one computer processor, a data subject access request that requests data regarding a particular data subject, the data subject access request comprising a request to execute at least one action selected from a group consisting of: deleting personal data of the data subject; modifying personal data of the data subject; and providing personal data of the data subject; at least partially in response to receiving the data subject access request, determining whether the data subject access request was initiated by an automated source; in response to determining that the data subject access request was initiated by an automated source, automatically taking at least one action, by at least one computer processor, to have the data subject access request reinitiated by a human source; and at least partially in response to determining that the data subject access request was initiated by a human, automatically facilitating the fulfillment of the data subject access request.
In various embodiments, determining that the data subject access request was initiated by an automated source comprises determining that that the data subject access request was submitted from a source that has been previously identified as an automated source of data subject access requests. In various embodiments, automatically taking at least one action, by at least one computer processor, to have the data subject access request reinitiated by a human source comprises taking at least one defensive action to block a successful submission of the data subject access request by the automated source. In various embodiments, the at least one defensive action comprises utilizing one or more HTML tagging techniques to at least partially prevent a bot tool from automatically matching a form for use in submitting one or more data subject access requests to a known form that the bot can complete. In various embodiments, the at least one defensive action comprises dynamically modifying a format of a form for use in submitting one or more data subject access requests. In various embodiments, determining that the data subject access request was initiated by an automated source comprises determining that that the data subject access request was submitted from a source that has submitted more than a predetermined number of data subject access requests to a particular data subject access processing system in the past. In various embodiments, a data processing method for processing data subject access requests may further comprise determining that the data subject access request was initiated by an automated source comprises determining that that the source submitted multiple data subject access requests at about the same time as the particular data subject access request was submitted. In various embodiments, automatically taking at least one action, by at least one computer processor, to have the data subject access request reinitiated by a human source comprises automatically taking at least one defensive action to block a successful submission of the data subject access request by the automated source. In various embodiments, automatically taking the at least one defensive action comprises, at least partially in response to receiving the data subject access request: (1) generating a unique URL; and (2) at least temporarily providing access to an electronic form for completing a data subject access request at the unique URL. In various embodiments, automatically taking the at least one defensive action comprises, at least partially in response to receiving the data subject access request: (1) setting a session cookie on the browser of a client computer that is attempting to submit the data subject access request; (2) using the session cookie to determine whether the data subject access request is being submitted from a domain associated with a third-party DSAR aggregator; and (3) in response to determining that the data subject access request is being submitted from a domain associated with a third-party DSAR aggregator, rejecting the data subject access request. In various embodiments, automatically taking the at least one defensive action comprises dynamically modifying a format of a form for use in submitting one or more data subject access requests. In various embodiments, automatically taking at least one defensive action comprises utilizing one or more HTML tagging techniques to at least partially prevent the automated source from automatically matching a form for use in submitting one or more data subject access requests to a known form that the automated source can complete.
A computer-readable medium may store computer-executable instructions, according to particular embodiments, for: receiving a data subject access request that requests data regarding a particular data subject, the data subject access request comprising a request to execute at least one action selected from a group consisting of: deleting personal data of the data subject; modifying personal data of the data subject; and providing information regarding the use, by a particular entity, of the data subject's personal data; at least partially in response to receiving the data subject access request, determining whether the data subject access request was initiated was initiated robotically; in response to determining that the data subject access request was initiated robotically, preventing fulfillment of the robotically-generated data subject access request; and at least partially in response to determining that the data subject access request was initiated by a human, automatically facilitating the fulfillment of the data subject access request.
In various embodiments, determining that the data subject access request was generated robotically comprises: analyzing data subject access submission activity from a particular source; and in response to determining that the data subject access submission activity is inconsistent with human data subject access submission activity, determining that the data subject access request was generated robotically. In various embodiments, automatically taking at least one action, by at least one computer processor, to have the data subject access request reinitiated by a human source comprises taking at least one defensive action to block a successful submission of the data subject access request by the automated source. In various embodiments, the at least one defensive action comprises utilizing one or more HTML tagging techniques to at least partially prevent a bot tool from automatically matching a form for use in submitting one or more data subject access requests to a known form that the bot can complete. In various embodiments, the at least one defensive action comprises dynamically modifying a format of a form for use in submitting one or more data subject access requests. In various embodiments, automatically taking at least one action, by at least one computer processor, to have the data subject access request reinitiated by a human source comprises automatically taking at least one defensive action to block a successful submission of the data subject access request by the automated source. In various embodiments, automatically taking the at least one defensive action comprises, at least partially in response to receiving the data subject access request: (1) generating a URL; and (2) at least temporarily providing access to an electronic form for completing a data subject access request at the URL. In various embodiments, the URL is unique to the data subject access request. In various embodiments, automatically taking the at least one defensive action comprises dynamically modifying a format of a form for use in submitting one or more data subject access requests. In various embodiments, automatically taking at least one defensive action comprises utilizing one or more HTML tagging techniques to at least partially prevent a bot tool from automatically matching a form for use in submitting one or more data subject access requests to a known form that the bot can complete.
A computer system for processing data subject access requests, according to particular embodiments, comprises: at least one computer processor; and computer memory storing computer-executable instructions that, when executed by the at least one computer processor, are operable for: receiving, by the at least one computer processor, a data subject access request that requests data regarding a particular data subject, the data subject access request comprising a request to execute at least one action selected from a group consisting of: deleting personal data of the data subject; modifying personal data of the data subject; and providing personal data of the data subject; at least partially in response to receiving the data subject access request, determining, by the at least one processor, whether the data subject access request was submitted by an automated source; in response to determining that the data subject access request was submitted by an automated source, automatically taking at least one action, by the at least one computer processor, to block a successful submission of the data subject access request by the automated source and to instead have the data subject access request resubmitted by a human source; and at least partially in response to determining that the data subject access request was submitted by a human, automatically facilitating the fulfillment of the data subject access request.
In various embodiments, the at least one action comprises utilizing one or more HTML tagging techniques to at least partially prevent an automated source from automatically matching a form for use in submitting one or more data subject access requests to a known form that the automated source can complete. In various embodiments, the at least one defensive action comprises dynamically modifying a format of a form for use in submitting one or more data subject access requests. In various embodiments, automatically taking the at least one defensive action comprises, at least partially in response to receiving the data subject access request: (1) generating a URL; and (2) at least temporarily providing access to an electronic form for completing a data subject access request at the URL. In various embodiments, the URL is unique to the data subject access request.
A computer-implemented data processing method for migrating personal data between data centers, according to various embodiments, may include: receiving, by one or more computer processors, an indication that data stored at a first data asset is to be migrated to a target data asset; at least partially in response to receiving the indication that the data stored at the first data asset is to be migrated to the target data asset: accessing, by one or more processors, a data model associated with the first data asset and a privacy-related data map, wherein the privacy-related data map identifies one or more electronic associations between the first data asset and the second data asset; determining, by one or more processors based at least in part on the data model associated with the first data asset, that the data stored at the first data asset comprises personal data; and selecting, by one or more processors based at least in part on the data model associated with the first data asset, the privacy-related data map, and the determination that the data stored at the first data asset comprises personal data, a second data asset as the target data asset; and initiating, by one or more processors, a transfer of the data stored at the first data asset to the second data asset.
In particular embodiments, the first data asset is located in a first data center at a first geographical location, wherein the second data asset is located in a second data center at a second geographical location, and wherein the first geographical location is distinct from the second geographical location. In particular embodiments, receiving the indication that data stored at the first data asset is to be migrated to the target data asset comprises receiving an indication that a data center in which the first data asset is located has failed or is anticipated to fail. In particular embodiments, selecting the second data asset as the target data asset comprises: determining, based at least in part on the data model associated with the first data asset, that the data stored at the first data asset is subject to one or more regulations associated with data transfers; and determining that the transfer of the data stored at the first data asset to the second data asset complies with the one or more regulations associated with data transfers. In particular embodiments, the method further includes determining based at least in part on the data model associated with the first data asset, regulatory requirements associated with the first data asset; and selecting the second data asset as the target data asset is further based at least in part on the regulatory requirements associated with the first data asset. In particular embodiments, the regulatory requirements associated with the first data asset are associated with a particular geographical location. In particular embodiments, selecting the second data asset as the target data asset comprises determining that the first data asset and the second data asset are located in a same regulatory jurisdiction.
A computer system for migrating personal data between data assets, according to various embodiments, may include: at least one computer processor; and computer memory storing computer-executable instructions that, when executed by the at least one computer processor, are operable for: detecting, by the at least one computer processor, an indication that a data center in which a first data asset is located has failed or is anticipated to fail; at least partially in response to detecting the indication that the data center in which the first data asset is located has failed or is anticipated to fail, determining, by the at least one computer processor, to migrate data from the first data asset to a target data asset; at least partially in response to determining to migrate the data from the first data asset to the target data asset: accessing, by the at least one computer processor, a data model associated with the first data asset; determining, by the at least one computer processor using the data model associated with the first data asset, one or more regulations associated with data transfers between the first data asset and a second data asset; determining, by the at least one computer processor using the data model associated with the first data asset, a type of data stored on the first data asset to be transferred to the target data asset; selecting, by the at least one computer processor based at least in part on the one or more regulations associated with data transfers between the first data asset and the second data asset and the type of data stored on the first data asset to be transferred to the target data asset, the second data asset as the target data asset; and transferring, by the at least one computer processor, the data from the first data asset to the second data asset.
In particular embodiments, determining the type of data stored on the first data asset to be transferred to the target data asset comprises using data from a privacy-related data map to determine the type of data stored on the first data asset to be transferred to the target data asset. In particular embodiments, determining the type of data stored on the first data asset to be transferred to the target data asset comprises determining that the data stored on the first data asset to be transferred to the target data asset comprises personal data. In particular embodiments, determining the one or more regulations associated with data transfers between the first data asset and the second data asset comprises using data from a privacy-related data map to determine the one or more regulations associated with data transfers between the first data asset and the second data asset. In particular embodiments, the privacy-related data map identifies one or more electronic associations between the first data asset and the second data asset within a data model. In particular embodiments, the first data asset comprises a plurality of storage assets managed as a single storage asset. In particular embodiments, the first data asset is operated by a first entity and the second data asset is operated by a second entity, and wherein the first entity is distinct from the second entity.
A non-transitory computer-readable medium, according to various embodiments, may store computer-executable instructions for: receiving, by one or more computer processors, an instruction to migrate data stored at a first data asset to a target data asset; determining, by one or more processors based at least in part on a data model associated with the first data asset, one or more data elements associated with the first data asset; determining, by one or more processors based at least in part on the data model associated with the first data asset, one or more respective attributes of each of the one or more data elements associated with the first data asset; determining, by one or more processors based at least in part on the one or more respective attributes of each of the one or more data elements associated with the first data asset, data transfer requirements associated with each of the one or more data elements associated with the first data asset, wherein the data transfer requirements comprise regulatory requirements for a jurisdiction in which the first data asset is located; selecting, by one or more processors based at least in part on the data transfer requirements associated with each of the one or more data elements associated with the first data asset, a second data asset as the target data asset; and initiating, by one or more processors, a transfer of a subset of the data stored at the first data asset to the second data asset.
In particular embodiments, determining the one or more respective attributes of each of the one or more data elements associated with the first data asset comprises determining that at least one of the one or more data elements associated with the first data asset is associated with personal data. In particular embodiments, determining the data transfer requirements associated with each of the one or more data elements associated with the first data asset comprises determining data transfer requirements associated with personal data. In particular embodiments, determining the data transfer requirements associated with personal data comprises: determining one or more regulations associated with data transfers of personal data based at least in part on the regulatory requirements for the jurisdiction in which the first data asset is located; and determining that the transfer of the subset of the data stored at the first data asset to the second data asset complies with the one or more regulations associated with data transfers of personal data. In particular embodiments, the second data asset is selected as the target data asset further based on the data model associated with the first data asset. In particular embodiments, the data model associated with the first data asset identifies one or more electronic associations between the first data asset and the second data asset.
A computer system for migrating personal data between data assets, according to various embodiments, may include: detection means for detecting an instruction to migrate data from a first data asset to a target data asset; data model storage means for storing a data model associated with the first data asset; privacy-related data map storage means for storing a privacy-related data map identifying one or more electronic associations between the first data asset and a second data asset; data access means for accessing the data model associated with the first data asset and the privacy-related data map; data type determination means for determining, based at least in part on the data model associated with the first data asset and the privacy-related data map, that the data stored on the first data asset to be transferred to the target data asset comprises personal data; regulation determination means for determining, based at least in part on the data model associated with the first data asset, the privacy-related data map, and the determination that the data stored on the first data asset comprises personal data, one or more regulations associated with data transfers between the first data asset and the second data asset; data asset selection means for selecting, based on the one or more regulations associated with data transfers between the first data asset and the second data asset and the type of data stored on the first data asset to be transferred to the target data asset, the second data asset as the target data asset; and data transfer means for transferring the data from the first data asset to the second data asset.
A computer-implemented data processing method for automatically processing inquiries regarding how an entity handles personal data, according to various embodiments, may include: providing a chatbot executed by one or more computer processors, wherein the chatbot is configured for automatically processing one or more inquiries from one or more users regarding personal data that a particular entity handles for a data subject who has a specified type of relationship with a particular entity; receiving, by one or more computer processors via a chatbot interaction window, data subject information associated with the data subject from a user; determining, by one or more computer processors based at least in part on the data subject information, personal data information associated with the data subject; presenting, by one or more computer processors via the chatbot interaction window, the personal data information; receiving, by one or more computer processors via the chatbot interaction window, a request to process a data subject access request (DSAR); receiving, by one or more computer processors via the chatbot interaction window, detailed data subject information from the user; automatically processing, by one or more computer processors based at least in part on the detailed data subject information, the DSAR; and presenting, by one or more computer processors via the chatbot interaction window, an indication of completion of processing of the DSAR.
In particular embodiments, determining, based at least in part on the data subject information, the personal data information associated with the data subject comprises determining a type of personal data that the particular entity stores for the data subject. In particular embodiments, receiving the data subject information associated with the data subject comprises receiving an indication of a relationship of the data subject with the particular entity. In particular embodiments, the relationship of the data subject with the particular entity comprises at least one relationship selected from a group consisting of: (a) the data subject is a customer of the particular entity; (b) the data subject is on one or more mailing lists of the particular entity; and (c) the data subject uses one or more products or services of the particular entity. In particular embodiments, determining, by one or more computer processors based at least in part on the data subject information, the personal data information associated with the data subject comprises determining, by one or more computer processors based at least in part on the data subject information, one or more ways that the particular entity uses the personal data that the particular entity handles for the data subject. In particular embodiments, determining, by one or more computer processors based at least in part on the data subject information, the personal data information associated with the data subject comprises determining, by one or more computer processors based at least in part on the data subject information, a length of time that the particular entity stores the personal data that the particular entity handles for the data subject. In particular embodiments, the method may further include receiving, by one or more computer processors via the chatbot interaction window, an inquiry comprises at least one question regarding a process for submitting the DSAR to the particular entity.
A computer system for automatically processing inquiries regarding how a particular entity handles personal data, according to various embodiments, may include: at least one computer processor; and computer memory storing computer-executable instructions that, when executed by the at least one computer processor, are operable for: providing a chatbot executed by the at least one computer processor, wherein the chatbot is configured for automatically processing one or more inquiries from one or more users regarding personal data that a particular entity handles for a data subject who has a specified type of relationship with a particular entity; receiving, by the at least one processor via the chatbot, an inquiry comprising at least one question regarding a process for submitting a data subject access request (DSAR) to the particular entity; presenting, by the at least one processor via the chatbot, a request for data subject information associated with the data subject; receiving, by the at least one processor via the chatbot, the data subject information associated with the data subject; determining, by the at least one processor based at least in part on the data subject information, personal data information associated with the data subject; presenting, by the at least one processor via the chatbot, a subset of the personal data information; receiving, by the at least one processor via the chatbot, a request to submit the DSAR to the particular entity; and presenting, by the at least one processor via the chatbot, instructions for submitting the DSAR to the particular entity.
In particular embodiments, determining, by the at least one processor based at least in part on the data subject information, the personal data information associated with the data subject comprises using the data subject information in combination with a privacy-related data map to determine the personal data information associated with the data subject. In particular embodiments, the personal data information associated with the data subject comprises one or more types of personal data collected by the particular entity. In particular embodiments, the privacy-related data map identifies one or more electronic associations between two or more data assets within a data model comprising a respective digital inventory for each of the two or more data assets. In particular embodiments, each respective digital inventory for each of the two or more data assets comprises one or more inventory attributes selected from a group consisting of: (a) one or more processing activities associated with the respective data asset; (b) transfer data associated with each of the respective data asset; and (c) respective identifiers of one or more pieces of personal data associated with each of the respective data assets. In particular embodiments, each of the two or more data assets is a data asset selected from a group consisting of: (a) a storage asset; (b) a transfer asset; and (c) a collection asset. In particular embodiments, one or more of the two or more data assets comprises a plurality of storage assets managed as a single storage asset.
A non-transitory computer-readable medium, according to various embodiments, may store computer-executable instructions for: providing a chatbot, executed by one or more computer processors, that is configured for automatically processing one or more inquiries from one or more users regarding a general type of personal data that a particular entity stores for data subjects who have one or more specified types of relationships with a particular entity; receiving, via the chatbot, an inquiry regarding a type of personal data that the particular entity stores for a particular data subject; in response to receiving the inquiry, using the chatbot to obtain data subject information from the data subject comprising at least one relationship that the data subject has with the particular entity; determining, by one or more computer processors based at least in part on the data subject information and at least one privacy-related data map, the type of personal data that the particular entity stores for the particular data subject; and using the chatbot to communicate, to the data subject, the type of personal data that the particular entity stores for the particular data subject, wherein: the privacy-related data map identifies one or more electronic associations between two or more data assets within a data model comprising a respective digital inventory for each of the two or more data assets, each respective digital inventory comprising one or more respective inventory attributes selected from a group consisting of: one or more processing activities associated with each of the respective data assets; transfer data associated with each of the respective data assets; and respective identifiers of one or more pieces of personal data associated with each of the respective data assets.
In particular embodiments, using the chatbot to communicate the type of personal data that the particular entity stores for the particular data subject is done in lieu of fulfilling a formal data subject access request (DSAR). In particular embodiments, determining, by one or more computer processors based at least in part on the data subject information and the at least one privacy-related data map, the type of personal data that the particular entity stores for the particular data subject is executed by the chatbot. In particular embodiments, the at least one relationship that the data subject has with the particular entity comprises at least one relationship selected from a group consisting of: (a) the data subject is a customer of the particular entity; (b) the data subject is on one or more mailing lists of the particular entity; and (c) the data subject uses one or more products or services of the particular entity. In particular embodiments, the non-transitory computer-readable medium further stores computer-executable instructions for using the chatbot to fulfill a formal data subject access request (DSAR) based at least in part on the data subject information obtained from the data subject.
A computer system for migrating personal data between data assets, according to various embodiments, may include: inquiry processing means for automatically processing one or more inquiries from one or more users regarding personal data that a particular entity handles for a data subject who has a specified type of relationship with a particular entity; data subject information receiving means for receiving, via a chatbot interaction window, data subject information associated with the data subject from a user; personal data information determination means for determining, based at least in part on the data subject information and a privacy-related data map, personal data information associated with the data subject; chatbot interaction window presentation means for presenting, via the chatbot interaction window, the personal data information associated with the data subject; data subject access request (DSAR) receiving means for receiving, via the chatbot interaction window, a request to process a DSAR associated with the personal data information associated with the data subject; detailed data subject information receiving means for receiving, via the chatbot interaction window, detailed data subject information from the user; DSAR processing means for automatically processing, based at least in part on the detailed data subject information, the DSAR; and the chatbot interaction window presentation means for presenting, via the chatbot interaction window, an indication of completion of processing of the DSAR.
Various embodiments of a data model generation and population system are described below. In the course of this description, reference will be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Various embodiments now will be described more fully hereinafter with reference to the accompanying drawings. It should be understood that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Overview
In various embodiments, an organization, corporation, etc. may be required to provide information requested by an individual for whom the organization stores personal data. As a particular example, an organization may be required to provide an individual with a listing of, for example: (1) any personal data that the organization is processing for an individual, (2) an explanation of the categories of data being processed and the purpose of such processing; (3) categories of third parties to whom the data may be disclosed; (4) etc. In particular embodiments, when processing a data subject access request (e.g., a request for such information), a data subject access request processing system may be configured to: (1) receive a data subject access request from a data subject, the data subject access request comprising one or more requests related to the one or more rights described herein (e.g., a request for a copy of the data subject's personal data, a request regarding how long personal data associated with the data subject is being stored by the system, etc.); (2) process the request in any suitable manner described herein; (3) fulfill the request based at least in part on one or more request parameters; (4) store one or more pieces of metadata associated with the processing of, fulfilment of, and/or response to the request; and/or (5) archive one or more pieces of data associated with the request based on one or more data retention rules.
In various embodiments, a data subject access request processing system may be implemented in the context of any suitable privacy management system that is configured to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information (e.g., such as personal data). In various embodiments, a particular organization, sub-group, or other entity may initiate a privacy campaign or other activity (e.g., processing activity) as part of its business activities. In such embodiments, the privacy campaign may include any undertaking by a particular organization (e.g., such as a project or other activity) that includes the collection, entry, and/or storage (e.g., in computer memory) of any personal data associated with one or more individuals (e.g., data subjects). In particular embodiments, a privacy campaign may include any project undertaken by an organization that includes the use of personal data, or any other activity that could have an impact on the privacy of one or more individuals.
In any embodiment described herein, personal data may include, for example: (1) the name of a particular data subject (which may be a particular individual); (2) the data subject's address; (3) the data subject's telephone number; (4) the data subject's e-mail address; (5) the data subject's social security number; (6) information associated with one or more of the data subject's credit accounts (e.g., credit card numbers); (7) banking information for the data subject; (8) location data for the data subject (e.g., their present or past location); (9) internet search history for the data subject; and/or (10) any other suitable personal information, such as other personal information discussed herein. In particular embodiments, such personal data may include one or more cookies (e.g., where the individual is directly identifiable or may be identifiable based at least in part on information stored in the one or more cookies). In still other embodiments, the personal data may include any data which may be used either alone or in conjunction with other data or information to potentially identify a particular data subject (e.g., individual)
Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, the California Consumer Privacy Act, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to obtain confirmation of whether a particular organization is processing their personal data; (2) a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected); (3) a right to obtain information about one or more categories of data being processed (e.g., what type of personal data is being collected, stored, etc.); (4) a right to obtain information about one or more categories of recipients with whom their personal data may be shared (e.g., both internally within the organization or externally); (5) a right to obtain information about a time period for which their personal data will be stored (e.g., or one or more criteria used to determine that time period); (6) a right to obtain a copy of any personal data being processed (e.g., a right to receive a copy of their personal data in a commonly used, machine-readable format); (7) a right to request erasure (e.g., the right to be forgotten), rectification (e.g., correction or deletion of inaccurate data), or restriction of processing of their personal data; and (8) any other suitable rights related to the collection, storage, and/or processing of their personal data (e.g., which may be provided by law, policy, industry or organizational practice, etc.).
As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store personal data in a plurality of different locations which may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to personal data (e.g., such as responding to one or more requests by data subjects related to their personal data) may be particularly difficult (e.g., in terms of cost, time, etc.). In particular embodiments, the data subject access request fulfillment system may utilize one or more data model generation and population techniques to create a centralized data map with which the system can identify personal data stored, collected, or processed for a particular data subject, a reason for the processing, and any other information related to the processing.
In still other embodiments, as may be appreciated in light of this disclosure, the processing of particular data subject access request may result in the at least temporary storage of personal data (e.g., which may, for example, be subject to the same legal and/or industry standards related to the collection, processing, and storage of personal data). For example, when processing a particular data subject access request, the system may collect at least some personal data from a data subject (e.g., or other requestor on behalf of the data subject) in order to identify the data subject. As such, in order to fulfil the data subject access request (e.g., which may include a request to delete any data associated with the data subject), the system may need to collect identifying personal data from the data subject in order to use that data to determine what personal data the organization or system is storing that is associated with that data subject.
Accordingly, in light of the above, the system may be configured to utilize one or more local storage nodes in order to process a data subject access request on behalf of a data subject. In particular embodiments, the one or more local storage nodes may be local to the data subject making the request (e.g., in the same country as the data subject, in the same jurisdiction as the data subject, in the same geographic area as the data subject, etc.). The system may, for example, be configured to: (1) receive a data subject access request from a data subject (e.g., via a web form); (2) identify a suitable local storage node based at least in part on the request and/or the data subject; (3) route the data subject access request to the identified local storage node; and (4) process the data subject access request at the identified local storage node. In this way, the system may, for example, create a centralized, local record of any personal data that the system has stored regarding the particular data subject. This local processing and at least temporary storage of personal data at the local storage node may facilitate a more straightforward processing of data subject access requests that may, for example, originate from any of a plurality of data subjects that may reside throughout the world. The system may then fulfil the request at the one or more local storage nodes, which may, for example, avoid any additional interjurisdictional transfers or other processing of personal data (e.g., which may be subject to additional restrictions).
In various embodiments, an organization may be required to comply with one or more legal or industry requirements related to the storage of personal data (e.g., which may, for example, include personally identifiable information) even when responding to and fulfilling DSARs. In particular, when responding to a data subject access request, the system may compile one or more pieces of personal data for provision to a data subject. The system may, for example, store this compilation of personal data at least temporarily in order to provide access to the data to the data subject (e.g., or to another individual on behalf of the data subject). As such, the system may be configured to implement one or more data retention rules in order to ensure compliance with any legal or industry requirements related to the temporary storage of the collected data while still fulfilling any requirements related to providing the data to data subjects that request it, deleting the data at least partially in response to such a request, etc.
The system may then, for example, be configured to automatically archive personal data (e.g., personally identifiable information) associated with a data subject access request based on one or more data retention rules (e.g., one or more data retention rules designed to comply with one or more legal or industry standards while also enabling compliance with any request made by a data subject based on a right afforded by such standards). In particular embodiments, the system may then be configured to store metadata associated with a completed data subject access request which may, for example, include data related to the completion of the request, a date and time of the completion, what data was provided in response to the request, etc.
Exemplary Technical Platforms
As will be appreciated by one skilled in the relevant field, the present invention may be, for example, embodied as a computer system, a method, or a computer program product. Accordingly, various embodiments may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, particular embodiments may take the form of a computer program product stored on a computer-readable storage medium having computer-readable instructions (e.g., software) embodied in the storage medium. Various embodiments may take the form of web-implemented computer software. Any suitable computer-readable storage medium may be utilized including, for example, hard disks, compact disks, DVDs, optical storage devices, and/or magnetic storage devices.
Various embodiments are described below with reference to block diagrams and flowchart illustrations of methods, apparatuses (e.g., systems), and computer program products. It should be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by a computer executing computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus to create means for implementing the functions specified in the flowchart block or blocks.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner such that the instructions stored in the computer-readable memory produce an article of manufacture that is configured for implementing the function specified in the flowchart block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide steps for implementing the functions specified in the flowchart block or blocks.
Accordingly, blocks of the block diagrams and flowchart illustrations support combinations of mechanisms for performing the specified functions, combinations of steps for performing the specified functions, and program instructions for performing the specified functions. It should also be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, can be implemented by special purpose hardware-based computer systems that perform the specified functions or steps, or combinations of special purpose hardware and other hardware executing appropriate computer instructions.
Example System Architecture
As may be understood from
The one or more computer networks 115 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between The Intelligent Identity Scanning Server 130 and the One or More Third Party Servers 160 may be, for example, implemented via a Local Area Network (LAN) or via the Internet. In other embodiments, the One or More Databases 140 may be stored either fully or partially on any suitable server or combination of servers described herein.
In particular embodiments, the computer 200 may be connected (e.g., networked) to other computers in a LAN, an intranet, an extranet, and/or the Internet. As noted above, the computer 200 may operate in the capacity of a server or a client computer in a client-server network environment, or as a peer computer in a peer-to-peer (or distributed) network environment. The Computer 200 may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any other computer capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that computer. Further, while only a single computer is illustrated, the term “computer” shall also be taken to include any collection of computers that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
An exemplary computer 200 includes a processing device 202, a main memory 204 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), static memory 206 (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage device 218, which communicate with each other via a bus 232.
The processing device 202 represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device 202 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 202 may also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 202 may be configured to execute processing logic 226 for performing various operations and steps discussed herein.
The computer 120 may further include a network interface device 208. The computer 200 also may include a video display unit 210 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device 212 (e.g., a keyboard), a cursor control device 214 (e.g., a mouse), and a signal generation device 216 (e.g., a speaker).
The data storage device 218 may include a non-transitory computer-accessible storage medium 230 (also known as a non-transitory computer-readable storage medium or a non-transitory computer-readable medium) on which is stored one or more sets of instructions (e.g., software instructions 222 for data model generation) embodying any one or more of the methodologies or functions described herein. The software instructions 222 may also reside, completely or at least partially, within main memory 204 and/or within processing device 202 during execution thereof by computer 200—main memory 204 and processing device 202 also constituting computer-accessible storage media. The software instructions 222 may further be transmitted or received over a network 115 via network interface device 208.
While the computer-accessible storage medium 230 is shown in an exemplary embodiment to be a single medium, the term “computer-accessible storage medium” should be understood to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-accessible storage medium” should also be understood to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the computer and that cause the computer to perform any one or more of the methodologies of the present invention. The term “computer-accessible storage medium” should accordingly be understood to include, but not be limited to, solid-state memories, optical and magnetic media, etc.
Exemplary System Platform
Various embodiments of a Data Model Generation and Population System 100 may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the Data Model Generation and Population System 100 may be implemented to analyze a particular company or other organization's data assets to generate a data model for one or more processing activities, privacy campaigns, etc. undertaken by the organization. In particular embodiments, the system may implement one or more modules in order to at least partially ensure compliance with one or more regulations (e.g., legal requirements) related to the collection and/or storage of personal data. Various aspects of the system's functionality may be executed by certain system modules, including a Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, Data Subject Access Request Fulfillment Module 2900, Cross-Border Visualization Generation Module 3600, Adaptive Execution on a Data Model Module 3900, E-mail Scanning Module 4100, Webform Crawling Module 4300, and Data Asset and Webform Management Module 4400. These modules are discussed in greater detail below.
Although these modules are presented as a series of steps, it should be understood in light of this disclosure that various embodiments of the Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, Data Subject Access Request Fulfillment Module 2900, Cross-Border Visualization Generation Module 3600, Adaptive Execution on a Data Model Module 3900, E-mail Scanning Module 4100, Webform Crawling Module 4300, and Data Asset and Webform Management Module 4400 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, Data Subject Access Request Fulfillment Module 2900, Cross-Border Visualization Generation Module 3600, Adaptive Execution on a Data Model Module 3900, E-mail Scanning Module 4100, Webform Crawling Module 4300, and Data Asset and Webform Management Module 4400 may omit certain steps described below. In various other embodiments, the Data Model Generation Module 300, Data Model Population Module 1100, Data Population Questionnaire Generation Module 1200, Intelligent Identity Scanning Module 2600, Data Subject Access Request Fulfillment Module 2900, Cross-Border Visualization Generation Module 3600, Adaptive Execution on a Data Model Module 3900, E-mail Scanning Module 4100, Webform Crawling Module 4300, and Data Asset and Webform Management Module 4400 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).
In particular embodiments, the steps that the system executes when executing any of the modules described herein may be performed by any suitable computer server or combination of computer servers (e.g., any suitable computing device, server, or combination of computing device and/or server described herein).
Data Model Generation Module
In particular embodiments, a Data Model Generation Module 300 is configured to: (1) generate a data model (e.g., a data inventory) for one or more data assets utilized by a particular organization; (2) generate a respective data inventory for each of the one or more data assets; and (3) map one or more relationships between one or more aspects of the data inventory, the one or more data assets, etc. within the data model. In particular embodiments, a data asset (e.g., data system, software application, etc.) may include, for example, any entity that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, a first data asset may include any software or device (e.g., server or servers) utilized by a particular entity for such data collection, processing, transfer, storage, etc.
In particular embodiments, a particular data asset, or collection of data assets, may be utilized as part of a particular data processing activity (e.g., direct deposit generation for payroll purposes). In various embodiments, a data model generation system may, on behalf of a particular organization (e.g., entity), generate a data model that encompasses a plurality of processing activities. In other embodiments, the system may be configured to generate a discrete data model for each of a plurality of processing activities undertaken by an organization.
Turning to
In still other embodiments, the one or more data assets may comprise one or more third party assets which may, for example, send, receive and/or process personal data on behalf of the particular entity. These one or more data assets may include, for example, one or more software applications (e.g., such as Expensify to collect expense information, QuickBooks to maintain and store salary information, etc.).
Continuing to step 320, the system is configured to identify a first data asset of the one or more data assets. In particular embodiments, the first data asset may include, for example, any entity (e.g., system) that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, the first data asset may include any software or device utilized by a particular organization for such data collection, processing, transfer, etc. In various embodiments, the first data asset may be associated with a particular processing activity (e.g., the first data asset may make up at least a part of a data flow that relates to the collection, storage, transfer, access, use, etc. of a particular piece of data (e.g., personal data)). Information regarding the first data asset may clarify, for example, one or more relationships between and/or among one or more other data assets within a particular organization. In a particular example, the first data asset may include a software application provided by a third party (e.g., a third party vendor) with which the particular entity interfaces for the purpose of collecting, storing, or otherwise processing personal data (e.g., personal data regarding customers, employees, potential customers, etc.).
In particular embodiments, the first data asset is a storage asset that may, for example: (1) receive one or more pieces of personal data form one or more collection assets; (2) transfer one or more pieces of personal data to one or more transfer assets; and/or (3) provide access to one or more pieces of personal data to one or more authorized individuals (e.g., one or more employees, managers, or other authorized individuals within a particular entity or organization). In a particular embodiment, the first data asset is a primary data asset associated with a particular processing activity around which the system is configured to build a data model associated with the particular processing activity.
In particular embodiments, the system is configured to identify the first data asset by scanning a plurality of computer systems associated with a particular entity (e.g., owned, operated, utilized, etc. by the particular entity). In various embodiments, the system is configured to identify the first data asset from a plurality of data assets identified in response to completion, by one or more users, of one or more questionnaires.
Advancing to Step 330, the system generates a first data inventory of the first data asset. The data inventory may comprise, for example, one or more inventory attributes associated with the first data asset such as, for example: (1) one or more processing activities associated with the first data asset; (2) transfer data associated with the first data asset (e.g., how and where the data is being transferred to and/or from); (3) personal data associated with the first data asset (e.g., what type of personal data is collected and/or stored by the first data asset; how, and from where, the data is collected, etc.); (4) storage data associated with the personal data (e.g., whether the data is being stored, protected and deleted); and (5) any other suitable attribute related to the collection, use, and transfer of personal data. In other embodiments, the one or more inventory attributes may comprise one or more other pieces of information such as, for example: (1) the type of data being stored by the first data asset; (2) an amount of data stored by the first data asset; (3) whether the data is encrypted; (4) a location of the stored data (e.g., a physical location of one or more computer servers on which the data is stored); etc. In particular other embodiments, the one or more inventory attributes may comprise one or more pieces of information technology data related to the first data asset (e.g., such as one or more pieces of network and/or infrastructure information, IP address, MAC address, etc.).
In various embodiments, the system may generate the data inventory based at least in part on the type of first data asset. For example, particular types of data assets may have particular default inventory attributes. In such embodiments, the system is configured to generate the data inventory for the first data asset, which may, for example, include one or more placeholder fields to be populated by the system at a later time. In this way, the system may, for example, identify particular inventory attributes for a particular data asset for which information and/or population of data is required as the system builds the data model.
As may be understood in light of this disclosure, the system may, when generating the data inventory for the first data asset, generate one or more placeholder fields that may include, for example: (1) the organization (e.g., entity) that owns and/or uses the first data asset (a primary data asset, which is shown in the center of the data model in
As may be understood in light of this disclosure, the system may be configured to generate the one or more placeholder fields based at least in part on, for example: (1) the type of the first data asset; (2) one or more third party vendors utilized by the particular organization; (3) a number of collection or storage assets typically associated with the type of the first data asset; and/or (4) any other suitable factor related to the first data asset, its one or more inventory attributes, etc. In other embodiments, the system may substantially automatically generate the one or more placeholders based at least in part on a hierarchy and/or organization of the entity for which the data model is being built. For example, a particular entity may have a marketing division, legal department, human resources department, engineering division, or other suitable combination of departments that make up an overall organization. Other particular entities may have further subdivisions within the organization. When generating the data inventory for the first data asset, the system may identify that the first data asset will have both an associated organization and subdivision within the organization to which it is assigned. In this example, the system may be configured to store an indication in computer memory that the first data asset is associated with an organization and a department within the organization.
Next, at Step 340, the system modifies the data model to include the first data inventory and electronically links the first data inventory to the first data asset within the data model. In various embodiments, modifying the data model may include configuring the data model to store the data inventory in computer memory, and to digitally associate the data inventory with the first data asset in memory.
As noted above, in particular embodiments, the data model stores this information for each of a plurality of different data assets and may include one or more links between, for example, a portion of the model that provides information for a first particular data asset and a second portion of the model that provides information for a second particular data asset.
Advancing to Step 350, the system next identifies a second data asset from the one or more data assets. In various embodiments, the second data asset may include one of the one or more inventory attributes associated with the first data asset (e.g., the second data asset may include a collection asset associated with the first data asset, a destination asset or transfer asset associated with the first data asset, etc.). In various embodiments, as may be understood in light of the exemplary data models described below, a second data asset may be a primary data asset for a second processing activity, while the first data asset is the primary data asset for a first processing activity. In such embodiments, the second data asset may be a destination asset for the first data asset as part of the first processing activity. The second data asset may then be associated with one or more second destination assets to which the second data asset transfers data. In this way, particular data assets that make up the data model may define one or more connections that the data model is configured to map and store in memory.
Returning to Step 360, the system is configured to identify one or more attributes associated with the second data asset, modify the data model to include the one or more attributes, and map the one or more attributes of the second data asset within the data model. The system may, for example, generate a second data inventory for the second data asset that comprises any suitable attribute described with respect to the first data asset above. The system may then modify the data model to include the one or more attributes and store the modified data model in memory. The system may further, in various embodiments, associate the first and second data assets in memory as part of the data model. In such embodiments, the system may be configured to electronically link the first data asset with the second data asset. In various embodiments, such association may indicate a relationship between the first and second data assets in the context of the overall data model (e.g., because the first data asset may serve as a collection asset for the second data asset, etc.).
Next, at Step 370, the system may be further configured to generate a visual representation of the data model. In particular embodiments, the visual representation of the data model comprises a data map. The visual representation may, for example, include the one or more data assets, one or more connections between the one or more data assets, the one or more inventory attributes, etc.
In particular embodiments, generating the visual representation (e.g., visual data map) of a particular data model (e.g., data inventory) may include, for example, generating a visual representation that includes: (1) a visual indication of a first data asset (e.g., a storage asset), a second data asset (e.g., a collection asset), and a third data asset (e.g., a transfer asset); (2) a visual indication of a flow of data (e.g., personal data) from the second data asset to the first data asset (e.g., from the collection asset to the storage asset); (3) a visual indication of a flow of data (e.g., personal data) from the first data asset to the third data asset (e.g., from the storage asset to the transfer asset); (4) one or more visual indications of a risk level associated with the transfer of personal data; and/or (5) any other suitable information related to the one or more data assets, the transfer of data between/among the one or more data assets, access to data stored or collected by the one or more data assets, etc.
In particular embodiments, the visual indication of a particular asset may comprise a box, symbol, shape, or other suitable visual indicator. In particular embodiments, the visual indication may comprise one or more labels (e.g., a name of each particular data asset, a type of the asset, etc.). In still other embodiments, the visual indication of a flow of data may comprise one or more arrows. In particular embodiments, the visual representation of the data model may comprise a data flow, flowchart, or other suitable visual representation.
In various embodiments, the system is configured to display (e.g., to a user) the generated visual representation of the data model on a suitable display device.
Exemplary Data Models and Visual Representations of Data Models (e.g., Data Maps)
As may be understood from
As may be further understood from
As may be further understood from
As shown in
As may be understood from the example shown in
As may be understood in light of this disclosure, when generating such a data model, particular pieces of data (e.g., data attributes, data elements) may not be readily available to the system. In such embodiment, the system is configured to identify a particular type of data, create a placeholder for such data in memory, and seek out (e.g., scan for and populate) an appropriate piece of data to further populate the data model. For example, in particular embodiments, the system may identify Gusto as a primary asset and recognize that Gusto stores expense information. The system may then be configured to identify a source of the expense information (e.g., Expensify).
As further illustrated in
As may be understood from this figure, the system may be configured to generate a map that indicates a location of the plurality of data assets 1005A-F for a particular entity. In the embodiment shown in this figure, locations that contain a data asset are indicated by circular indicia that contain the number of assets present at that location. In the embodiment shown in this figure, the locations are broken down by country. In particular embodiments, the asset map may distinguish between internal assets (e.g., first party servers, etc.) and external/third party assets (e.g., third party owned servers or software applications that the entity utilizes for data storage, transfer, etc.).
In some embodiments, the system is configured to indicate, via the visual representation, whether one or more assets have an unknown location (e.g., because the data model described above may be incomplete with regard to the location). In such embodiments, the system may be configured to: (1) identify the asset with the unknown location; (2) use one or more data modeling techniques described herein to determine the location (e.g., such as pinging the asset, generating one or more questionnaires for completion by a suitable individual, etc.); and (3) update a data model associated with the asset to include the location.
Data Model Population Module
In particular embodiments, a Data Model Population Module 1100 is configured to: (1) determine one or more unpopulated inventory attributes in a data model; (2) determine one or more attribute values for the one or more unpopulated inventory attributes; and (3) modify the data model to include the one or more attribute values.
Turning to
Continuing to Step 1120, the system is configured to determine, for each of the one or more data inventories, one or more populated inventory attributes and one or more unpopulated inventory attributes (e.g., and/or one or more unpopulated data assets within the data model). As a particular example related to an unpopulated data asset, when generating and populating a data model, the system may determine that, for a particular asset, there is a destination asset. In various embodiments, the destination asset may be known (e.g., and already stored by the system as part of the data model). In other embodiments, the destination asset may be unknown (e.g., a data element that comprises the destination asset may comprise a placeholder or other indication in memory for the system to populate the unpopulated inventory attribute (e.g., data element).
As another particular example, a particular storage asset may be associated with a plurality of inventory assets (e.g., stored in a data inventory associated with the storage asset). In this example, the plurality of inventory assets may include an unpopulated inventory attribute related to a type of personal data stored in the storage asset. The system may, for example, determine that the type of personal data is an unpopulated inventory asset for the particular storage asset.
Returning to Step 1130, the system is configured to determine, for each of the one or more unpopulated inventory attributes, one or more attribute values. In particular embodiments, the system may determine the one or more attribute values using any suitable technique (e.g., any suitable technique for populating the data model). In particular embodiments, the one or more techniques for populating the data model may include, for example: (1) obtaining data for the data model by using one or more questionnaires associated with a particular privacy campaign, processing activity, etc.; (2) using one or more intelligent identity scanning techniques discussed herein to identify personal data stored by the system and then map such data to a suitable data model; (3) using one or more application programming interfaces (API) to obtain data for the data model from another software application; and/or (4) using any other suitable technique. Exemplary techniques for determining the one or more attribute values are described more fully below. In other embodiments, the system may be configured to use such techniques or other suitable techniques to populate one or more unpopulated data assets within the data model.
Next, at Step 1140, the system modifies the data model to include the one or more attribute values for each of the one or more unpopulated inventory attributes. The system may, for example, store the one or more attributes values in computer memory, associate the one or more attribute values with the one or more unpopulated inventory attributes, etc. In still other embodiments, the system may modify the data model to include the one or more data assets identified as filling one or more vacancies left within the data model by the unpopulated one or more data assets.
Continuing to Step 1150, the system is configured to store the modified data model in memory. In various embodiments, the system is configured to store the modified data model in the One or More Databases 140, or in any other suitable location. In particular embodiments, the system is configured to store the data model for later use by the system in the processing of one or more data subject access requests. In other embodiments, the system is configured to store the data model for use in one or more privacy impact assessments performed by the system.
Data Model Population Questionnaire Generation Module
In particular embodiments, a Data Population Questionnaire Generation Module 1200 is configured to generate a questionnaire (e.g., one or more questionnaires) comprising one or more questions associated with one or more particular unpopulated data attributes, and populate the unpopulated data attributes based at least in part on one or more responses to the questionnaire. In other embodiments, the system may be configured to populate the unpopulated data attributes based on one or more responses to existing questionnaires.
In various embodiments, the one or more questionnaires may comprise one or more processing activity questionnaires (e.g., privacy impact assessments, data privacy impact assessments, etc.) configured to elicit one or more pieces of data related to one or more undertakings by an organization related to the collection, storage, and/or processing of personal data (e.g., processing activities). In particular embodiments, the system is configured to generate the questionnaire (e.g., a questionnaire template) based at least in part on one or more processing activity attributes, data asset attributes (e.g., inventory attributes), or other suitable attributes discussed herein.
Turning to
Continuing to Step 1220, the system generates a questionnaire (e.g., a questionnaire template) comprising one or more questions associated with one or more particular unpopulated data attributes. As may be understood in light of the above, the one or more particulate unpopulated data attributes may relate to, for example, a particular processing activity or a particular data asset (e.g., a particular data asset utilized as part of a particular processing activity). In various embodiments, the one or more questionnaires comprise one or more questions associated with the unpopulated data attribute. For example, if the data model includes an unpopulated data attribute related to a location of a server on which a particular asset stores personal data, the system may generate a questionnaire associated with a processing activity that utilizes the asset (e.g., or a questionnaire associated with the asset). The system may generate the questionnaire to include one or more questions regarding the location of the server.
Returning to Step 1230, the system maps one or more responses to the one or more questions to the associated one or more particular unpopulated data attributes. The system may, for example, when generating the questionnaire, associate a particular question with a particular unpopulated data attribute in computer memory. In various embodiments, the questionnaire may comprise a plurality of question/answer pairings, where the answer in the question/answer pairings maps to a particular inventory attribute for a particular data asset or processing activity.
In this way, the system may, at least partially in response to receiving a response to the particular question, substantially automatically populate the particular unpopulated data attribute. Accordingly, at Step 1240, the system modifies the data model to populate the one or more responses as one or more data elements for the one or more particular unpopulated data attributes. In particular embodiments, the system is configured to modify the data model such that the one or more responses are stored in association with the particular data element (e.g., unpopulated data attribute) to which the system mapped it at Step 1230. In various embodiments, the system is configured to store the modified data model in the One or More Databases 140, or in any other suitable location. In particular embodiments, the system is configured to store the data model for later use by the system in the processing of one or more data subject access requests. In other embodiments, the system is configured to store the data model for use in one or more privacy impact assessments performed by the system.
Continuing to optional Step 1250, the system may be configured to modify the questionnaire based at least in part on the one or more responses. The system may, for example, substantially dynamically add and/or remove one or more questions to/from the questionnaire based at least in part on the one or more responses (e.g., one or more response received by a user completing the questionnaire). For example, the system may, in response to the user providing a particular inventory attribute or new asset, generates additional questions that relate to that particular inventory attribute or asset. The system may, as the system adds additional questions, substantially automatically map one or more responses to one or more other inventory attributes or assets. For example, in response to the user indicating that personal data for a particular asset is stored in a particular location, the system may substantially automatically generate one or more additional questions related to, for example, an encryption level of the storage, who has access to the storage location, etc.
In still other embodiments, the system may modify the data model to include one or more additional assets, data attributes, inventory attributes, etc. in response to one or more questionnaire responses. For example, the system may modify a data inventory for a particular asset to include a storage encryption data element (which specifies whether the particular asset stores particular data in an encrypted format) in response to receiving such data from a questionnaire. Modification of a questionnaire is discussed more fully below with respect to
Data Model Population via Questionnaire Process Flow
As may be understood from
In particular embodiments, the system is configured to provide a processing activity assessment 1340A to one or more individuals for completion. As may be understood from
As may be further understood from
As may be understood from
In particular embodiments, the system is configured to provide an asset assessment 1340B to one or more individuals for completion. As may be understood from
As may be further understood from the detail view 1350 of
In still other embodiments, the system may be configured to map a one or more attribute values to one or more answer choices in a template 1330C as well as to one or more lists and/or responses in a data inventory 1310C. The system may then be configured to populate a field in the data inventory 1310C with the one or more answer choices provided in a response to a question template 1330C with one or more attribute values.
Exemplary Questionnaire Generation and Completion User Experience
In various embodiments, the system is configured to enable a user to modify a default template (e.g., or a system-created template) by, for example, adding additional sections, adding one or more additional questions to a particular section, etc. In various embodiments, the system may provide one or more tools for modifying the template. For example, in the embodiment shown in
A template for an asset may include, for example: (1) one or more questions requesting general information about the asset; (2) one or more security-related questions about the asset; (3) one or more questions regarding how the data asset disposes of data that it uses; and/or (4) one or more questions regarding processing activities that involve the data asset. In various embodiments, each of these one or more sections may comprise one or more specific questions that may map to particular portions of a data model (e.g., a data map).
In various embodiments, the system is configured to enable a user to modify a default template (e.g., or a system-created template) by, for example, adding additional sections, adding one or more additional questions to a particular section, etc. In various embodiments, the system may provide one or more tools for modifying the template. For example, in the embodiment shown in
In various embodiments, a template for a processing activity may include, for example: (1) one or more questions related to the type of business process that involves a particular data asset; (2) one or more questions regarding what type of personal data is acquired from data subjects for use by a particular data asset; (3) one or more questions related to a source of the acquired personal data; (4) one or more questions related to how and/or where the personal data will be stored and/or for how long; (5) one or more questions related to one or more other data assets that the personal data will be transferred to; and/or (6) one or more questions related to who will have the ability to access and/or use the personal data.
Continuing to
In response to the user selecting the Send Assessment indicia 1620, the system may create the assessment based at least in part on a template associated with the asset, and transmit the assessment to a suitable individual for completion (e.g., and/or transmit a request to the individual to complete the assessment).
Continuing to
As discussed above, in various embodiments, the system may be configured to modify a questionnaire in response to (e.g., based on) one or more responses provided by a user completing the questionnaire. In particular embodiments, the system is configured to modify the questionnaire substantially on-the-fly (e.g., as the user provides each particular answer).
As shown in
Intelligent Identity Scanning Module
Turning to
When executing the Intelligent Identity Scanning Module 2600, the system begins, at Step 2610, by connecting to one or more databases or other data structures, and scanning the one or more databases to generate a catalog of one or more individuals and one or more pieces of personal information associated with the one or more individuals. The system may, for example, be configured to connect to one or more databases associated with a particular organization (e.g., one or more databases that may serve as a storage location for any personal or other data collected, processed, etc. by the particular organization, for example, as part of a suitable processing activity. As may be understood in light of this disclosure, a particular organization may use a plurality of one or more databases (e.g., the One or More Databases 140 shown in
In particular embodiments, the system is configured to scan the one or more databases by searching for particular data fields comprising one or more pieces of information that may include personal data. The system may, for example, be configured to scan and identify one of more pieces of personal data such as: (1) name; (2) address; (3) telephone number; (4) e-mail address; (5) social security number; (6) information associated with one or more credit accounts (e.g., credit card numbers); (7) banking information; (8) location data; (9) internet search history; (10) non-credit account data; and/or (11) any other suitable personal information discussed herein. In particular embodiments, the system is configured to scan for a particular type of personal data (e.g., or one or more particular types of personal data).
The system may, in various embodiments, be further configured to generate a catalog of one or more individuals that also includes one or more pieces of personal information (e.g., personal data) identified for the individuals during the scan. The system may, for example, in response to discovering one or more pieces of personal data in a particular storage location, identify one or more associations between the discovered pieces of personal data. For example, a particular database may store a plurality of individuals' names in association with their respective telephone numbers. One or more other databases may include any other suitable information.
The system may, for example, generate the catalog to include any information associated with the one or more individuals identified in the scan. The system may, for example, maintain the catalog in any suitable format (e.g., a data table, etc.).
In still other embodiments, in addition to connecting to a database, the system may be configured to: (1) access an application through one or more application programming interfaces (APIs); (2) use one or more screen scraping techniques on an end user page to identify and analyze each field on the page; and/or (3) connect to any other suitable data structure in order to generate the catalog of individuals and personal information associated with each of the individuals. In some embodiments, the system may be configured to analyze one or more access logs and applications set up through a system active directory or SSO portal for which one or more applications might contain certain data for user groups. The system may then be configured to analyze an email environment to identify one or more links to particular business applications, which may, for example, be in use by an entity and contain certain data. In still other embodiments, the system may be configured to analyze one or more system log files (Syslog) from a security environment to capture which particular applications an entity may be using in order to discover such applications.
Continuing to Step 2620, the system is configured to scan one or more structured and/or unstructured data repositories based at least in part on the generated catalog to identify one or more attributes of data associated with the one or more individuals. The system may, for example, be configured to utilize information discovered during the initial scan at Step 2610 to identify the one or more attributes of data associated with the one or more individuals.
For example, the catalog generated at Step 2610 may include a name, address, and phone number for a particular individual. The system may be configured, at Step 2620, to scan the one or more structured and/or unstructured data repositories to identify one or more attributes that are associated with one or more of the particular individual's name, address and/or phone number. For example, a particular data repository may store banking information (e.g., a bank account number and routing number for the bank) in association with the particular individual's address. In various embodiments, the system may be configured to identify the banking information as an attribute of data associated with the particular individual. In this way, the system may be configured to identify particular data attributes (e.g., one or more pieces of personal data) stored for a particular individual by identifying the particular data attributes using information other than the individual's name.
Returning to Step 2630, the system is configured to analyze and correlate the one or more attributes and metadata for the scanned one or more structured and/or unstructured data repositories. In particular embodiments, the system is configured to correlate the one or more attributes with metadata for the associated data repositories from which the system identified the one or more attributes. In this way, the system may be configured to store data regarding particular data repositories that store particular data attributes.
In particular embodiments, the system may be configured to cross-reference the data repositories that are discovered to store one or more attributes of personal data associated with the one or more individuals with a database of known data assets. In particular embodiments, the system is configured to analyze the data repositories to determine whether each data repository is part of an existing data model of data assets that collect, store, and/or process personal data. In response to determining that a particular data repository is not associated with an existing data model, the system may be configured to identify the data repository as a new data asset (e.g., via asset discovery), and take one or more actions (e.g., such as any suitable actions described herein) to generate and populate a data model of the newly discovered data asset. This may include, for example: (1) generating a data inventory for the new data asset; (2) populating the data inventory with any known attributes associated with the new data asset; (3) identifying one or more unpopulated (e.g., unknown) attributes of the data asset; and (4) taking any suitable action described herein to populate the unpopulated data attributes.
In particular embodiments, the system my, for example: (1) identify a source of the personal data stored in the data repository that led to the new asset discovery; (2) identify one or more relationships between the newly discovered asset and one or more known assets; and/or (3) etc.
Continuing to Step 2640, the system is configured to use one or more machine learning techniques to categorize one or more data elements from the generated catalog, analyze a flow of the data among the one or more data repositories, and/or classify the one or more data elements based on a confidence score as discussed below.
Continuing to Step 2650, the system, in various embodiments, is configured to receive input from a user confirming or denying a categorization of the one or more data elements, and, in response, modify the confidence score. In various embodiments, the system is configured to iteratively repeat Steps 2640 and 2650. In this way, the system is configured to modify the confidence score in response to a user confirming or denying the accuracy of a categorization of the one or more data elements. For example, in particular embodiments, the system is configured to prompt a user (e.g., a system administrator, privacy officer, etc.) to confirm that a particular data element is, in fact, associated with a particular individual from the catalog. The system may, in various embodiments, be configured to prompt a user to confirm that a data element or attribute discovered during one or more of the scans above were properly categorized at Step 2640.
In particular embodiments, the system is configured to modify the confidence score based at least in part on receiving one or more confirmations that one or more particular data elements or attributes discovered in a particular location during a scan are associated with particular individuals from the catalog. As may be understood in light of this disclosure, the system may be configured to increase the confidence score in response to receiving confirmation that particular types of data elements or attributes discovered in a particular storage location are typically confirmed as being associated with particular individuals based on one or more attributes for which the system was scanning.
Exemplary Intelligent Identity Scanning Technical Platforms
In particular embodiments, the Intelligent Identity Scanning Server 130 is configured to sit outside one or more firewalls (e.g., such as the firewall 195 shown in
In particular embodiments, the One or More Remote Computing Devices 150 include one or more computing devices that make up at least a portion of one or more computer networks associated with a particular organization. In particular embodiments, the one or more computer networks associated with the particular organization comprise one or more suitable servers, one or more suitable databases, one or more privileged networks, and/or any other suitable device and/or network segment that may store and/or provide for the storage of personal data. In the embodiment shown in
As shown in
As further shown in
In various embodiments, the one or more virtual machines may have the following specifications: (1) any suitable number of cores (e.g., 4, 6, 8, etc.); (2) any suitable amount of memory (e.g., 4 GB, 8 GB, 16 GB etc.); (3) any suitable operating system (e.g., CentOS 7.2); and/or (4) any other suitable specification. In particular embodiments, the one or more virtual machines may, for example, be used for one or more suitable purposes related to the Intelligent Identity Scanning System 2700. These one or more suitable purposes may include, for example, running any of the one or more modules described herein, storing hashed and/or non-hashed information (e.g., personal data, personally identifiable data, catalog of individuals, etc.), storing and running one or more searching and/or scanning engines (e.g., Elasticsearch), etc.
In various embodiments, the Intelligent Identity Scanning System 2700 may be configured to distribute one or more processes that make up part of the Intelligent Identity Scanning Process (e.g., described above with respect to the Intelligent Identity Scanning Module 1800). The one or more software applications installed on the One or more Remote Computing Devices 150 may, for example, be configured to provide access to the one or more computer networks associated with the particular organization to the Intelligent Identity Scanning Server 130. The system may then be configured to receive, from the One or more Remote Computing Devices 150 at the Intelligent Identity Scanning Server 130, via the Firewall 195 and One or More Networks 115, scanned data for analysis.
In particular embodiments, the Intelligent Identity Scanning System 2700 is configured to reduce an impact on a performance of the One or More Remote Computing Devices 150, One or More Third Party Servers 160 and other components that make up one or more segments of the one or more computer networks associated with the particular organization. For example, in particular embodiments, the Intelligent Identity Scanning System 2700 may be configured to utilize one or more suitable bandwidth throttling techniques. In other embodiments, the Intelligent Identity Scanning System 2700 is configured to limit scanning (e.g., any of the one or more scanning steps described above with respect to the Intelligent Identity Scanning Module 2600) and other processing steps (e.g., one or more steps that utilize one or more processing resources) to non-peak times (e.g., during the evening, overnight, on weekends and/or holidays, etc.). In other embodiments, the system is configured to limit performance of such processing steps to backup applications and data storage locations. The system may, for example, use one or more sampling techniques to decrease a number of records required to scan during the personal data discovery process.
As may be understood from this figure, the system may be configured to utilize one or more credential management techniques to access one or more privileged network portions. The system may, in response to identifying particular assets or personally identifiable information via a scan, be configured to retrieve schema details such as, for example, an asset ID, Schema ID, connection string, credential reference URL, etc. In this way, the system may be configured to identify and store a location of any discovered assets or personal data during a scan.
Data Subject Access Request Fulfillment Module
Turning to
Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to obtain confirmation of whether a particular organization is processing their personal data; (2) a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected); (3) a right to obtain information about one or more categories of data being processed (e.g., what type of personal data is being collected, stored, etc.); (4) a right to obtain information about one or more categories of recipients with whom their personal data may be shared (e.g., both internally within the organization or externally); (5) a right to obtain information about a time period for which their personal data will be stored (e.g., or one or more criteria used to determine that time period); (6) a right to obtain a copy of any personal data being processed (e.g., a right to receive a copy of their personal data in a commonly used, machine-readable format); (7) a right to request erasure (e.g., the right to be forgotten), rectification (e.g., correction or deletion of inaccurate data), or restriction of processing of their personal data; and (8) any other suitable rights related to the collection, storage, and/or processing of their personal data (e.g., which may be provided by law, policy, industry or organizational practice, etc.).
As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store personal data in a plurality of different locations which may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to personal data (e.g., such as responding to one or more requests by data subjects related to their personal data) may be particularly difficult (e.g., in terms of cost, time, etc.). In particular embodiments, a data subject access request fulfillment system may utilize one or more data model generation and population techniques (e.g., such as any suitable technique described herein) to create a centralized data map with which the system can identify personal data stored, collected, or processed for a particular data subject, a reason for the processing, and any other information related to the processing.
Turning to
Continuing to Step 2120, the system is configured to process the request by identifying and retrieving one or more pieces of personal data associated with the requestor that are being processed by the system. For example, in various embodiments, the system is configured to identify any personal data stored in any database, server, or other data repository associated with a particular organization. In various embodiments, the system is configured to use one or more data models, such as those described above, to identify this personal data and suitable related information (e.g., where the personal data is stored, who has access to the personal data, etc.). In various embodiments, the system is configured to use intelligent identity scanning (e.g., as described above) to identify the requestor's personal data and related information that is to be used to fulfill the request.
In still other embodiments, the system is configured to use one or more machine learning techniques to identify such personal data. For example, the system may identify particular stored personal data based on, for example, a country in which a website that the data subject request was submitted is based, or any other suitable information.
In particular embodiments, the system is configured to scan and/or search one or more existing data models (e.g., one or more current data models) in response to receiving the request in order to identify the one or more pieces of personal data associated with the requestor. The system may, for example, identify, based on one or more data inventories (e.g., one or more inventory attributes) a plurality of storage locations that store personal data associated with the requestor. In other embodiments, the system may be configured to generate a data model or perform one or more scanning techniques in response to receiving the request (e.g., in order to automatically fulfill the request).
Returning to Step 2130, the system is configured to take one or more actions based at least in part on the request. In some embodiments, the system is configured to take one or more actions for which the request was submitted (e.g., display the personal data, delete the personal data, correct the personal data, etc.). In particular embodiments, the system is configured to take the one or more actions substantially automatically. In particular embodiments, in response a data subject submitting a request to delete their personal data from an organization's systems, the system may: (1) automatically determine where the data subject's personal data is stored; and (2) in response to determining the location of the data (which may be on multiple computing systems), automatically facilitate the deletion of the data subject's personal data from the various systems (e.g., by automatically assigning a plurality of tasks to delete data across multiple business systems to effectively delete the data subject's personal data from the systems). In particular embodiments, the step of facilitating the deletion may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (2) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (3) any other suitable technique for deleting the personal data. In particular embodiments, as part of this process, the system uses an appropriate data model (see discussion above) to efficiently determine where all of the data subject's personal data is stored.
Data Subject Access Request User Experience
As discussed in more detail above, a data subject may submit a subject access request, for example, to request a listing of any personal information that a particular organization is currently storing regarding the data subject, to request that the personal data be deleted, to opt out of allowing the organization to process the personal data, etc.
In particular embodiments, a data modeling or other system described herein may include one or more features in addition to those described. Various such alternative embodiments are described below.
Processing Activity and Data Asset Assessment Risk Flagging
In particular embodiments, the questionnaire template generation system and assessment system described herein may incorporate one or more risk flagging systems.
In particular embodiments, the system may utilize the risk level assigned to particular questionnaire responses as part of a risk analysis of a particular processing activity or data asset. Various techniques for assessing the risk of various privacy campaigns are described in U.S. patent application Ser. No. 15/256,419, filed Sep. 2, 2016, now U.S. Pat. No. 9,691,090, issued Jun. 27, 2017, entitled “Data Processing Systems and Methods for Operationalizing Privacy Compliance and Assessing the Risk of Various Respective Privacy Campaigns,” which is hereby incorporated herein in its entirety.
Cross-Border Visualization Generation System
In particular embodiments, a Cross-Border Visualization Generation System is configured to analyze one or more data systems (e.g., data assets), identify data transfers between/among those systems, determine whether any particular regulations apply to the identified data transfers, and generate a visual representation of physical locations of the one or more data systems and the one or more data transfers between them. The system may, for example, color-code one or more lines or indicators showing a transfer of data between a first and second data system. The one or more indicators may convey, for example: (1) whether the data transfer is secure; (2) a type or level of security that is applied to the transfers; (3) one or more regulations that apply to the transfer; and/or (4) any other suitable information related to the transfer of particular data between the first and second data system.
Various processes performed by the Cross-Border Visualization Generation System may be implemented by a Cross-Border Visualization Generation Module 3600. Referring to
When executing the Cross-Border Visualization Generation Module 3600, the system begins, at Step 3610, by identifying one or more data systems (e.g., data assets) associated with a particular entity. The particular entity may include, for example, a particular organization, company, sub-organization, etc. In particular embodiments, the one or more data assets (e.g., data systems) may include, for example, any entity that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, a first data asset may include any software or device utilized by a particular entity for such data collection, processing, transfer, storage, etc. In various embodiments, the first data asset may be at least partially stored on and/or physically located in a particular location. For example, a server may be located in a particular country, jurisdiction, etc. A piece of software may be stored on one or more servers in a particular location, etc.
In particular embodiments, the system is configured to identify the one or more data systems using one or more data modeling techniques. As discussed more fully above, a data model may store the following information: (1) the entity that owns and/or uses a particular data asset (e.g., such as a primary data asset, an example of which is shown in the center of the data model in
As may be understood in light of this disclosure, the system may utilize a data model (e.g., or one or more data models) of data assets associated with a particular entity to identify the one or more data systems associated with the particular entity.
Continuing to Step 3620, the system is configured to analyze the one or more data assets (e.g., data systems) to identify one or more data elements stored in the one or more identified data systems. In particular embodiments, the system is configured to identify one or more data elements stored by the one or more data systems that are subject to transfer (e.g., transfer to the one or more data systems such as from a source asset, transfer from the one or more data systems to a destination asset, etc.). In particular embodiments, the system is configured to identify a particular data element that is subject to such transfer (e.g., such as a particular piece of personal data or other data). In some embodiments, the system may be configured to identify any suitable data element that is subject to transfer and includes personal data. The system may be configured to identify such transfer data using any suitable technique described herein.
In any embodiment described herein, personal data may include, for example: (1) the name of a particular data subject (which may be a particular individual); (2) the data subject's address; (3) the data subject's telephone number; (4) the data subject's e-mail address; (5) the data subject's social security number; (6) information associated with one or more of the data subject's credit accounts (e.g., credit card numbers); (7) banking information for the data subject; (8) location data for the data subject (e.g., their present or past location); (9) internet search history for the data subject; and/or (10) any other suitable personal information, such as other personal information discussed herein.
As may be understood from this disclosure, the transfer of personal data may trigger one or more regulations that govern such transfer. In particular embodiments, personal data may include any data which relate to a living individual who can be identified: (1) from the data; or (2) from the data in combination with other information which is in the possession of, or is likely to come into the possession of a particular entity. In particular embodiments, a particular entity may collect, store, process, and/or transfer personal data for one or more customers, one or more employees, etc.
In various embodiments, the system is configured to use one or more data models of the one or more data assets (e.g., data systems) to analyze one or more data elements associated with those assets to determine whether the one or more data elements include one or more data elements that include personal data and are subject to transfer. In particular embodiments, the transfer may include, for example: (1) an internal transfer (e.g., a transfer from a first data asset associated with the entity to a second data asset associated with the entity); (2) an external transfer (e.g., a transfer from a data asset associated with the entity to a second data asset associated with a second entity); and/or (3) a collective transfer (e.g., a transfer to a data asset associated with the entity from an external data asset associated with a second entity).
Next, at Step 3630, the system is configured to define a plurality of physical locations and identify, for each of the one or more data systems, a particular physical location of the plurality of physical locations. In some embodiments, the system is configured to define the plurality of physical locations based at least in part on input from a user. The system may, for example, define each of the plurality of physical locations based at least in part on one or more geographic boundaries. These one or more geographic boundaries may include, for example: (1) one or more countries; (2) one or more continents; (3) one or more jurisdictions (e.g., such as one or more legal jurisdictions); (4) one or more territories; (5) one or more counties; (6) one or more cities; (7) one or more treaty members (e.g., such as members of a trade, defense, or other treaty); and/or (8) any other suitable geographically distinct physical locations.
The system may then be configured to identify, for each of the one or more data systems identified at Step 3610, an associated physical location. For example, the system may be configured to determine in which of the one or more defined plurality of physical locations each particular data system is physically located. In particular embodiments, the system is configured to determine the physical location based at least in part on one or more data attributes of a particular data asset (e.g., data system) using one or more data modeling techniques (e.g., using one or more suitable data modeling techniques described herein). In some embodiments, the system may be configured to determine the physical location of each data asset based at least in part on an existing data model that includes the data asset. In still other embodiments, the system may be configured to determine the physical location based at least in part on an IP address and/or domain of the data asset (e.g., in the case of a computer server or other computing device) or any other identifying feature of a particular data asset.
Returning to Step 3640, the system is configured to analyze the identified one or more data elements to determine one or more data transfers between one or more data systems in different particular physical locations. The system may, for example, analyze a data model based on each particular data asset to identify one or more data transfers between and/or among the one or more data assets (e.g., data systems). For example, as may be understood from
Continuing to Step 3650, the system is configured to determine one or more regulations that relate to (e.g., apply to) the one or more data transfers. As may understood in light of this disclosure, one or more regulations (e.g., industry regulations, legal regulations, etc.) may govern the transfer of personal data (e.g., between one or more jurisdictions, physical locations, and the like). In particular, the one or more regulations may impose one or more minimum standards on the handling of the transfer of such personal data in the interest of protecting the privacy of one or more data subjects or other individuals with whom the personal data is associated. In particular instances, it may be inevitable (e.g., as a result of the sharing of customer data, the centralization of IT services, etc.) that a particular entity or company (e.g., a particular entity whose business activities span a plurality of jurisdictions or locations) will undertake one or more data transfers that may triggers the one or more regulations.
In particular embodiments, the one or more regulations described above may include one or more transfer restrictions. In various embodiments, the one or more transfer restrictions may restrict transfer from a first location (e.g., jurisdiction) to a second location (e.g., jurisdiction) absent an adequate level of privacy protection. A particular exemplary transfer restriction may, for example, require data transferred from a first location to a second location to be subject to the same level of privacy protection at the second location that the data enjoys in the first location. For example, the first location may, for example, place any suitable limit on the collection and storage of personal data (e.g., one or more time limits, one or more encryption requirements, etc.). In particular embodiments, the one or more regulations may include a transfer restriction that prohibits transfer of personal data from the first location to a second location unless the second location places limits on the collection and storage of personal data that are at least as stringent as the first location.
In various embodiments, the system may, for example: (1) analyze one or more first storage restrictions on personal data stored in a first data asset; (2) analyze one or more second storage restrictions on personal data stored in a second data asset to which the first data asset transfers personal data; and (3) compare the one or more first storage restrictions with the one or more second storage restrictions. The system may then, for example, flag a transfer of data from the first data asset to the second data asset based at least in part on the comparison. For example, in response to determining that the one or more second restrictions are less stringent than the one or more first restrictions, the system may flag the transfer as risky or noncompliant. In another example, in response to determining that the one or more second restrictions are at least as stringent as the one or more first restrictions, the system may flag (e.g., automatically flag) the transfer as acceptable or compliant.
In particular embodiments, the system may be configured to substantially automatically determine that a transfer to a particular location is adequate. The system may, for example, store a listing (e.g., in memory) of one or more locations (e.g., countries) deemed automatically adequate as destinations of transferred personal data. In such embodiments, the one or more regulations may include a regulation that any location on the ‘safe list’ provides adequate privacy protection for personal data. The system may then substantially automatically determine that a transfer of data that includes a ‘safe list’ location as a target destination in a transfer would automatically meet an adequacy standard for data transfer. In a particular example, the one or more locations on the ‘safe list’ may include one or more countries (e.g., Argentina, Canada, Israel, Switzerland, Uruguay, Jersey, Guernsey, the Isle of Man, etc.).
In various other embodiments, the one or more regulations may include a regulation that a transfer of personal data to a location that is part of a safe harbor is acceptable. In various embodiments, a safe harbor may include a commitment to adhere to a set of safe harbor principles related to data protection. In a particular example, a United States company wishing to identify as a safe harbor entity may be required to self-certify to the U.S. Department of Commerce that it adheres to the Safe Harbor principles and to make a public declaration of the adherence.
In particular other embodiments, the system may identify a particular privacy shield arrangement between a first and second location in order to determine an adequacy of a transfer of data from the first location to the second location. In particular, a privacy shield arrangement may facilitate monitoring of an entity's compliance with one or more commitments and enforcement of those commitments under the privacy shield. In particular, an entity entering a privacy shield arrangement may, for example: (1) be obligated to publicly commit to robust protection of any personal data that it handles; (2) be required to establish a clear set of safeguards and transparency mechanisms on who can access the personal data it handles; and/or (3) be required to establish a redress right to address complaints about improper access to the personal data.
In a particular example of a privacy shield, a privacy shield between the United States and Europe may involve, for example: (1) establishment of responsibility by the U.S. Department of Commerce to monitor an entity's compliance (e.g., a company's compliance) with its commitments under the privacy shield; and (2) establishment of responsibility of the Federal Trade Commission having enforcement authority over the commitments. In a further example, the U.S. Department of Commerce may designate an ombudsman to hear complaints from Europeans regarding U.S. surveillance that affects personal data of Europeans.
In some embodiments, the one or more regulations may include a regulation that allows data transfer to a country or entity that participates in a safe harbor and/or privacy shield as discussed herein. The system may, for example, be configured to automatically identify a transfer that is subject to a privacy shield and/or safe harbor as ‘low risk.’
In some embodiments, the one or more regulations may include a regulation that a location that is not deemed automatically adequate as a data transfer target (e.g., a location to which data is being transferred) may be deemed adequate by entering one or more contracts (e.g., standard clauses) with an entity that is the source of the transferred data. For example, the system may automatically determine that a particular data transfer is adequate by identifying a contract that exists between a first entity and a second entity, where the first entity is transferring data from a first asset to a second asset associated with the second entity. In various embodiments, the one or more data elements that make up a data model (e.g., for the first data asset) may indicate the existence of any contracts that the first entity has executed related to the transfer of data with one or more other entities. In various embodiments, the system is configured to analyze the one or more contracts to determine whether the one or more contracts apply to a particular data transfer of the one or more transfers identified at Step 3640.
In particular embodiments, the one or more contracts may include one or more third party beneficiary rights to the one or more data subjects whose personal data is subject to transfer. In such embodiments, such contracts may, for example, be enforced by an exporting entity (e.g., the entity that is transferring the data) as well as the data subject themselves.
In particular embodiments, a further method of legitimizing a transfer of data between one or more data assets may include implementing one or more binding corporate rules. In particular embodiments, the one or more binding corporate rules may be approved by a regulating authority. In such embodiments, the one or more regulations referred to in step 3650 may include one or more regulations related to the existence of one or more binding corporate rules (e.g., that have been approved by a regulating authority).
In various embodiments, the one or more binding corporate rules may include a scheme that involves an entity (e.g., corporate group) setting up an internal suite of documents that set out how the entity intends to provide adequate safeguards to individuals whose personal data is being transferred to a second location (e.g., country). In particular embodiments, the one or more binding corporate rules may include one or more safeguards that are no less than those required by the location in which the personal data is originally stored.
At Step 3660, the system continues by generating a visual representation of the one or more data transfers based at least in part on the one or more regulations. The system may, for example, generate a visual representation of a map that includes the plurality of physical locations described above. The system may then indicate, on the visual representation, a location of each of the one or more data systems (e.g., using a suitable marker or indicia). In particular embodiments, the system may color code one or more of the plurality of physical locations based on, for example, an existence of a privacy shield, a prevailing legal requirement for a particular jurisdiction, etc.
In various embodiments, the system may be configured to generate, on the map, a visual representation of a data transfer between at least a first data asset and a second data asset (e.g., where the first and second data asset are in two different physical locations). For example, the system may generate a linear representation of the transfer, or other suitable representation. In particular embodiments, they system is configured to color code the visual representation of the transfer based at least in part on the physical locations, one or more regulations, etc. In still other embodiments, the system is configured to color code the visual representation of the transfer based at least in part on the one or more regulations that the system has determined apply to the transfer (e.g., one or more binding corporate rules, privacy shield, etc.). This may, for example, indicate a legal basis of each particular identified data transfer.
In various embodiments, the system may be configured to substantially automatically flag a particular transfer of data as problematic (e.g., because the transfer does not comply with an applicable regulation). For example, a particular regulation may require data transfers from a first asset to a second asset to be encrypted. The system may determine, based at least in part on the one or more data elements, that the transfer is not encrypted. In response, the system may flag the transfer as High risk (e.g., using a particular color such as red). In various other embodiments, the system may be configured to determine a risk level of a particular transfer based at least in part on the physical location of each of the data assets, the one or more regulations, the type of data being transferred (e.g., whether the data contains personal data), etc.
In particular embodiments, the visual representation may be used by a particular entity to demonstrate compliance with respect to one or more regulations related to the transfer of personal data. In such embodiments, the visual representation may serve as a report that indicates the legal basis of any transfer performed by the entity (e.g., and further serve as documentation of the entity's compliance with one or more legal regulations).
Risk Identification for Cross-Border Data Transfers
In various embodiments, the Cross-Border Visualization Generation System may identify one or more risk associated with a cross-border data transfer. In various embodiments, a data transfer record may be created for each transfer of data between a first asset in a first location and a second asset in a second location where the transfer record may also include information regarding the type of data being transferred, a time of the data transfer, an amount of data being transferred, etc. The system may apply data transfer rules to each data transfer record. The data transfer rules may be configurable to support different privacy frameworks (e.g., a particular data subject type is being transferred from a first asset in the European Union to a second asset outside of the European Union) and organizational frameworks (e.g., to support the different locations and types of data assets within an organization). The applied data transfer rules may be automatically configured by the system (e.g., when an update is applied to privacy rules in a country or region) or manually adjusted by the particular organization (e.g., by a privacy officer of the organization). The data transfer rules to be applied may vary based on the data being transferred. For example, if the data being transferred includes personal data, then particular data transfer rules may be applied (e.g., encryption level requirements, storage time limitations, access restrictions, etc.).
In particular embodiments, the system may perform a data transfer assessment on each data transfer record based on the data transfer rules to be applied to each data transfer record. The data transfer assessment performed by the system may identify risks associated with the data transfer record, and in some embodiments, a risk score may be calculated for the data transfer. For example, a data transfer that contains sensitive data that includes a customer credit card, has a source location in one continent (e.g., at a merchant), and has a destination location in a different continent (e.g., in a database), may have a high risk score because of the transfer of data between two separate continents and the sensitivity of the data being transferred.
The risk score may be calculated in any suitable way, and may include risk factors such as a source location of the data transfer, a destination location of the data transfer, the type of data being transferred, a time of the data transfer, an amount of data being transferred, etc. Additionally, the system may apply weighting factors (e.g., custom weighting factors or automatically determined ones) to the risk factors. Further, in some implementation, the system can include a threshold risk score where a data transfer may be terminated (e.g., automatically) if the data transfer risk score indicates a higher risk than the threshold risk score (e.g., the data transfer risk score being higher than the threshold risk score). When the data transfer risk score indicates a lower risk than the threshold risk score, then the system may process the data transfer. In some implementations, if one or more of the risk factors indicate a heightened risk for the data transfer, then the system can notify an individual associated with the particular organization. For example, the individual associated with the particular organization may enable the data transfer to process, flag the data transfer for further evaluation (e.g., send the data transfer information to another individual for input), or terminate the data transfer, among other actions.
The system may process the data transfer after evaluating the data transfer assessment and/or the risk score for the data transfer. Additionally, in some implementations, the system may initiate the data transfer via a secure terminal or secure link between a computer system of the source location and a computer system of the destination location where the system to prevent interception of the data or unwarranted access to the additional information.
Cross-Border Visualization Generation User Experience
In some embodiments, the system is configured to indicate, via the visual representation, whether one or more assets have an unknown location (e.g., because the data model described above may be incomplete with regard to the location). In such embodiments, the system may be configured to: (1) identify the asset with the unknown location; (2) use one or more data mapping techniques described herein to determine the location (e.g., pinging the asset); and (3) update a data model associated with the asset to include the location.
As shown in
Adaptive Execution on a Data Model
In various embodiments, a Data Model Adaptive Execution System may be configured to take one or more suitable actions to remediate an identified risk trigger in view of one or more regulations (e.g., one or more legal regulations, one or more binding corporate rules, etc.). For example, in order to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information (e.g., personal data), an entity may be required to modify one or more aspects of a way in which the entity collects, stores, and/or otherwise processes personal data (e.g., in response to a change in a legal or other requirement). In order to identify whether a particular change or other risk trigger requires remediation, the system may be configured to assess a relevance of the risk posed by the potential risk trigger and identify one or more processing activities or data assets that may be affected by the risk.
Certain functionality of a Data Model Adaptive Execution System may be implemented via an Adaptive Execution on a Data Model Module 3900. A particular embodiment of the Adaptive Execution on a Data Model Module 3900 is shown in
In still other embodiments, the system is configured to identify one or more potential risk triggers in response to determining (e.g., receiving an input or indication) that one or more legal or industry requirements that relate to the collection, storage, and/or processing of personal data have changed. For example, a particular legal regulation related to an amount of time that personal data can be stored, an encryption level required to be applied to personal data, etc. may change. As another example, a safe harbor arrangement (e.g., such as the safe harbor arrangement discussed above) may be determined to be inadequate justification for a transfer of data between a first and second location. In this example, the system may be configured to receive an indication that ‘safe harbor’ is no longer an adequate justification for data transfer from a first asset in a first location to a second asset in a second location.
Continuing to Step 3920, the system is configured to assess and analyze the one or more potential risk triggers to determine a relevance of a risk posed by the one or more potential risk triggers. The system may, for example, determine whether the one or more potential risk triggers are related to one or more data assets (e.g., one or more data elements of one or more data assets) and/or processing activities associated with a particular entity. When analyzing the one or more potential risk triggers to determine a relevance of a risk posed by the one or more potential risk triggers, the system may be configured to utilize (e.g., use) a formula to determine a risk level of the identified one or more potential risk triggers. The system may, for example, determine the risk level based at least in part on: (1) an amount of personal data affected by the one or more potential risk triggers; (2) a type of personal data affected by the one or more potential risk triggers; (3) a number of data assets affected by the one or more potential risk triggers; and/or (4) any other suitable factor.
For example, in response to identifying a data breach in Salesforce, the system may, for example: (1) determine whether one or more systems associated with the entity utilize Salesforce; and (2) assess the one or more systems utilized by Salesforce to evaluate a risk posed by the data breach. The system may, for example, determine that the entity utilizes Salesforce in order to store customer data such as name, address, contact information, etc. In this example, the system may determine that the Salesforce data breach poses a high risk because the data breach may have resulted in a breach of personal data of the entity's customers (e.g., data subjects).
In still another example, in response to determining that safe harbor is no longer a valid justification for a data transfer between two locations, the system may be configured to: (1) determine whether one or more data transfers involving one or more data assets associated with the particular entity are currently justified via a safe harbor arrangement; and (2) in response to determining that the one or more data transfers are currently justified via a safe harbor arrangement, assessing a risk of the one or more transfers in view of the determined inadequacy of safe harbor as a data transfer justification. In particular embodiments, the system may identify one or more supplemental justifications and determine that the determined inadequacy of safe harbor poses a low risk. In other embodiments, the system may be configured to determine that the determined inadequacy of safe harbor poses a high risk (e.g., because the system is currently performing one or more data transfers that may be in violation of one or more legal, internal, or industry regulations related to data transfer).
Returning to Step 3930, the system is configured to use one or more data modeling techniques to identify one or more processing activities and/or data assets that may be affected by the risk. As discussed above, the system may utilize a particular data model that maps and/or indexes data associated with a particular data asset. The data model may, for example, define one or more data transfers, one or more types of data, etc. that are associated with a particular data asset and/or processing activity. In some embodiments, the system is configured to use the data model to identify one or more data assets and/or processing activities that may be affected by the risk assessed at Step 3920. In various embodiments, the system is configured to identify, using any suitable data modeling technique described herein, one or more pieces of personal data that the system is configured to collect, store, or otherwise process that may be affected by the one or more potential risk triggers.
Next, at Step 3940, the system is configured to determine, based at least in part on the identified one or more processing activities and/or data assets and the relevance of the risk, whether to take one or more actions in response to the one or more potential risk triggers. In particular embodiments, the system may, for example: (1) determine to take one or more actions in response to determining that a calculated risk level is above a threshold risk level; (2) determine to take the one or more actions in response to determining that the one or more potential risk triggers may place the entity in violation of one or more regulations (e.g., legal and/or industry regulations); etc.
In some embodiments, the system may determine whether to take one or more actions based at least in part on input from one or more individuals associated with the entity. The one or more individuals may include, for example, one or more privacy officers, one or more legal representatives, etc. In particular embodiments, the system is configured to receive input from the one or more individuals, and determine whether to take one or more actions in response to the input.
Continuing to Step 3950, the system is configured to take one or more suitable actions to remediate the risk in response to identifying and/or detecting the one or more potential risk triggers.
In particular embodiments, the one or more actions may include, for example: (1) adjusting one or more data attributes of a particular data asset (e.g., an encryption level of data stored by the data asset, one or more access permissions of data stored by the particular data asset, a source of data stored by the particular data asset, an amount of time the data is stored by a particular asset, etc.); (2) generating a report indicating the risk level and the identified one or more risk triggers; (3) providing the report to one or more individuals (e.g., a privacy officer or other individual); and/or (4) taking any other suitable action, which may, for example, be related to the identified one or more potential risk triggers.
Automatic Risk Remediation Process
In various embodiments, a system may be configured to substantially automatically determine whether to take one or more actions in response to one or more identified risk triggers as discussed above in the context of the Adaptive Execution on a Data Model Module 3900. In particular embodiments, the system is configured to substantially automatically perform one or more steps related to the analysis of and response to the one or more potential risk triggers discussed above. For example, the system may substantially automatically determine a relevance of a risk posed by (e.g., a risk level) the one or more potential risk triggers based at least in part on one or more previously determined responses to similar risk triggers. This may include, for example, one or more previously determined responses for the particular entity that has identified the current risk trigger, one or more similarly situated entities, or any other suitable entity or potential trigger.
In particular embodiments, the system may, for example, when determining whether to take one or more actions in response to the one or more potential risk triggers (e.g., as discussed above with respect to Step 3940 of the Adaptive Execution on a Data Model Module): (1) compare the potential risk trigger to one or more previous risks triggers experienced by the particular entity at a previous time; (2) identify a similar previous risk trigger (e.g., one or more previous risk triggers related to a similar change in regulation, breach of data, type of issue identified, etc.); (3) determine the relevance of the current risk trigger based at least in part on a determined relevance of the previous risk trigger; and (4) determine whether to take one or more actions to the current risk trigger based at least in part on one or more determined actions to take in response to the previous, similar risk trigger.
Similarly, in particular embodiments, the system may be configured to substantially automatically determine one or more actions to take in response to a current potential risk trigger based on one or more actions taken by one or more similarly situated entities to one or more previous, similar risk triggers. For example, the system may be configured to: (1) compare the potential risk trigger to one or more previous risk triggers experienced by one or more similarly situated entities at a previous time; (2) identify a similar previous risk trigger (e.g., one or more previous risk triggers related to a similar change in regulation, breach of data, and/or type of issue identified, etc. from the one or more previous risk triggers experienced by the one or more similarly-situated entities at the previous time; (3) determine the relevance of the current risk trigger based at least in part on a determined relevance of the previous risk trigger (e.g., a relevance determined by the one or more similarly situated entities); and (4) determine one or more actions to take in response to the current risk trigger based at least in part on one or more previously determined actions to take in response to the previous, similar risk trigger (e.g., one or more determined actions by the one or more similarly situated entities at the previous time).
In various embodiments, the one or more similarly-situated entities may include, for example: (1) one or more other entities in a geographic location similar to a geographic location of the entity that has identified the one or more potential risk triggers (e.g., a similar country, jurisdiction, physical location, etc.); (2) one or more other entities in a similar industry (e.g., banking, manufacturing, electronics, etc.); (3); one or more entities of a similar size (e.g., market capitalization, number of employees, etc.); (4) one or more entities that are governed by one or more similar regulations (e.g., such as any suitable regulation discussed herein); and/or (5) any other suitably similarly situated entity.
In various embodiments, the system is configured to use one or more machine learning techniques to analyze one or more risk levels assigned to previously identified risk triggers, determine a suitable response to similar, currently-identified risk triggers based on previously determined responses, etc.
In particular embodiments, the system may, for example, be configured to: (1) receive risk remediation data for a plurality of identified risk triggers from a plurality of different entities; (2) analyze the risk remediation data to determine a pattern in assigned risk levels and determined response to particular risk triggers; and (3) develop a model based on the risk remediation data for use in facilitating an automatic assessment of and/or response to future identified risk triggers.
In a particular example of a reactive system for automatically determining a suitable action to take in response to an identified risk trigger, the system may take one or more suitable actions in response to identifying a data beach in Salesforce (e.g., as discussed above). In particular embodiments, the system may, for example: (1) substantially automatically identify one or more actions taken by the system in response to a similar data breach of one or more different vendors; and (2) determine a suitable action to take in response to the data breach based on the one or more actions taken in response to the similar data breach. The similar data breach may include, for example, a breach in data of a similar type, or any other similar breach.
In another example, the system may be configured to identify one or more similarly situated entities that have experienced a data breach via Salesforce or other similar vendor. The system, may, for example, be configured to determine a suitable action to take based at least in part on an action taken by such a similar entity to a similar data breach. In still another example, the system may be configured, based on one or more previous determinations related to a data breach by a vendor (e.g., such as by Salesforce) to take no action in response to the identified risk trigger (e.g., because the identified risk may pose no or minimal danger).
Systems and Methods for Automatically Remediating Identified Risks
A data model generation and population system, according to particular embodiments, is configured to generate a data model (e.g., one or more data models) that maps one or more relationships between and/or among a plurality of data assets utilized by a corporation or other entity (e.g., individual, organization, etc.) in the context, for example, of one or more business processes. In particular embodiments, each of the plurality of data assets (e.g., data systems) may include, for example, any entity that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, a first data asset may include any software or device (e.g., server or servers) utilized by a particular entity for such data collection, processing, transfer, storage, etc.
In particular embodiments, a system may be configured to generate and maintain one or more disaster recovery plans for particular data assets based on one or more relationships between/among one or more data assets operated and/or utilized by a particular entity.
In various embodiments, a system may be configured to substantially automatically determine whether to take one or more actions in response to one or more identified risk triggers. For example, an identified risk trigger include any suitable risk trigger such as that a data asset for an organization is hosted in only one particular location thereby increasing the scope of risk if the location were infiltrated (e.g., via cybercrime). In particular embodiments, the system is configured to substantially automatically perform one or more steps related to the analysis of and response to the one or more potential risk triggers discussed above. For example, the system may substantially automatically determine a relevance of a risk posed by (e.g., a risk level) the one or more potential risk triggers based at least in part on one or more previously determined responses to similar risk triggers. This may include, for example, one or more previously determined responses for the particular entity that has identified the current risk trigger, one or more similarly situated entities, or any other suitable entity or potential trigger.
In particular embodiments, the system may, for example, be configured to: (1) receive risk remediation data for a plurality of identified risk triggers from a plurality of different entities; (2) analyze the risk remediation data to determine a pattern in assigned risk levels and determined response to particular risk triggers; and (3) develop a model based on the risk remediation data for use in facilitating an automatic assessment of and/or response to future identified risk triggers.
In some embodiments, in response to a change or update is made to one or more processing activities and/or data assets (e.g., a database associated with a particular organization), the system may use data modeling techniques to update the risk remediation data for use in facilitating an automatic assessment of and/or response to future identified risk triggers. For example, the system may be configured to use a data map and/or data model described herein to, for example: (1) particular systems that may require some remedial action in response to an identified breach/incident for one or more related systems; (2) automatically generate a notification to an individual to update a disaster recovery plan for those systems; and/or (3) automatically generate a disaster recovery plan that includes one or more actions in response to identifying an incident in one or more related systems identified using the data mapping techniques described herein. In various embodiments, in response to modification of a privacy campaign, processing activity, etc. of the particular organization (e.g., add, remove, or update particular information), the system may update the risk remediation data for use in facilitating an automatic assessment of and/or response to future identified risk triggers. For example, the system may be configured to (1) identify one or more changes to one or more relationships between/among particular data assets in response to a change in one or more business processes; and (2) modify (e.g., and/or generate a notification to modify) one or more disaster recovery plans for any affected data assets.
In particular embodiments, the system may, for example, be configured to: (1) access risk remediation data for an entity that identifies one or more suitable actions to remediate a risk in response to identifying one or more data assets of the entity that may be affected by one or more potential risk triggers; (2) receive an indication of an update to the one or more data assets; (3) identify one or more potential updated risk triggers for an entity; (4) assess and analyze the one or more potential updated risk triggers to determine a relevance of a risk posed to the entity by the one or more potential updated risk triggers; (5) use one or more data modeling techniques to identify one or more data assets associated with the entity that may be affected by the risk; and (6) update the risk remediation data to include the one or more actions to remediate the risk in response to identifying the one or more potential updated risk triggers.
Webform Crawling to Map Processing Activities in a Data Model
In particular embodiments, a data mapping system (e.g., such as any suitable data mapping and/or modeling system described herein) may be configured to generate a data model that maps one or more relationships between and/or among a plurality of data assets utilized by a corporation or other entity (e.g., individual, organization, etc.) in the context, for example, of one or more business processes and/or processing activities. In various embodiments, when generating the data model, the system may identify one or more webforms utilized by the system in the collection and processing of personal data and determine one or more particular data assets and/or processing activities that utilize such data. Although in the course of this description, the system is described as crawling (e.g., and/or scanning) one or more webforms, it should be understood that other embodiments may be utilized to scan, crawl or analyze any suitable electronic form in order to map any data input via the electronic form in any suitable manner.
In particular embodiments, the system may be configured to use one or more website scanning tools to, for example: (1) identify a webform (e.g., on a website associated with a particular entity or organization); (2) robotically complete the webform; (3) and analyze the completed webform to determine one or more particular processing activities, and/or business processes, etc. that use one or more pieces of data submitted via the webform.
As may be understood in light of this disclosure, one or more legal and/or industry regulations may require an entity to, for example, maintain a record of one or more processing activities undertaken by the entity that includes: (1) a name and contact details of a controller responsible for the processing activity; (2) a purpose of the processing; (3) a description of one or more categories of data subjects and/or of one or more categories of personal data collected as part of the processing activity; (4) one or more categories of recipients to whom the personal data may be disclosed, including recipients in one or more second countries or other locations; (5) one or more transfers of the personal data to a second country or an international organization; (6) a time limit for erasure of the personal data, if applicable; (7) an identification of one or more security measures taken in the collection and/or storage of the personal data; and/or (8) any other suitable information.
As may be further understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). Additionally, one or more sub-organizations (e.g., subgroups) of an organization or entity may initiate a processing activity that involves the collection of personal data without vetting the new processing activity with a privacy compliance officer or other individual within the company tasked with ensuring compliance with one or more prevailing privacy regulations. In this way, a particular organization may collect and store personal data in a plurality of different locations which may include one or more known and/or unknown locations, or may collect personal data for a purpose that is not immediately apparent (e.g., using one or more webforms). As such, it may be desirable for an entity to implement a system that is configured to scan one or more webforms that collect personal data to identify which particular processing activity (e.g., or processing activities) that personal data is utilized in the context of.
Various processes are performed by the Data Access Webform Crawling System and may be implemented by a Webform Crawling Module 4300. Referring to
When executing the Webform Crawling Module 4300, the system begins, at Step 4310, by identifying a webform used to collect one or more pieces of personal data. The system may use one or more website scanning tools to identify the webform. The webform may be a website associated with a particular entity or organization. For example, the webform may be a “Contact Us” form that is on the particular organization's website or any other type of webform associated with the particular organization. At Step 4320, the system is configured to robotically complete the identified webform. The identified webform may be completed by using a virtual profile that emulates a user profile, and the virtual profile may include an e-mail address. The system may monitor the e-mail account associated with the e-mail address for a confirmation e-mail related to the completion of the identified webform where the system may receive and interact with the confirmation e-mail. Additionally, the system may analyze (e.g., scrape) the confirmation e-mail for the data associated with the webform. The data associated with the webform may identify one or more processing activities and one or more pieces of personal data collected by the webform.
Next, at Step 4330, the system is configured to analyze the completed webform to determine one or more processing activities that utilize the one or more pieces of personal data collected by the webform. In some implementations, the system may analyze one or more pieces of computer code associated with the webform to determine the one or more processing activities that utilize the one or more pieces of personal data collected by the webform. Further, the system may analyze the one or more pieces of computer code to identify a storage location to which the one or more pieces of personal data collected by the webform are routed. At Step 4340, the system is configured to identify a first data asset in the data model that is associated with the one or more processing activities. In some implementations, the system may identify a processing activity based on the storage location of the identified one or more pieces of personal data, and an asset may be associated with a particular storage location.
Continuing to Step 4350, the system is configured to modify a data inventory for the first data asset in the data model to include data associated with the webform. The system may include an indication that the one or more processing activities operate with data included in the first data asset. Additionally, the system may indicate that the one or more pieces of personal data are utilized by the identified one or more processing activities.
At Step 4360, the system continues by modifying the data model to include the modified data inventory for the first data asset. In some implementations, the system may include a mapping of the first data asset to the one or more processing activities that utilize the one or more pieces of personal data. The mapping may be based on the analysis of the computer code associated with the webform. Moreover, in some implementations, the system may add the first data asset to a third-party data repository, and the first data asset may include an electronic link to the webform. The third-party repository is further discussed below.
Central Consent Repository
In particular embodiments, any entity (e.g., organization, company, etc.) that collects, stores, processes, etc. personal data may require one or more of (1) consent from a data subject from whom the personal data is collected and/or processed; and/or (2) a lawful basis for the collection and/or processing of the personal data. In various embodiments, the entity may be required to, for example, demonstrate that a data subject has freely given specific, informed, and unambiguous indication of the data subject's agreement to the processing of his or her personal data for one or more specific purposes (e.g., in the form of a statement or clear affirmative action). As such, in particular embodiments, an organization may be required to demonstrate a lawful basis for each piece of personal data that the organization has collected, processed, and/or stored. In particular, each piece of personal data that an organization or entity has a lawful basis to collect and process may be tied to a particular processing activity undertaken by the organization or entity.
A particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, because of the number of processing activities that an organization may undertake, and the amount of data collected as part of those processing activities over time, one or more data systems associated with an entity or organization may store or continue to store data that is not associated with any particular processing activity (e.g., any particular current processing activity). Under various legal and industry standards related to the collection and storage of personal data, such data may not have or may no longer have a legal basis for the organization or entity to continue to store the data. As such, organizations and entities may require improved systems and methods to maintain an inventory of data assets utilized to process and/or store personal data for which a data subject has provided consent for such storage and/or processing.
In various embodiments, the system is configured to provide a third-party data repository system to facilitate the receipt and centralized storage of personal data for each of a plurality of respective data subjects, as described herein. Additionally, the third-party data repository system is configured to interface with a centralized consent receipt management system.
In various embodiments, the system may be configured to, for example: (1) identify a webform used to collect one or more pieces of personal data, (2) determine a data asset of a plurality of data assets of the organization where input data of the webform is transmitted, (3) add the data asset to the third-party data repository with an electronic link to the webform, (4) in response to a user submitting the webform, create a unique subject identifier to submit to the third-party data repository and the data asset along with the form data provided by the user in the webform, (5) submit the unique subject identifier and the form data provided by the user in the webform to the third-party data repository and the data asset, and (6) digitally store the unique subject identifier and the form data provided by the user in the webform in the third-party data repository and the data asset.
In some embodiments, the system may be further configured to, for example: (1) receive a data subject access request from the user (e.g., a data subject rights' request, a data subject deletion request, etc.), (2) access the third-party data repository to identify the unique subject identifier of the user, (3) determine which data assets of the plurality of data assets of the organization include the unique subject identifier, (4) access personal data of the user stored in each of the data assets of the plurality of data assets of the organization that include the unique subject identifier, and (5) take one or more actions based on the data subject access request (e.g., delete the accessed personal data for a data subject deletion request).
The system may, for example: (1) generate, for each of a plurality of data subjects, a respective unique subject identifier in response to submission, by each data subject, of a particular webform; (2) maintain a database of each respective unique subject identifier; and (3) electronically link each respective unique subject identifier to each of: (A) a webform initially submitted by the user; and (B) one or more data assets that utilize data received from the data subject via the webform.
The Webform Crawling Data System may also implement a Data Asset and Webform Management Module 4400. Referring to
When executing the Data Asset and Webform Management Module 4400, the system begins, at Step 4410, by identifying a webform used to collect one or more pieces of personal data. In particular embodiments, the system may be configured to use one or more website scanning tools to, for example, identify a webform. The webform may be a website associated with a particular entity or organization. For example, the webform may be a “Contact Us” form that is on the particular organization's website or any other type of webform associated with the particular organization.
At Step 4420, the system is configured to determine a data asset of a plurality of data assets of the organization where input data of the webform is transmitted. The system may perform the determination by identifying where the input data of the webform is transmitted (e.g., Salesforce). Continuing to Step 4430, the system is configured to add the data asset to the third-party data repository with an electronic link to the webform. The system may provide the third-party data repository with a reference to the data asset, or in some implementations, the system may provide the one or more pieces of personal data that were transmitted to the one or more data assets to the third-party repository. The system may associate the electronic link to the webform with the identified data asset that includes the one or more pieces of personal data.
Returning to Step 4440, the system is configured to create a unique subject identifier to submit to the third-party data repository and the data asset along with form data provided by the user in the webform in response to a user submitting the webform. In response to a user inputting form data (e.g., name, address, credit card information, etc.) at the webform and submitting the webform, the system may, based on the link to the webform, create a unique subject identifier to identify the user. The unique subject identifier may be any type of numerical, alphabetical, or any other type of identifier to identify the user.
Continuing to Step 4450, the system is configured to submit the unique subject identifier and the form data provided by the user in the webform to the third-party data repository and the data asset. The system is configured to submit the unique subject identifier to the third-party data repository and the data asset along with the form data. Further, the system may use the unique subject identifier of a user to access and update each of the data assets of the particular organization (i.e., including the other data assets of the particular organization where the form data is not transmitted). For example, in response to a user submitting a data subject access request to delete personal data the particular organization has stored of the user, the system may use the unique subject identifier of the user to access and retrieve the user's personal data stored in all of the data assets (e.g., Salesforce, Eloqua, Marketo, etc.) utilized by the particular organization. At Step 4460, the system continues by digitally storing the unique subject identifier and the form data provided by the user in the webform in the third-party data repository and the data asset.
Further, in some implementations, the system may be configured to receive a data subject access request from the user. The data subject access request may be one or more different types of data subject access requests, and may be, for example, a data subject deletion request or a data subject rights request. Upon the system receiving the data subject access request, the system may be configured to access the third-party data repository to identify the unique subject identifier of the user, determine which data assets of the plurality of data assets of the organization include the unique subject identifier, and access personal data of the user stored in each of the data assets of the plurality of data assets of the organization that include the unique subject identifier. Upon the data subject access request being a data subject deletion request, then the system may delete the accessed personal data of the user stored in each of the data assets of the plurality of data assets of the organization that include the unique subject identifier. When the data subject access request is a data subject rights request, the system may generate a data subject rights request report that includes the accessed personal data of the user stored in each of the data assets of the plurality of data assets of the organization that include the unique subject identifier. Further, the data subject rights request report may be transmitted to the user. In some implementations, the system may transmit the data subject rights request report to the user via a secure electronic link.
Webform Generation User Experience
In various embodiments, the system may, for example: (1) robotically fill out the webform (e.g., using one or more virtual profiles); (2) analyze one or more pieces of computer code associated with the webform (e.g., JavaScript, HTML, etc.); and (3) map one or more business processes that utilize the data collected via the webform based at least in part on the analyzed one or more pieces of computer code. In particular embodiments, a particular entity that utilizes a webform to collect personal data for use in a particular processing activity (e.g., business process) may analyze one or more pieces of computer code associated with the webform to determine: (1) one or more systems associated with the entity to which data entered the webform is routed (e.g., one or more data assets that serve as a destination asset to data entered via the webform); (2) a purpose for the collection of the data entered via the webform (e.g., a processing activity that utilizes the destination asset discussed above; (3) a type of data collected via the webform; and/or (4) any other suitable information related to the collection of data via the webform.
In particular embodiments, a system may be configured to transmit a webform completion confirmation e-mail to a user that completes the webform. In various embodiments, the system may be configured to analyze the e-mail or other message to identify one or more business processes that utilize the data collected by the webform (e.g., by analyzing/scraping one or more contents of the e-mail or other message). The system may then determine a purpose of the data collection and/or an associated processing activity based at least in part on the analysis.
Scanning Electronic Correspondence to Facilitate Automatic Data Subject Access Request Submission
In various embodiments, any system described herein may be configured for: (1) analyzing electronic correspondence associated with a data subject (e.g., the emails within one or more email in-boxes associated with the data subject, or a plurality of text messages); (2) based on the analysis, identifying one or more entities (e.g., corporate entities) that that the data subject does not actively do business with (e.g., as evidenced by the fact that the data subject no longer opens emails from the entity, has set up a rule to automatically delete emails received from the entity, has blocked texts from the entity, etc.); (3) in response to identifying the entity as an entity that the data subject no longer does business with, at least substantially automatically generating a data subject access request and, optionally, automatically submitting the data subject access request to the identified entity.
The system may, for example, be configured to determine whether the data subject still uses one or more services from a particular e-mail sender (e.g., service provider) based at least in part on one more determined interactions of the data subject with one or more e-mails, or other electronic correspondence, from the service provider (e.g., whether the data subject reads the e-mail, selects one or more links within the e-mail, deletes the e-mail without reading it, etc.). The system may then substantially automatically generate and/or complete a data subject access request on behalf of the data subject that includes a request to be forgotten (e.g., a request for the entity to delete some or all of the data subject's personal data that the entity is processing).
For purposes of simplicity, various embodiments will now be described in which the system scans a plurality of emails associated with a data subject in order to identify one or more entities that the data subject no longer does business with. However, it should be understood that, in other embodiments, the same or similar techniques may be used in analyzing other types of electronic or other correspondence to identify entities that the data subject no longer does business with. For example, the system may analyze text messages, social media posts, scans of paper mail, or any other correspondence and/or other documents associated with the data subject to determine whether the data subject does business with particular entities. In various embodiments, the system bases this determination on its analysis of multiple different types of electronic correspondence between the data subject and one or more entities (which may include one-way correspondence in which the recipient of a particular correspondence doesn't respond, or two-way correspondence, in which the recipient of the correspondence responds to the correspondence).
In various embodiments, various functions performed by an E-mail Scanning System may be implemented via an E-mail Scanning Module 4100.
In still other embodiments, the system is configured to provide the software application for installation on one or more suitable servers (e.g., one or more suitable servers that host a particular e-mail service). In particular embodiments, for example, the system is configured to: (1) receive authorization from a data subject to access his or her e-mails; and (2) use a software application installed on one or more remote servers to perform one or more of the functions described below. In such embodiments, the system may be configured to provide the software application to the one or more remote servers. In particular other embodiments, the system may be at least partially integrated in one or more remote servers (e.g., via a direct server integration). In such embodiments, the system may be at least partially integrated with one or more remote e-mail servers (e.g., one or more remote servers that store and/or process a data subject's emails).
Returning to Step 4120, the system is configured to use the software application to scan and optionally index one or more data subject e-mails, and then analyze information derived from the emails to identify a subject entity (e.g., corporate or non-corporate entity) from which each of the one or more data subject e-mails was received by a data subject. The system may, for example, be configured to scan and/or index the data subject's emails to identify one or more subject entities as the sender of the emails. In particular embodiments, the one or more subject entities may include one or more subject entities (e.g., corporate entities) that would be required to respond to a data subject access request, if received from the data subject. For example, the one or more subject entities may include any subject company that collects, stores, or otherwise processes the data subject's personal data. The system may, for example, be configured to identify particular e-mails of the data subject's indexed e-mails that were received from any suitable entity (e.g., Target, Home Depot, etc.). The system may, for example, scan an e-mail's subject field, body, sender, etc. to identify, for example: (1) a name of the subject company; (2) an e-mail domain associated with the subject company; and/or (3) any other suitable information which may identify the subject entity as the sender of the e-mail.
In some embodiments, the system may be configured to identify e-mail messages from a subject entity based at least in part on an email mailbox in which the messages are located in the data subject's e-mail account. For example, the data subject's e-mail account may already pre-sort incoming messages into one or more categories (e.g., which may include, for example, a promotions category, a junk category, etc.). In such embodiments, the system may be configured to limit the one or more e-mails that the system scans and/or indexes to e-mails that have been identified as promotional in nature (or that have been placed into any other pre-defined category, such as Spam) by the data subject's e-mail service.
Continuing to Step 4130, the system is configured to use an algorithm to determine whether the data subject actively does business with the entity. In particular embodiments, the system is configured to make this determination based at least in part on (e.g., partially or entirely on): (1) whether the data subject opens any of the one or more e-mails received from the subject company; (2) how long the data subject spends reviewing one or more of the e-mails that the data subject does open from the subject company; (3) whether the data subject deletes one or more of the e-mails from the subject company without reading them; (4) what portion (e.g., percentage) of e-mails received from the subject company the data subject opens; (5) whether the data subject selects one or more links contained in one or more e-mails received from the subject company; (6) how much time the data subject spends viewing a website to which a link is provided in the one or more e-mails from the subject company; (7) whether the data subject has set up a rule (e.g., a software-based rule) to auto-delete or block emails from the subject company; (8) whether the data subject has set up a rule (e.g., a software-based rule) to redirect emails received from the subject company to a specific folder or other location (e.g., a folder designated for commercial correspondence, or a folder designated for unwanted correspondence); (9) whether the data subject has submitted a request to the particular entity for the particular entity not to send emails to the data subject; (10) whether the data subject has submitted a request to the particular entity for the particular entity not to send text messages to the data subject; (11) whether the data subject has submitted a request to the particular entity for the particular entity not to call the data subject; and/or (12) any other suitable information related to the data subject's use of one or more services, or purchase of goods, related to the one or more e-mails or other electronic correspondence received by the data subject from the subject company. In particular embodiments, the system is configured to automatically (e.g., using one or more computer processors) determine the information of any of the items listed above (e.g., whether the data subject has set up a rule to redirect emails received from the subject company to a specific folder) using any suitable technique.
As noted above, the system may, in addition, or alternatively, make the determination described above by analyzing electronic correspondence other than emails, such as texts, social media postings, etc. that involve the data subject and the entity. For example, the system may determine that the data subject no longer actively does business with a particular entity if the data subject configures software (e.g., messaging software on the data subject's smartphone) to block texts from the particular entity.
In various embodiments, the system is configured to utilize an algorithm that takes into account one or more of the various factors discussed above to determine whether the data subject still actively does business with the subject entity (e.g., and therefore would likely be interested in continuing to receive e-mails from the subject company). In doing so, the system may assign any appropriate value to each of the factors in determining whether to determine that the data subject no longer does business with the subject entity. Similarly, the system may allow the calculation to be customized by allowing users to assign weighting factors to each particular variable.
As a simple example, the system may use the following formula to determine whether the data subject does business with a particular entity:
Data Subject Disengagement Rating=(Emails Opened Value)+(Texts Read Value)+(Emails Automatically Deleted Value)+(Texts Blocked Value)
In a particular example, the system is configured to determine that the data subject no longer actively does business with the entity if the Data Subject Disengagement Rating is above 80. In this example, the system may assign: (1) a value of 80 to the Emails Read Value if the data subject opens fewer than 5% of emails received from the from the entity; (2) a value of 50 to the Emails Read Value if the data subject opens between 5%-25% of emails received from the entity; and (3) a value of 0 to the Emails Read Value if the data subject opens over 25% of emails received from the from the entity. The system may assign similar values to the other variables based on the user's other email and text related activities. For example, the system may assign a value of 100 to Text Blocked Value if the data subject has actively blocked (e.g., via software instructions) texts from the entity, and a value of 0 to Text Blocked Value if the data subject has not actively blocked texts from the entity. Similarly, the system may assign a value of 100 to Emails Automatically Deleted Value if the data subject has set software to automatically delete (e.g., immediately delete or route to a junk folder) emails from the entity, and a value of 0 to Emails Automatically Deleted Value if the data subject has not initiated such a setting.
As noted above, the system may allow users to customize the calculation above by assigning a weighting value to any of the values included in the Data Subject Disengagement Rating calculation. For example, the system may allow the user to assign a weighting value of 1.2 to Emails Opened Value if that particular user believes that this factor should be weighted 20% higher than usual in the calculation.
In various embodiments, the system is configured to, in response to determining that the data subject no longer actively does business with the entity, automatically generate, populate, and/or submit a data subject access request to the entity. In various embodiments, the data subject access request may include: (1) a request to delete some or all of the data subject's personal data that is being processed by the entity (e.g., in the form of a “right to be forgotten” request); (2) a request to rectify inaccurate personal data of the data subject that is being processed by the entity; (3) a request to access of a copy of personal information of the data subject processed by the entity; (4) a request to restrict the processing of the data subject's data by the entity; and/or (5) a request to transfer the data subject's data from the entity to a specified controller.
As a particular example, the system may generate a focused request to have the entity delete all of the data subject's personal data that the entity is processing in conjunction with a particular service offered by the entity. For example, at Step 4140, the system is configured to substantially automatically complete one or more data subject access requests on behalf of the data subject for one or more services that the data subject no longer uses.
In various embodiments, the system may receive at least some data from the data subject in order to complete the data subject access request. In other embodiments, the system is configured to scan one or more e-mails from the subject company to obtain one or more particular pieces of information for use in filling out the data subject access request (e.g., by identifying a shipping address in a particular e-mail, billing address, first name, last name, and/or phone number of the data subject from a previous order that the data subject placed with the subject company, etc.). In particular embodiments, the system may automatically identify all of the information needed to populate the data subject access request by identifying the information from within one or more individual electronic correspondence associated with the data subject (e.g., one or more texts or emails from the entity to the data subject).
In particular embodiments, the system may be configured to send a message to the data subject (e.g., via e-mail) prior to automatically completing the data subject access request. The message may, for example, require the data subject to confirm that the data subject would like the system to complete the request on the data subject's behalf. In various embodiments, in response to the data subject confirming that the data subject would like the system to complete the request, the system automatically populates the request and submits the request to the entity on the data subject's behalf.
In other embodiments, the system may automatically submit the request without explicit authorization from the data subject (e.g., the data subject may have provided a blanket authorization for submitting such requests when configuring the system's settings.)
In some embodiments, the Email Scanning System may comprise a third-party system that is independent from the one or more subject entities. In such embodiments, the Email Scanning System may be implemented as part of a service for data subjects who may desire to exercise one or more privacy rights, but who aren't necessarily aware of which companies may be storing or processing their personal data, or who don't want to spend the time to submit data subject access requests manually. Similarly, various embodiments of the system may be implemented as part of a service that advantageously provides a data subject with an automated way of submitting data subject access requests to subject companies whose services the data subject no longer uses.
In still other embodiments, the system may be provided by a subject entity (e.g., company) for use by data subjects. Because subject companies are subject to requirements (e.g., in the form of laws and regulations) related to the storage and processing of personal data, it may benefit the subject company to no longer burden itself with storing or processing data related to a data subject that is no longer purchasing the subject entity's goods or utilizing the subject entity's services (e.g., that is no longer actively engaged with the entity). In such embodiments, the system may be configured to: (1) substantially automatically submit the data subject access request; and (2) respond to and fulfill the data subject access request (e.g., the same system or related systems utilized by a particular subject entity may be configured to both submit and fulfill the data subject access request). In other embodiments, the subject entity may unilaterally modify (e.g., edit or delete) the data subject's personal data within one or more of its systems in response to determining that the data subject does not actively do business with the subject entity.
In particular embodiments for example, in response to the system submitting a request to delete the data subject's personal data from a subject entity's systems, the system may: (1) automatically determine where the data subject's personal data, which is processed by the subject entity, is stored; and (2) in response to determining the location of the data (e.g., which may be on multiple computing systems), automatically facilitate the deletion of the data subject's personal data from the various systems (e.g., by automatically assigning one or more tasks to delete data across one or more computer systems to effectively delete the data subject's personal data from the systems). In particular embodiments, the step of facilitating the deletion of the personal data may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (2) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (3) any other suitable technique for deleting the personal data. In particular embodiments, as part of this process, the system uses an appropriate data model (see discussion above) to efficiently determine where all of the data subject's personal data is stored.
Exemplary Data Subject Access Request Processing System Architecture
As may be understood from
In various embodiments, the one or more local storage nodes 4520 may comprise, for example, one or more physical servers (e.g., each having one or more hard disk drives, solid state drives, or other data storage devices) that are each located in a particular respective physical location. In some embodiments, a particular storage node may comprise one or more virtual machines (e.g., and/or one or more virtual LANs) having access to one or more hard disk drives and/or solid-state drives (e.g., or combinations thereof). In still other embodiments, the one or more local storage nodes 4520 may comprise a collection of storage nodes, which may, for example, be clustered together and managed (e.g., through software) as a single pool of storage. In various embodiments, a single pool of storage made up of one or more local storage nodes may have a particular defined location (e.g., geographic location, region, country, jurisdiction, etc.).
The one or more computer networks 115 may include any of a variety of types of wired or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), or any other type of network. The communication link between the Data Subject Access Request Management Server 4510 and the One or More Local Storage Nodes 4520 may be, for example, implemented via a Local Area Network (LAN) or via the Internet. In other embodiments, the One or More Databases 140 may be stored either fully or partially on any suitable server or combination of servers described herein.
Exemplary Data Subject Access Request Processing System Platform
Various embodiments of a Data Subject Access Request Processing System 4500 (e.g., and/or 4600) may be implemented in the context of any suitable system (e.g., a privacy compliance system). For example, the Data Subject Access Request Processing System 4500 may be implemented to facilitate processing of one or more data subject access requests from one or more data subjects. In particular embodiments, the system may implement one or more modules in order to at least partially ensure compliance with one or more regulations (e.g., legal requirements) related to the collection and/or storage of personal data. Various aspects of the system's functionality may be executed by certain system modules, including a Data Subject Access Request (DSAR) Processing via Local Storage Node Module 4700 and a Personally Identifiable Information Archiving Module 5000. These modules are discussed in greater detail below.
Although the system may be configured to execute the functions described in the modules as a series of steps, it should be understood in light of this disclosure that various embodiments of the Data Subject Access Request (DSAR) Processing via Local Storage Node Module 4700 and Personally Identifiable Information Archiving Module 5000 described herein may perform the steps described below in an order other than in which they are presented. In still other embodiments, the Data Subject Access Request (DSAR) Processing via Local Storage Node Module 4700 and Personally Identifiable Information Archiving Module 5000 may omit certain steps described below. In various other embodiments, the Data Subject Access Request (DSAR) Processing via Local Storage Node Module 4700 and Personally Identifiable Information Archiving Module 5000 may perform steps in addition to those described (e.g., such as one or more steps described with respect to one or more other modules, etc.).
DSAR Processing via Local Storage Node Module
Turning to
Various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to obtain confirmation of whether a particular organization is processing their personal data; (2) a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected); (3) a right to obtain information about one or more categories of data being processed (e.g., what type of personal data is being collected, stored, etc.); (4) a right to obtain information about one or more categories of recipients with whom their personal data may be shared (e.g., both internally within the organization or externally); (5) a right to obtain information about a time period for which their personal data will be stored (e.g., or one or more criteria used to determine that time period); (6) a right to obtain a copy of any personal data being processed (e.g., a right to receive a copy of their personal data in a commonly used, machine-readable format); (7) a right to request erasure (e.g., the right to be forgotten), rectification (e.g., correction or deletion of inaccurate data), or restriction of processing of their personal data; and (8) any other suitable rights related to the collection, storage, and/or processing of their personal data (e.g., which may be provided by law, policy, industry or organizational practice, etc.).
As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once), and may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers; in one or more different databases; across a plurality of different jurisdictions, countries, geographic locations; etc.). In this way, a particular organization may store personal data in a plurality of different locations which may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to personal data (e.g., such as responding to one or more requests by data subjects related to their personal data) may be particularly difficult (e.g., in terms of cost, time, etc.). Additionally, receiving and processing a data subject access request may include the collection and processing of personal data associated with a data subject in order to facilitate a fulfilment of the request.
In various embodiments, as shown in
In particular embodiments, the system is configured to receive the request from the One or More Remote Computing Devices 150 at the Data Subject Access Request Management Server 4510 via One or More Networks 115 as may be understood from
Continuing to Step 4720, the system is configured to identify a suitable local storage node based at least in part on the request and/or the data subject. For example, the system may be configured to identify the suitable local storage node (e.g., suitable one or more local storage nodes) based at least in part on: (1) a jurisdiction in which the data subject resides; (2) a country in which the data subject resides; (3) a jurisdiction from which the data subject made the request; (4) a country from which the data subject made the request; (5) a particular geographic area in which the data subject resides or made the request; (6) a proximity of one or more potential local storage nodes to the data subject (e.g., to a location of residence of the data subject and/or a location from which the data subject placed the request; and/or (7) any other suitable factor.
In various embodiments, the system may be configured to define each of a plurality of physical locations based at least in part on one or more geographic boundaries. These one or more geographic boundaries may include, for example: (1) one or more countries; (2) one or more continents; (3) one or more jurisdictions (e.g., such as one or more legal jurisdictions); (4) one or more territories; (5) one or more counties; (6) one or more cities; (7) one or more treaty members (e.g., such as members of a trade, defense, or other treaty); and/or (8) any other suitable geographically distinct physical locations. In particular embodiments, each of these defined geographic boundaries may comprise at least one local storage node (e.g., at least one local storage node may be physically located within each of the defined geographic boundaries. The system may then be configured to: (1) determine a location of the data subject based on the request (e.g., based on an IP address from which the request was made, based on an address or other location provided by the data subject as part of the request, etc.); (2) identify a particular defined geographic boundary that comprises the determined location of the data subject; and (3) identify at least one local storage node within the identified particular geographic boundary.
In some embodiments, the system may identify the suitable storage node based at least in part on one or more residency laws about storage, one or more country-based business rules, one or more rules defined by one or more privacy administrators, etc.
Next, at Step 4730, the system is configured to route the data subject access request to the identified local storage node. The system may, for example, route the data subject access request from the Data Subject Access Request Management Server 4510 to the identified local storage node (e.g., Local Storage Node D 4520D). The system may, for example, transmit data associated with the request to the identified local storage node. The data may include, for example: (1) sufficient data to complete processing of the request at the local storage node (e.g., sufficient identifying data associated with the data subject; (2) data submitted by the data subject or requestor as part of the request (e.g., via one or more web forms); and/or (3) any other suitable data associated with the request.
In particular embodiments, the system is configured to route one or more pieces of data to the local storage node that the system retrieved in response to receiving the request (e.g., one or more pieces of information associated with data collect, stored and/or processed about the data subject). In some embodiments, the system is configured to route a data subject request through the local node directly so that no data is centrally transferred to a master/global system prior to storage at the local node.
Continuing to Step 4740, the system is configured to process the data subject access request at the identified local storage node. In various embodiments, processing the data subject access request may include, for example: (1) identifying one or more pieces of personal data associated with the data subject (e.g., one or more pieces of personal data stored, processed and/or collected by the particular organization or one or more data systems associated with the organization); and (2) fulfilling the request based on one or more request parameters (e.g., providing the requested data, deleting the data that is the subject of the request, etc.). In various embodiments, the system is configured to identify the one or more pieces of personal data using one or more data modelling or data mapping techniques. The system may, for example, analyze one or more data assets utilized by the organization for the collection or storage of personal data. In particular embodiments, each of the one or more data assets (e.g., data systems) may include, for example, any entity that collects, processes, contains, and/or transfers data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). For example, a first data asset may include any software or device (e.g., server or servers) utilized by a particular entity for such data collection, processing, transfer, storage, etc.
In particular embodiments, system is configured to process the request at the local storage node by identifying and retrieving one or more pieces of personal data associated with the requestor that are being processed by the system. For example, in various embodiments, the system is configured to identify any personal data stored in any database, server, or other data repository associated with a particular organization. In various embodiments, the system is configured to use one or more data models to identify this personal data and suitable related information (e.g., where the personal data is stored, who has access to the personal data, etc.). In various embodiments, the system is configured to use intelligent identity scanning (e.g., or other suitable scanning technique) to identify the requestor's personal data and related information that is to be used to fulfill the request.
In still other embodiments, the system is configured to use one or more machine learning techniques to identify such personal data. For example, the system may identify particular stored personal data based on, for example, a country in which a website that the data subject request was submitted is based, or any other suitable information.
In particular embodiments, the system is configured to scan and/or search one or more existing data models (e.g., one or more current data models) in response to receiving the request in order to identify the one or more pieces of personal data associated with the requestor. The system may, for example, identify, based on one or more data inventories (e.g., one or more inventory attributes) a plurality of storage locations that store personal data associated with the requestor. In other embodiments, the system may be configured to generate a data model or perform one or more scanning techniques in response to receiving the request (e.g., in order to automatically fulfill the request).
In various embodiments, the system is configured to process the data subject access request by taking one or more actions based at least in part on the request. In some embodiments, the system is configured to take one or more actions for which the request was submitted (e.g., display the personal data, delete the personal data, correct the personal data, etc.). In particular embodiments, the system is configured to take the one or more actions substantially automatically. The systems may, for example, take the one or more actions at the local storage node (e.g., execute one or more steps related to the one or more actions at the local storage node).
In particular embodiments, in response a data subject submitting a request to delete their personal data from an organization's systems, the system may: (1) automatically determine where the data subject's personal data is stored; and (2) in response to determining the location of the data (which may be on multiple computing systems), automatically facilitate the deletion of the data subject's personal data from the various systems (e.g., by automatically assigning a plurality of tasks to delete data across multiple business systems to effectively delete the data subject's personal data from the systems). In particular embodiments, the step of facilitating the deletion may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (3) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (4) any other suitable technique for deleting the personal data. In particular embodiments, as part of this process, the system uses an appropriate data model to efficiently determine where all of the data subject's personal data is stored.
In other embodiments, for example, where the data subject access request includes a request to view any data stored about the data subject, the system may be configured to compile the data associated with the data subject (e.g., as described above) and store the data (e.g., at least temporarily) at the local storage node. The system may then provide the data subject with one or more links to view at least a portion of the data at the local storage node, a summary of the data stored at the local storage node, etc. When compiling the data at the local storage node, the system may, for example, be configured to automatically archive the personal data at the source location of the data. For example, in response to identifying a piece of personal data associated with the data subject at a first data asset, the system may be configured to: (1) route the personal data to the local storage note; (2) at least temporarily store the personal data at the local storage node (e.g., for viewing and/or provision to the data subject); and (3) automatically archive and/or delete the data at the first data asset. In this way, the system may be configured to comply with the data subject access request substantially without undertaking additional instances of personal data storage, collection, and/or processing which may be governed by one or more legal and/or industry requirements.
In particular embodiments, the system is configured to transmit the personal data identified when processing the request to One or More Customer Servers 4530 (e.g., such as shown in
In various embodiments, the system is configured to at least partially ensure that data is stored only at the local node in the particular geographic location (e.g., country, jurisdiction, etc.).
DSAR Processing Via Local Storage Example
As discussed in more detail above, a data subject may submit a subject access request, for example, to request a listing of any personal information that a particular organization is currently storing regarding the data subject, to request that the personal data be deleted, to opt out of allowing the organization to process the personal data, etc.
Personally Identifiable Information Archiving Module
Turning to
When executing the Personally Identifiable Information Archiving Module 5000, the system begins, at Step 5010, by receiving one or more data retention rules. The one or more data retention rules may include, for example: (1) one or more rules relating to maintaining the data in storage until the data is viewed by the data subject; (2) one or more rules relating to maintaining the data for no more than a particular amount of time, regardless of whether the data subject has viewed the data prior to the expiration of the time period (e.g., for no more than thirty days, for no more than one week, etc.); (3) one or more rules based on the data subject (e.g., based on the data subject's country of origin, based on the type of data being stored, etc.); (4) one or more legal or industry requirements related to the storage of personal data; and/or (5) any other suitable data retention rule or combination of data retention rules (e.g., storage capacity, etc.).
Continuing to Step 5020, the system is configured to, in response to fulfilling a data subject access request, automatically archive personally identifiable information (e.g., personal data) associated with the request based at least in part on the one or more data retention rules. The system may, for example, be configured to at least temporarily store (e.g., at a local storage node) personal data identified when processing the request for at least an amount of time determined by the one or more retention rules. The system may then substantially automatically archive the at least temporarily stored data in response to a triggering of the one or more data retention rules. For example, if the one or more data retention rules dictate that the system should store the data until the data subject access the data, but for no longer than thirty days, the system may be configured to automatically archive the personal data in response to the data subject accessing the personal data (e.g., prior to thirty days) or the passage of thirty days.
When archiving the personal day, the system may, for example: (1) automatically determine where the data subject's personal data is stored (e.g., at the local storage node); and (2) in response to determining the location of the data (e.g., which may be on multiple computing systems), automatically facilitate the deletion of the data subject's personal data from the system (e.g., by automatically assigning a plurality of tasks to delete data across multiple computer systems to effectively delete the data subject's personal data from the system or systems). In particular embodiments, the step of facilitating the deletion may comprise, for example: (1) overwriting the data in memory; (2) marking the data for overwrite; (2) marking the data as free (e.g., and deleting a directory entry associated with the data); and/or (3) any other suitable technique for deleting the personal data.
Returning to Step 5030, the system may be configured to, in response to archiving the personally identifiable information, digitally store metadata associated with the personally identifiable information and the data subject access request. The system may, for example, store metadata that includes data such as: (1) a time and date of the completion of the data subject access request; (2) a type of data provided in response to the request (e.g., but not the actual data); (3) an access time of the data by the data subject (e.g., if the data subject actually accessed the data); (4) one or more retention rules that triggered the archiving of the data (e.g., a certain number of days elapsed, the data subject accessed the date, etc.); and/or any other suitable data related to the completion of the request (e.g., that a download of the data was successful, etc.). In this way, the system may be configured to ensure compliance with one or more reporting requirements related to the fulfilment of data subject access requests, without having to maintain personal data on the system (e.g., which may be subject to certain rules described herein).
DSAR Processing Guidance
In particular embodiments, the system is configured to provide guidance for processing one or more data subject access requests based at least in part on one or more data subject attributes (e.g., country, region, type, etc.) and a type of the data subject access request (e.g., deletion, correction, etc.). The system may, for example, automatically identify one or more regulatory rules (e.g., laws) based on the data subject and the request, and provide guidance to a privacy officer or admin with how to process the request based on the relevant regulatory rule(s).
Data Subject Access Request Chat Robots and Related Methods
In particular embodiments, the system is configured to provide (e.g., by running software on any suitable system component, such as any suitable server described herein) a conversational chatbot that is configured to request information from a data subject (e.g., high-level, generic information that does not include personal data for the data subject and/or more specific information that may include personal data for the data subject). The system may then use the provided information to retrieve information from any suitable data source regarding one or more types of data (e.g., personal data and/or other data) that a particular entity (e.g., company or other organization) may store about the data subject and/or how the entity uses that data.
For example, the chatbot may be configured for, first, obtaining data subject information from the data subject, such as information regarding the data subject's relationship with the entity (e.g., the data subject is a customer of the entity, the data subject is a vendor for the entity, the data subject is a current or former employee of the entity, the data subject is on a mailing list of the entity, etc.), and/or other suitable information (e.g., the data subject's state of residence, the data subject's country of residence, the data subject's age, the data subject's national origin, and/or any other suitable information). Next, the chatbot may use the obtained data subject information along with information from a suitable data source, such as a privacy-related data map and/or a privacy-related data model as described herein, to obtain personal data information regarding, for example, one or more types of personal data associated with the data subject that the system stores and/or one or more purposes for which the entity (and/or the system) uses the personal data.
The chatbot may then provide this personal data information to the data subject, for example, at a general level (e.g. without providing the actual values of the data that are unique to the specific data subject). For example, the chatbot may inform the user that it stores the data subject's email address and uses the email address for distributing a particular email newsletter every week, but may not provide the data subject's actual email address and/or the name of the newsletter. In this way, the system may be configured to inform a data subject about the particular type(s) of personal data the system stores regarding the data subject and how the personal data is used, so that the data subject can make a more informed decision regarding whether to submit a data subject access request (DSAR).
In some cases, the personal data information that the system provides may be enough information to satisfy the data subject's current needs, and therefore the data subject may choose to not submit a DSAR. This may be advantageous by: (1) saving the data subject the time that would have otherwise been required to submit the DSAR and to review the results of the DSAR; and/or (2) saving the system the processing resources that would have otherwise been needed to fulfill a DSAR. Accordingly, the chatbot may serve to make the system more efficient by reducing the amount of processing resources that the system needs to complete its DSAR-related activities within a particular timeframe.
In particular embodiments, the chatbot may be configured to, after providing the personal data information to the data subject, present a question asking the user if they would like to submit a DSAR. In particular embodiments, the chatbot may be configured to automatically receive and fulfill such requests by, for example: (1) receiving a DSAR; (2) after receiving the DSAR, verifying and/or facilitating the verification of the requestor's identity; (3) taking one or more actions requested in the DSAR (e.g., providing, deleting, and/or modifying personal data stored by the entity and associated with the data subject that is the subject of the DSAR); and/or (4) confirming to the data subject that the DSAR has been fulfilled.
Alternatively, or in addition, the chatbot may be configured to facilitate the submission of a DSAR through one or more other means or mechanisms. For example, the chatbot may ask the user if they would like to submit a DSAR and, if the user responds in the affirmative, the chatbot may provide instructions to the user regarding one or more next steps to take in order to submit a DSAR, for example, through a website, a call center, and/or other DSAR submission platform associated with the entity.
In various embodiments, a chatbot may include or otherwise utilize an artificial intelligence (AI) program that simulates interactive human conversation (e.g., through exchanges of written text, verbal communications, and/or exchanges of non-verbal, visual cues and/or displays between the chatbot and the user). In various embodiments, a chatbot may use one or more pre-determined phrases that may be input (e.g., typed and/or spoken) by the user as keys to determine one or more actions to be taken by the system and/or one or more responses to be communicated to the user (e.g., text, visual, and/or audio responses). Examples of chatbots include text chatbots and verbally-operated chatbots, such as Apple's Siri digital assistant and Amazon's Alexa digital assistant.
Data Subject Access Request Chat Robot Module
At Step 5420, the chatbot may request and/or receive data subject information from the user. The chatbot may present one or more questions to the user asking the user for particular data subject information that the system can use to obtain further information, for example using methods and means described herein. The chatbot may then receive such information as it is entered by the user in the chatbot interaction window. Alternatively, the chatbot may use information already know about the user, for example from data stored during previous interactions with the user (e.g., in a cookie, session information, etc.) to determine data subject information. In various embodiments, the data subject information may include, but is not limited to: (1) information regarding the data subject's relationship with the entity (e.g., the data subject is a customer of the entity, the data subject is a vendor for the entity, the data subject is a current or former employee of the entity, the data subject is on a mailing list of the entity, etc.); (2) identifying information associated with the data subject (e.g., the data subject's state of residence, the data subject's country of residence, the data subject's age, the data subject's national origin, and/or any other identifying information); (3) contact information associated with the data subject (e.g., the data subject's email address, the data subject's phone number, the data subject's physical address, etc.); and/or (4) any other information that may be used to determine how personal data is used, stored, and/or otherwise manipulated by an entity.
At Step 5430, the chatbot may use the data subject information to obtain or otherwise determine, at least in part, personal data information associated with the data subject represented by the data subject information. For example, the system may use some or all of the received data subject information in conjunction with information from a suitable data source, such as a privacy-related data map and/or a privacy-related data model as described herein, to determine personal data information that may reflect an entity's use, storage, and/or manipulation of the personal data of the data subject. Such personal data information may include, but is not limited to: (1) one or more types of personal data associated with the data subject that the entity and/or the system acquires and/or stores; (2) a length of time that the entity and/or the system stores personal data associated with the data subject; (3) one or more locations at which the entity and/or the system stores personal data associated with the data subject; (4) one or more purposes for which the entity and/or the system uses personal data associated with the data subject; (5) one or more manners in which the entity and/or the system manipulates personal data associated with the data subject; and/or (6) any other information regarding the use of personal data associated with the data subject.
At Step 5440, the chatbot may provide this personal data information, or a subset thereof, to the user. In particular embodiments, the system may provide personal data information at a general level without providing the actual values of the personal data that are unique to the specific data subject. For example, the chatbot may inform the user that the system stores the data subject's email address for a particular length of time and/or that the system uses the data subject's email address for distributing a particular email newsletter every week, but may not provide the data subject's actual email address and/or the name of the newsletter. In this way, the system may be configured to inform a user about the particular type(s) of personal data the system stores regarding the data subject and how the personal data is used, so that the user can make a more informed decision regarding whether to submit a data subject access request (DSAR). In other particular embodiments, the system may also, or instead, provide more particular personal data to the user, such as actual contact information, content associated with the data subject, etc. In particular embodiments, the communications session used to facilitate the chatbot and/or the chatbot interaction window may be encrypted to ensure that any information presented to the user and/or received from the user remains secure.
At Step 5450, the system may determine whether the user requires any additional information or assistance in submitting a DSAR. The chatbot may facilitate this determination by presenting a query to the user (e.g., “How else may I help?”, “Would you like to submit a request relating to your personal information?”, etc.). Alternatively, the system may detect further input from the user or detect that the user has closed the chatbot interaction window. In some cases, the personal data information that the system provides at Step 5440 may the user and the user may have no other requests from the chatbot. In this case, the system may determine, at Step 5460, that the user no longer needs to interact with the chatbot and therefore may, at Step 5480, terminate the chatbot session with the user.
In various embodiments, the system may determine, at Step 5460, that the data subject would like to submit a DSAR, for example, based on input received via the chatbot interaction window. In response, the system may facilitate the user submission of the DSAR at Step 5470. In particular embodiments, at Step 5470, the system may provide instructions to the user (e.g., via the chatbot interaction window) to on how to submit a DSAR (e.g., provide a link to a DSAR webform, provide call center contact information, etc.). The system may receive and/or process a DSAR according to any of the embodiments described herein using the chatbot.
In various embodiments, at Step 5470, the system may be configured to automatically receive and fulfill such requests by, for example: (1) receiving a DSAR (or an indication that the user would like to submit a DSAR and presenting and receiving the information needed to process the DSAR); (2) in response to receiving the DSAR, verifying and/or facilitating the verification of the requestor's identity; (3) taking one or more actions requested in the DSAR (e.g., providing, deleting, and/or modifying personal data stored by the entity and associated with the data subject that is the subject of the DSAR); and/or (4) confirming to the data subject that the DSAR has been fulfilled.
In various embodiments, the system may determine, at Step 5460, that the data subject would like more information, for example, associated with how the entity or the system handles personal data associated with a data subject. In response, the system may assist the user in obtaining such additional information, for example by returning to Step 5420. In this way, the chatbot may continue to interact with the user until the user's needs have been met and/or until the user terminates the chatbot session.
Data Subject Access Request Chat Robot—Example User Experience
An example operation of a DSAR chatbot according to a particular embodiment will now be provided. It should be understood that this embodiment is only a particular example and that other embodiments may be adapted to perform differently.
To begin, a user may use a suitable Internet browser on their computing device to access a website that is served by the entity and that is configured for allowing a user to submit a data subject access request. For example, the user may access a DSAR-submission webpage that is associated with the website and that includes a suitable graphical user interface for use in submitting data subject access requests to the entity.
When the user accesses the webpage, the system may automatically display a pop-up window that includes a graphical user interface between the chatbot and the user. In a particular example, the chatbot may display this message, in text form, in the pop-up window: “Would you like to know what types of your personal data that ABC Company currently has on file for you?” In response, the user may enter the following text into a text box in the pop-up window: “Yes.” The chatbot may then display the following text reply in the pop-up window: “Please enter your relationship to ABC Company. For example, are you a customer or employee of ABC Company?” The user may then enter “I am a customer of the company.” into the text box.
In response to receiving the entered generic relationship information (that the user is a customer of the company), the chatbot may use the relationship information and a privacy-related data map associated with ABC Company and/or data from a privacy-related data model associated with ABC Company to determine the type(s) of personal data (e.g., personal information) that ABC Company stores for its customers. In a particular simplified example, ABC Company may store, in memory, the name, street address, email address, and phone number for each of its customers (to the extent that ABC Company has this information). In this example, the chatbot may accordingly display the following message to the user in the pop-up window “ABC company stores the following information for its customers: Name, Street Address, Email Address, and Phone Number. Would you any additional information regarding how ABD company handles your information?”
If the user is satisfied with the information provided (e.g., the user just wanted to make sure that ABC Company isn't storing more detailed personal data regarding the user), the user may enter “No.” into the text box. As noted above, in this scenario, the use of the chatbot would likely have resulted in a more processing-efficient interaction with the user because the interaction with the user would have been satisfied without having to retrieve the user's actual personal data which, in various embodiments, would require more processing capacity than generically determining and communicating the general types of personal data that ABC Company obtains and stores for all of its customers.
If the user would like more specific information, the user may type “Yes.” into the text box. In response the chatbot may provide more detailed information, in some embodiments prompting the user for additional information that may be needed to determine such detailed information.
Continuing with this example, the chatbot may next, or instead, display the following message to the user in the pop-up window “Would you like to submit a data subject access request to obtain the exact information that ABC Company has on file for you or request that ABC Company take specific actions in regard to your information?”
Here again, if the user is satisfied with the information provided (e.g., the user just wanted to make sure that ABC Company isn't storing more detailed personal data regarding the user), the user may enter “No.” into the text box. If the user would like more specific information or would like to submit a DSAR, the user may type “Yes.” into the text box. In response the chatbot may provide instructions as to how the user may use the webpage to submit a DSAR. Alternatively, the chatbot may automatically fulfill the DSAR without requiring the user to use the webpage to submit the DSAR, for example, by collecting the needed information from the user using the chatbot interaction window.
Malicious Data Subject Access Request Prevention
In various embodiments, an organization, corporation, etc. may be required to provide information requested by an individual for whom the organization stores personal data. As a particular example, an organization may be required to provide an individual with a listing of, for example: (1) any personal data that the organization is processing for an individual, (2) an explanation of the categories of data being processed and the purpose of such processing; (3) one or more categories of third parties to whom the data may be disclosed; (4) etc. In particular embodiments, when processing a data subject access request (e.g., a request for such information), a data subject access request (DSAR) processing system may be configured to: (1) receive a data subject access request from a data subject, the data subject access request comprising one or more requests related to the one or more rights described herein (e.g., a request for a copy of the data subject's personal data, a request regarding how long personal data associated with the data subject is being stored by the system, a request to be forgotten, etc.); (2) process the request in any suitable manner described herein; (3) fulfill the request based at least in part on one or more request parameters; (4) store one or more pieces of metadata associated with the processing of, fulfilment of, and/or response to the request; and/or (5) archive one or more pieces of data associated with the request based on one or more data retention rules.
In various embodiments, a data subject access request processing system (e.g., the Data Subject Access Request Processing System 4500) may be implemented in the context of any suitable privacy management system that is configured to ensure compliance with one or more legal or industry standards related to the collection and/or storage of private information (e.g., such as personal data). In various embodiments, a particular organization, sub-group, or other entity may initiate a privacy campaign or other activity (e.g., processing activity) as part of its business activities. In such embodiments, the privacy campaign may include any undertaking by a particular organization (e.g., such as a project or other activity) that includes the collection, entry, and/or storage (e.g., in computer memory) of any personal data associated with one or more individuals (e.g., data subjects). In particular embodiments, a privacy campaign may include any project undertaken by an organization that includes the use of personal data, or any other activity that could have an impact on the privacy of one or more individuals.
In any embodiment described herein, personal data may include, for example: (1) the name of a particular data subject (which may be a particular individual); (2) the data subject's address; (3) the data subject's telephone number; (4) the data subject's e-mail address; (5) the data subject's social security number; (6) information associated with one or more of the data subject's credit accounts (e.g., credit card numbers); (7) banking information for the data subject; (8) location data for the data subject (e.g., their present or past location); (9) internet search history for the data subject; and/or (10) any other suitable personal information, such as other personal information discussed herein. In particular embodiments, such personal data may include one or more cookies (e.g., where the individual is directly identifiable or may be identifiable based at least in part on information stored in the one or more cookies). In still other embodiments, the personal data may include any data that may be used either alone or in conjunction with other data or information to potentially identify a particular data subject (e.g., individual).
As discussed above, various privacy and security policies (e.g., such as the European Union's General Data Protection Regulation, and other such policies) may provide data subjects (e.g., individuals, organizations, or other entities) with certain rights related to the data subject's personal data that is collected, stored, or otherwise processed by an organization. These rights may include, for example: (1) a right to obtain confirmation of whether a particular organization is processing their personal data; (2) a right to obtain information about the purpose of the processing (e.g., one or more reasons for which the personal data was collected); (3) a right to obtain information about one or more categories of data being processed (e.g., what type of personal data is being collected, stored, etc.); (4) a right to obtain information about one or more categories of recipients with whom their personal data may be shared (e.g., internally within the organization and/or externally); (5) a right to obtain information about a time period for which their personal data will be stored (e.g., or one or more criteria used to determine that time period); (6) a right to obtain a copy of any personal data being processed (e.g., a right to receive a copy of their personal data in a commonly used, machine-readable format); (7) a right to request erasure (e.g., the right to be forgotten), rectification (e.g., correction or deletion of inaccurate data), and/or restriction of processing of their personal data; and (8) any other suitable rights related to the collection, storage, and/or processing of their personal data (e.g., which may be provided by law, policy, industry or organizational practice, etc.).
As may be understood in light of this disclosure, a particular organization may undertake a plurality of different privacy campaigns, processing activities, etc. that involve the collection and/or storage of personal data. In some embodiments, each of the plurality of different processing activities may collect redundant data (e.g., may collect the same personal data for a particular individual more than once) and/or may store data and/or redundant data in one or more particular locations (e.g., on one or more different servers, in one or more different databases, etc.). In this way, a particular organization may store personal data in a plurality of different locations that may include one or more known and/or unknown locations. As such, complying with particular privacy and security policies related to personal data (e.g., such as responding to one or more requests by data subjects related to their personal data) may be particularly difficult (e.g., in terms of cost, time, etc.).
In particular embodiments, entities may be required to respond to such data subject access requests within a particular amount of time (e.g., following the request). As such, handling a particularly large volume of requests at one time may be difficult in terms of requiring a large number of resources (e.g., computing resources, business resources, time of one or more entity employees, etc.).
Some companies may offer services that are designed to automate (e.g., at least partially automate) or otherwise simplify the submission, by a particular data subject, of one or more data subject access requests across multiple companies. Tools that are designed to automate the submission of such data subject access requests (e.g., across multiple entities) may result in a much larger volume of data subject access requests for each particular entity to handle (e.g., because the tools may enable a data subject to automatically submit thousands of data subject access requests rather than having to submit each one to every respective entity individually). In light of the above, there is a need for improved systems and methods with which particular entities can limit such automated and/or robotic data subject access requests (e.g., and require individual data subjects to submit a data subject access to the entity directly on their own). Such improved systems and methods may, for example, help to reduce an entity's burden in processing an inflated number of data subject access requests.
Various embodiments of exemplary systems for reducing and/or eliminating automated and/or robotic data subject access requests are described below.
In particular embodiments, a data subject access request fulfillment system (which may, for example, be the Data Subject Access Request Processing System 4500 described above) is configured to generate a unique URL (e.g., a unique URL that is permanently or temporarily only configured for use with the particular request) in response to receiving a data subject access request. In such embodiments, the system may, for example, by configured to: (1) receive a request to complete a data subject access request; (2) generate the unique URL in response to receiving the request; and (3) at least temporarily host (e.g., provide access to) a web form or other means for completing a data subject access request at the unique URL. In alternative embodiments, the system may use a non-unique URL for this purpose.
In particular embodiments, the system is configured to use JavaScript to generate a unique session ID for a user requesting to complete a data subject access request. The system may then be configured to generate a unique, or non-unique, URL for the session ID (e.g., as opposed to hosting a data subject access request form or web form on a static URL). In this way, an entity may be able to prevent a third party from robotically completing data subject access requests on behalf of a data subject by only accepting such requests through the uniquely-generated URLs.
In various embodiments, the system is configured to set a session cookie on a client's browser in order access a DSAR webform. In various embodiments, the session cookie is configured to enable the system to determine whether the visitor originated from a domain associated with a third-party entity (e.g., a third-party aggregator) through which the data subject is attempting to place the DSAR. This may, for example, prevent the third-party aggregator from directly connecting to a webform for DSAR submissions.
In still other embodiments, the system is configured to dynamically modify a DSAR webform, for example, by: (1) dynamically changing an order of DSAR form questions (e.g., to prevent robotic completion of a standardized, static webform); (2) dynamically adding and/or removing particular questions to the webform; and/or (3) taking any other suitable action to manipulate the webform to prevent one or more users from scripting the completion of the webform (e.g., automatically filling the form out).
In still other embodiments, the system may utilize one or more HTML tagging techniques to at least partially prevent a bot tool from automatically matching the form to a known form that the bot can complete. The system may, for example, dynamically change one or more HTML tags associated with the webform to prevent such botting.
According to various embodiments, the system is configured to track a requestor and/or a source associated with each DSAR and analyze each DSAR to identify requestors and/or sources from which: (1) the company receives a large volume of requests; (2) the company receives a large number of repeat requests; and/or (3) the company receives a request from a requestor or source for which the company does not legally have to respond and/or does not legally have to respond at no cost. The sources may include, for example: (1) one or more particular IP addresses; (2) one or more particular domains; (3) one or more particular countries; (4) one or more particular institutions; (5) one or more particular geographic regions; (6) one or more political groups; and/or (7) one or more protesting groups (e.g., groups that are currently protesting against one or more activities of the entity to which the DSAR is being submitted). In response to analyzing the sources of the requests, the system may identify one or more requestors and/or sources that may be malicious (e.g., are submitting excessive requests).
In some embodiments, the system is configured to identify web traffic to the webform that has a non-human (e.g., robotic) source. The system may identify non-human sources based on, for example: (1) a number of requests received from the source (e.g., per second); (2) an existing database of known robotic sources (e.g., MAC addresses, IP addresses, etc.); etc.
In still other embodiments, the system is configured to embed a challenge question, CAPTCHA, and/or other robotic submission prevention mechanism into the webform that is utilized in the submission of DSARs in order to prevent DSARs from being submitted by automated sources.
As a particular example, an automated source of DSARs, such as a DSAR submission bot tool, may be configured to submit 100 different data subject access requests—each for a different data subject—to a particular entity (e.g., Home Depot) at around the same particular time. To do this, the DSAR submission bot tool may begin by establishing electronic communications with a web page associated with the particular entity (e.g., via the Internet) and then attempting to auto-populate a DSAR submission web form on the web page with information for a first one of the 100 data subjects.
In this example, a DSAR processing system that processes DSAR's submitted via the web form may detect (e.g., in any suitable way, such as using any of the techniques discussed above) that the DSAR is being submitted by an automated source. At least partially in response to making this determination, the DSAR processing system may take a defensive action (such as any of those discussed above) to inhibit and/or prevent the DSAR submission bot tool from submitting the DSAR for the first data subject.
For example, the system may: (1) generate a unique URL for a session ID that the system has generated for the current DSAR submission; and (2) only accept the current data subject access request via the unique URL. The system may, alternatively, or in addition: (1) dynamically change an order of DSAR-related questions on the webform (e.g., to prevent robotic completion of a standardized, static webform); (2) dynamically add and/or remove particular questions from the webform; (3) use one or more HTML tagging techniques to at least partially prevent a bot tool from automatically matching a form for use in submitting one or more data subject access requests to a known form that an automated source can complete; and/or (4) take any other suitable action to manipulate the webform to prevent one or more users from scripting the completion of the webform (e.g., from automatically filling out the form).
In various embodiments, such defensive actions may discourage or prevent the automated submission of DSARs and make it necessary, or at least more desirable, for DSAR's to be submitted manually (e.g., by a human, such as the data subject that is the subject of the DSAR). In various embodiments, this may reduce the number of DSARs that are submitted to the DSAR processing system for fraudulent or malicious purposes.
In particular embodiments, the system may be configured for, in response to determining that a particular DSAR has been submitted by a human (rather than an automated source), automatically fulfilling the DSAR.
Data Migration Between Data Centers
In particular embodiments, the system is configured to migrate data (e.g., personal data) collected and/or stored by one or more systems to one or more other systems. For example, in anticipation of, or in the event of, a data center outage, data stored on a data asset located in that data center may be migrated to another data asset in another data center. This process may be at least substantially automatic and may provide one or more safeguards against data center failure, data asset failure, data loss and/or other failures or undesirable occurrences. In various embodiments, one or more planned outages may be accommodated in such a fashion, by transferring the data stored at a data asset that will be affected by a planned outage to another data asset that may not be affected by the planned outage. When transferring data from one data asset to another, the system may be configured to take into account one or more regulations related to the transfer of such data.
In particular embodiments, a transfer (e.g., migration) of data associated with a particular entity from one data asset to another may be one of, for example: (1) an internal transfer (e.g., a transfer of data from a first data asset associated with the entity to a second data asset associated with the entity); (2) an external transfer (e.g., a transfer of data from a first data asset associated with the entity to a second data asset associated with a different entity); and/or (3) a collective transfer (e.g., a transfer of data to a first data asset associated with the entity from an external data asset associated with a different entity). In various embodiments, where data associated with a particular entity is transferred to an asset associated with a different entity, such a different entity may, for example, be a vendor engaged by the particular entity (e.g., as a backup storage provider, etc.).
The system may be configured to determine where and/or how data is to be transferred based on the type of data to be transferred. For example, where the data to be transferred is personal data, the transfer of such personal data may trigger one or more regulations governing the transfer. In particular embodiments (e.g., as described herein), personal data may include any data that may relate to an individual who can be identified: (1) from the data; and/or (2) from the data in combination with other information that is in the possession of, or is likely to come into the possession of, a particular entity. In particular embodiments, a particular entity may collect, store, process, and/or transfer personal data for one or more customers, one or more employees, etc.
In various embodiments, the system may be configured to use one or more data models associated with one or more data assets (e.g., data systems) to analyze one or more data elements associated with those one or more data assets to determine one or more types of data stored on the one or more data assets. In particular embodiments, the system may use a data map associated with a particular data asset to determine whether one or more data elements of that particular data asset include personal data that may be subject to transfer. The system may then be configured to determine the regulations, requirements, and/or restrictions applicable to a transfer of such personal data, in various examples based at least in part on one or more data models. For example, the system may be configured to identify, based at least in part on the type of data to be transferred and/or the applicable regulations, requirements, and/or restrictions, one or more suitable target data assets (e.g. from a plurality of candidate target data assets) to which such personal data may be transferred. Upon locating the one or more target data assets, the system may be configured to proceed with the transfer of such personal data.
In particular embodiments, the system may be configured to use one or more data maps (e.g., that may be based on one or more data models), such as those described elsewhere herein, to determine one or more communicative connections and/or electronic associations between data assets in the process of locating one or more suitable target data assets for a particular data transfer. Based on such connections and/or associations, the system may be configured to determine one or more potential target data assets to which data from a data asset is eligible to be transferred while remaining in compliance with any applicable regulations, requirements, and/or restrictions. The system may be configured to select, from such one or more potential target data assets, one or more particular target data assets to which to transfer such data.
As a particular example, the GDPR may dictate that data cannot be transferred outside of the country in which it is stored. In this example, the system may be configured to identify at least one intra-country backup data asset to serve as a target data asset for each of one or more of its data assets (e.g., storage assets) in the event of, or in anticipation of, a failure of such one or more data assets.
In various embodiments, the system may be configured to perform a risk analysis of a transfer of data from a particular data asset to any other particular data asset. For example, the system may be configured to perform a risk analysis associated with any planned and/or contingent transfer of data between data assets prior to the transfer. In various examples, the entity may determine one or more preferred target data assets to receive a transfer of data from a particular data asset in the event of, or in anticipation of, a failure of (e.g., a full or partial failure of) that particular data asset. The system may be configured to store such determined one or more preferred target data assets (e.g., store one or more indications of such one or more preferred target data assets) in one or more data models and/or to indicate such one or more preferred target data assets in one or more data maps associated with the particular data asset. In this way, when an actual or anticipated failure at the particular data asset necessitates a transfer of data from that data asset to another data asset, the transfer of data may be expedited because the preferred one or more target data assets are already known from the one or more data models and/or data maps associated with the particular data asset. In the event that one or more preferred target data assets are not available at the time of transfer from the particular data asset, the system may be configured to responsively determine one or more alternative target data assets to which to transfer data from the particular data asset.
In various embodiments, the system may be configured to identify one or more suitable data assets to which to transfer data at least partially in response to the failure of, or the anticipation of the failure of, a particular data asset. In various embodiments, the “failure” of a particular data asset may include, for example, an anticipated shutdown of the data asset for routine maintenance. The system may, for example: (1) identify a first data asset; (2) identify a second data asset; (3) determine one or more regulations, requirements, and/or restrictions that relate to a transfer of data between the first data asset and the second data asset; (4) determine one or more types of data stored by the first data asset; (5) determine, based on the one or more types of data stored by the first data asset and the one or more regulations relating to the transfer of data between the first data asset and the second data asset, whether the second data asset is a suitable target data asset for the first data asset's data; and/or (6) at least partially in response to determining that the second data asset is a suitable target data asset for the first data asset's data, initiate a transfer of data from the first data asset to the second data asset.
In various embodiments, the system may instead, or in addition, be configured to identify a suitable data asset to which to transfer data at least partially in response to the failure of a particular data asset and/or the system anticipating (e.g., via one or more data asset maintenance schedules and/or by determining that the data asset is likely to fail based on past or current data received by the system regarding the particular data asset) the full or partial failure of the particular data asset. In particular embodiments, the system may identify the suitable data asset by: (1) identifying a first data asset; (2) determining one or more types of data stored on the first data asset; (3) determining one or more regulations, requirements, and/or restrictions that relate to a transfer of such one or more types of data; (4) determining one or more potentially suitable target data assets to which a transfer of data stored on the first data asset would satisfy the one or more regulations, requirements, and/or restrictions that relate to a transfer of such one or more types of data; and (5) selecting one or more of the one or more potentially suitable target data assets as one or more suitable target data assets for receiving data from the first data asset. The system may then, at least partially in response to selecting one or more of the one or more potentially suitable target data assets as one or more suitable target data assets for receiving data from the first data asset (and/or in response to determining that the first data asset has at least partially failed or is likely to fail), initiate a transfer of some or all of the first data asset's data to the one or more suitable target data assets.
In various embodiments, the system may be configured to assign one or more suitable target data assets to serve as one or more fail-over assets for each respective one of a plurality of particular data assets maintained, utilized, and/or associated with a particular entity. In this way, the system may be configured to identify at least one respective data asset (e.g., storage asset) that is suitable to receive data transferred from each respective source data asset in the event of, or in anticipation of, at least partial failure by the respective source data asset.
As may be understood from
In various embodiments, the First Data Asset 5210 and the Second Data Asset 5220 may each be a storage asset (or other suitable asset) that may comprise, for example, one or more physical servers (e.g., each having one or more hard disk drives, solid state drives, and/or other data storage devices) that are each located in a particular respective physical location (e.g., the First Data Center 5211 and the Second Data Center 5221, respectively). In some embodiments, a particular storage asset may comprise one or more virtual machines (e.g., and/or one or more virtual LANs) having access to one or more hard disk drives and/or solid-state drives (e.g., or combinations thereof). In still other embodiments, the First Data Asset 5210 and the Second Data Asset 5220 may each comprise a collection of storage assets that may, for example, be clustered together and managed (e.g., through software) as a single storage asset. In various embodiments, a storage asset made up of one or more storage devices or systems may have a particular defined location (e.g., geographic location, region, country, jurisdiction, etc.).
The One or More Computer Networks 115 may include any of a variety of types of wired and/or wireless computer networks such as the Internet, a private intranet, a public switch telephone network (PSTN), and any other type of network. The communication link between the First Data Asset 5210 and the Second Data Asset 5220 may be, for example, implemented via a Wide Area Network (WAN) or via the Internet. In various embodiments, the One or More Databases 5240 may be stored either fully or partially on any suitable server or combination of servers described herein.
In various embodiments, and as described in more detail herein, when the First Data Center 5211 and/or the First Data Asset 5210 fails and/or is anticipated to fail, the system may be configured to determine that the Second Data Asset 5220 located in the Second Data Center 5221 should serve as a backup data asset for the First Data Asset 5210, receiving and storing at least a subset of the data stored on the First Data Asset 5210. As described herein, the system may determine that the Second Data Asset 5220 is a suitable backup data asset based on, for example: (1) one or more attributes of data stored on the First Data Asset 5210; (2) the respective physical locations of the First Data Asset 5210 and the Second Data Asset 5220; and/or (3) one or more applicable regulations, requirements, and/or restrictions that would apply to a potential transfer of data from the First Data Asset 5210 to the Second Data Asset 5220. The system may, at least partially in response to determining that the Second Data Asset 5220 is a suitable backup data asset for the First Data Asset 5210, transfer data from the First Data Asset 5210 to the Second Data Asset 5220 via the One or More Computer Networks 115.
At Step 5320, the system may determine any applicable regulations, requirements, and/or restrictions that relate to a transfer of data from the first data asset to another, potentially suitable target data asset. The system may make this determination based, for example, at least in part, on a location of the first data asset and/or the data center in which the first data asset may be located. For example, the system may determine that the first data asset is located and Germany and therefore is subject to the GDPR. Instead, or in addition, other information may be used to determine the applicable regulations, requirements, and/or restrictions that relate to a transfer of data from the first data asset, such as the jurisdiction to which the first data asset is subject, the location of the associated entity or operator of the first data asset, etc. To determine the information needed to determine the applicable regulations, requirements, and/or restrictions, or to directly determine the applicable regulations, requirements, and/or restrictions that relate to a transfer of data from the first data asset, the system may, for example, be configured to use information from one or more data models associated with the first data asset (e.g., one or more data models as described herein).
At Step 5330, the system may determine one or more types of data stored at the first data asset and/or otherwise to be transferred from the first data asset to another data asset. For example, the system may determine that the data stored at the first data asset and to be transferred to another data asset includes the personal data of one or more minors. As noted above, the system may be configured to use one or more data models associated with the first data asset (e.g., one or more data models as described herein) to determine the one or more types of data stored at the first data asset and to be transferred to another data asset.
At Step 5340, the system may be configured to determine, based on the determined one or more types of data to be transferred and the applicable regulations, requirements, and/or restrictions, one or more target data assets to which the data stored at the first data asset is to be transferred. In various embodiments, the system may determine one or more potential target data assets for the transfer and then select one or more suitable target data assets from the one or more potential target data assets. The system may prioritize a listing of the one or more potential target data assets using any suitable criteria, such as a respective privacy risk score associated with each potential target data asset and/or its operator, etc.
In the course of executing Step 5340, the system may be configured to use one or more data models associated with the first data asset to identify one or more suitable target data assets for one or more data transfers from the first data asset to a second data asset. Alternatively, or in addition, the system may be configured to use one or more data maps (e.g., that may be based on one or more data models) associated with the first data asset to determine one or more communicative connections and/or electronic associations between the first data asset and one or more potential target data assets to identify one or more suitable target data assets for one or more data transfers. In various embodiments, the system may be configured to select, from one or more potentially suitable target data assets, a particular one or more target data assets that would accommodate a transfer of the type of data to be transferred from the first data asset without violating any applicable regulations, requirements, and/or restrictions.
The system may be configured, at least partially in response to the identification of the one or more suitable target assets, to proceed with the transfer of data (e.g., at least a subset of data stored at the first data asset) from the first data asset to the one or more target data assets at Step 5350.
In various embodiments, following a transfer of data from one data asset to another, any suitable evaluation and/or assessment may be performed (e.g., automatically by the system) to generate updated evaluation and/or assessment information that takes into account the new location of the transferred data. For example, following a migration of data from a first data asset to a second data asset, the system may automatically facilitate the completion of (e.g., generate or facilitate the completion and generation of) one or more new privacy impact assessments that take into account the storage of the data in the second data asset rather than in the first data asset. In various embodiments, this step may be performed substantially automatically in response to the migration of the data from the first data asset to the second data asset and may include performing any suitable processes and/or using any system described herein. In other embodiments, the system may use any other suitable technique for reassessing one or more privacy-related risks associated with storing the data at the second data asset rather than at the first data asset.
Conclusion
Although embodiments above are described in reference to various privacy management systems, it should be understood that various aspects of the system described above may be applicable to other privacy-related systems, or to other types of systems, in general.
Also, although various embodiments are described as having the system analyze a data subject's interaction with email, text messages (e.g., SMS or MMS messages), or other electronic correspondence to determine whether the data subject actively does business with a particular entity, in other embodiments, the system may make this determination without analyzing electronic correspondence (e.g., emails or texts) or a data subject's interaction with electronic correspondence. For example, in particular embodiments, the system may automatically determine whether a data subject has requested that a particular entity not send emails to the data subject and, at least partially in response to making this determination, automatically generate, populate, and/or submit a data subject access request to the particular entity. Such a data subject access request may include, for example, any of the various data subject access requests described above (e.g., a request to delete all of the data subject's personal data that is being processed by the particular entity). The system may execute similar functionality in response to determining that the data subject has requested that the particular entity not send text (e.g., SMS or MMS) messages to the data subject, call the data subject, etc.
It should be understood that, in various embodiments, the system may generate, populate, and/or submit any of the data subject access requests referenced above electronically (e.g., via a suitable computing network).
While this specification contains many specific embodiment details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products.
Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purposes of limitation.
This application is a continuation-in-part of U.S. patent application Ser. No. 16/863,226, filed Apr. 30, 2020, which is a continuation-in-part of U.S. patent application Ser. No. 16/565,265, filed Sep. 9, 2019, now U.S. Pat. No. 10,708,305, issued Jul. 7, 2020, which claims priority from U.S. Provisional Patent Application Ser. No. 62/728,437, filed Sep. 7, 2018, and is also a continuation-in-part of U.S. patent application Ser. No. 16/277,539, filed Feb. 15, 2019, now U.S. Pat. No. 10,509,920, issued Dec. 17, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/631,684, filed Feb. 17, 2018 and U.S. Provisional Patent Application Ser. No. 62/631,703, filed Feb. 17, 2018, and is also a continuation-in-part of U.S. patent application Ser. No. 16/159,566, filed Oct. 12, 2018, now U.S. Pat. No. 10,454,973, issued Oct. 22, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/572,096, filed Oct. 13, 2017 and U.S. Provisional Patent Application Ser. No. 62/728,435, filed Sep. 7, 2018, and is also a continuation-in-part of U.S. patent application Ser. No. 16/055,083, filed Aug. 4, 2018, now U.S. Pat. No. 10,289,870, issued May 14, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/547,530, filed Aug. 18, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/996,208, filed Jun. 1, 2018, now U.S. Pat. No. 10,181,051, issued Jan. 15, 2019, which claims priority from U.S. Provisional Patent Application Ser. No. 62/537,839, filed Jul. 27, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/853,674, filed Dec. 22, 2017, now U.S. Pat. No. 10,019,597, issued Jul. 10, 2018, which claims priority from U.S. Provisional Patent Application Ser. No. 62/541,613, filed Aug. 4, 2017, and is also a continuation-in-part of U.S. patent application Ser. No. 15/619,455, filed Jun. 10, 2017, now U.S. Pat. No. 9,851,966, issued Dec. 26, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 15/254,901, filed Sep. 1, 2016, now U.S. Pat. No. 9,729,583, issued Aug. 8, 2017, which claims priority from: (1) U.S. Provisional Patent Application Ser. No. 62/360,123, filed Jul. 8, 2016; (2) U.S. Provisional Patent Application Ser. No. 62/353,802, filed Jun. 23, 2016; and (3) U.S. Provisional Patent Application Ser. No. 62/348,695, filed Jun. 10, 2016. The disclosures of all of the above patent applications and patents are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4536866 | Jerome et al. | Aug 1985 | A |
5193162 | Bordsen et al. | Mar 1993 | A |
5276735 | Boebert et al. | Jan 1994 | A |
5329447 | Leedom, Jr. | Jul 1994 | A |
5404299 | Tsurubayashi et al. | Apr 1995 | A |
5535393 | Reeve et al. | Jul 1996 | A |
5560005 | Hoover et al. | Sep 1996 | A |
5668986 | Nilsen et al. | Sep 1997 | A |
5761529 | Raji | Jun 1998 | A |
5764906 | Edelstein et al. | Jun 1998 | A |
5913214 | Madnick et al. | Jun 1999 | A |
6016394 | Walker | Jan 2000 | A |
6122627 | Carey et al. | Sep 2000 | A |
6148342 | Ho | Nov 2000 | A |
6240416 | Immon et al. | May 2001 | B1 |
6253203 | OFlaherty et al. | Jun 2001 | B1 |
6263335 | Paik et al. | Jul 2001 | B1 |
6272631 | Thomlinson et al. | Aug 2001 | B1 |
6275824 | OFlaherty et al. | Aug 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6363488 | Ginter et al. | Mar 2002 | B1 |
6374237 | Reese | Apr 2002 | B1 |
6374252 | Althoff et al. | Apr 2002 | B1 |
6408336 | Schneider et al. | Jun 2002 | B1 |
6427230 | Goiffon et al. | Jul 2002 | B1 |
6442688 | Moses et al. | Aug 2002 | B1 |
6446120 | Dantressangle | Sep 2002 | B1 |
6463488 | San Juan | Oct 2002 | B1 |
6484180 | Lyons et al. | Nov 2002 | B1 |
6519571 | Guheen et al. | Feb 2003 | B1 |
6591272 | Williams | Jul 2003 | B1 |
6601233 | Underwood | Jul 2003 | B1 |
6606744 | Mikurak | Aug 2003 | B1 |
6611812 | Hurtado et al. | Aug 2003 | B2 |
6625602 | Meredith et al. | Sep 2003 | B1 |
6662192 | Rebane | Dec 2003 | B1 |
6662357 | Bowman-Amuah | Dec 2003 | B1 |
6697824 | Bowman-Amuah | Feb 2004 | B1 |
6725200 | Rost | Apr 2004 | B1 |
6732109 | Lindberg et al. | May 2004 | B2 |
6755344 | Mollett et al. | Jun 2004 | B1 |
6757685 | Raffaele et al. | Jun 2004 | B2 |
6757888 | Knutson et al. | Jun 2004 | B1 |
6816944 | Peng | Nov 2004 | B2 |
6826693 | Yoshida et al. | Nov 2004 | B1 |
6886101 | Glazer et al. | Apr 2005 | B2 |
6901346 | Tracy et al. | May 2005 | B2 |
6904417 | Clayton et al. | Jun 2005 | B2 |
6925443 | Baggett, Jr. et al. | Aug 2005 | B1 |
6938041 | Brandow et al. | Aug 2005 | B1 |
6978270 | Carty et al. | Dec 2005 | B1 |
6980987 | Kaminer | Dec 2005 | B2 |
6983221 | Tracy et al. | Jan 2006 | B2 |
6985887 | Sunstein et al. | Jan 2006 | B1 |
6990454 | McIntosh | Jan 2006 | B2 |
6993448 | Tracy et al. | Jan 2006 | B2 |
6993495 | Smith, Jr. et al. | Jan 2006 | B2 |
6996807 | Vardi et al. | Feb 2006 | B1 |
7003560 | Mullen et al. | Feb 2006 | B1 |
7003662 | Genty et al. | Feb 2006 | B2 |
7013290 | Ananian | Mar 2006 | B2 |
7017105 | Flanagin et al. | Mar 2006 | B2 |
7039594 | Gersting | May 2006 | B1 |
7039654 | Eder | May 2006 | B1 |
7047517 | Brown et al. | May 2006 | B1 |
7051036 | Rosnow et al. | May 2006 | B2 |
7051038 | Yeh et al. | May 2006 | B1 |
7058970 | Shaw | Jun 2006 | B2 |
7069427 | Adler et al. | Jun 2006 | B2 |
7076558 | Dunn | Jul 2006 | B1 |
7095854 | Ginter et al. | Aug 2006 | B1 |
7120800 | Ginter et al. | Oct 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7127705 | Christfort et al. | Oct 2006 | B2 |
7127741 | Bandini et al. | Oct 2006 | B2 |
7133845 | Ginter et al. | Nov 2006 | B1 |
7139999 | Bowman-Amuah | Nov 2006 | B2 |
7143091 | Charnock et al. | Nov 2006 | B2 |
7167842 | Josephson, II et al. | Jan 2007 | B1 |
7171379 | Menninger et al. | Jan 2007 | B2 |
7181438 | Szabo | Feb 2007 | B1 |
7203929 | Vinodkrishnan et al. | Apr 2007 | B1 |
7213233 | Vinodkrishnan et al. | May 2007 | B1 |
7216340 | Vinodkrishnan et al. | May 2007 | B1 |
7219066 | Parks et al. | May 2007 | B2 |
7223234 | Stupp et al. | May 2007 | B2 |
7225460 | Barzilai et al. | May 2007 | B2 |
7234065 | Breslin et al. | Jun 2007 | B2 |
7247625 | Zhang et al. | Jul 2007 | B2 |
7251624 | Lee et al. | Jul 2007 | B1 |
7260830 | Sugimoto | Aug 2007 | B2 |
7266566 | Kennaley et al. | Sep 2007 | B1 |
7272818 | Ishimitsu et al. | Sep 2007 | B2 |
7275063 | Horn | Sep 2007 | B2 |
7281020 | Fine | Oct 2007 | B2 |
7284232 | Bates et al. | Oct 2007 | B1 |
7284271 | Lucovsky et al. | Oct 2007 | B2 |
7287280 | Young | Oct 2007 | B2 |
7290275 | Baudoin et al. | Oct 2007 | B2 |
7302569 | Betz et al. | Nov 2007 | B2 |
7313575 | Carr et al. | Dec 2007 | B2 |
7313699 | Koga | Dec 2007 | B2 |
7313825 | Redlich et al. | Dec 2007 | B2 |
7315849 | Bakalash et al. | Jan 2008 | B2 |
7322047 | Redlich et al. | Jan 2008 | B2 |
7330850 | Seibel et al. | Feb 2008 | B1 |
7340447 | Ghatare | Mar 2008 | B2 |
7340776 | Zobel et al. | Mar 2008 | B2 |
7343434 | Kapoor et al. | Mar 2008 | B2 |
7353204 | Liu | Apr 2008 | B2 |
7356559 | Jacobs et al. | Apr 2008 | B1 |
7367014 | Griffin | Apr 2008 | B2 |
7370025 | Pandit | May 2008 | B1 |
7380120 | Garcia | May 2008 | B1 |
7383570 | Pinkas et al. | Jun 2008 | B2 |
7391854 | Salonen et al. | Jun 2008 | B2 |
7398393 | Mont et al. | Jul 2008 | B2 |
7401235 | Mowers et al. | Jul 2008 | B2 |
7403942 | Bayliss | Jul 2008 | B1 |
7409354 | Putnam et al. | Aug 2008 | B2 |
7412402 | Cooper | Aug 2008 | B2 |
7424680 | Carpenter | Sep 2008 | B2 |
7430585 | Sibert | Sep 2008 | B2 |
7454457 | Lowery et al. | Nov 2008 | B1 |
7454508 | Mathew et al. | Nov 2008 | B2 |
7478157 | Bohrer et al. | Jan 2009 | B2 |
7480755 | Herrell et al. | Jan 2009 | B2 |
7487170 | Stevens | Feb 2009 | B2 |
7493282 | Manly et al. | Feb 2009 | B2 |
7512987 | Williams | Mar 2009 | B2 |
7516882 | Cucinotta | Apr 2009 | B2 |
7523053 | Pudhukottai et al. | Apr 2009 | B2 |
7529836 | Bolen | May 2009 | B1 |
7548968 | Bura et al. | Jun 2009 | B1 |
7552480 | Voss | Jun 2009 | B1 |
7562339 | Racca et al. | Jul 2009 | B2 |
7567541 | Karimi et al. | Jul 2009 | B2 |
7584505 | Mondri et al. | Sep 2009 | B2 |
7587749 | Leser et al. | Sep 2009 | B2 |
7590705 | Mathew et al. | Sep 2009 | B2 |
7590972 | Axelrod et al. | Sep 2009 | B2 |
7603356 | Schran et al. | Oct 2009 | B2 |
7606783 | Carter | Oct 2009 | B1 |
7606790 | Levy | Oct 2009 | B2 |
7607120 | Sanyal et al. | Oct 2009 | B2 |
7613700 | Lobo et al. | Nov 2009 | B1 |
7617167 | Griffis et al. | Nov 2009 | B2 |
7620644 | Cote et al. | Nov 2009 | B2 |
7630874 | Fables et al. | Dec 2009 | B2 |
7630998 | Zhou et al. | Dec 2009 | B2 |
7636742 | Olavarrieta et al. | Dec 2009 | B1 |
7640322 | Wendkos et al. | Dec 2009 | B2 |
7650497 | Thornton et al. | Jan 2010 | B2 |
7653592 | Flaxman et al. | Jan 2010 | B1 |
7657476 | Barney | Feb 2010 | B2 |
7657694 | Mansell et al. | Feb 2010 | B2 |
7665073 | Meijer et al. | Feb 2010 | B2 |
7665125 | Heard et al. | Feb 2010 | B2 |
7668947 | Hutchinson et al. | Feb 2010 | B2 |
7673282 | Amaru et al. | Mar 2010 | B2 |
7681034 | Lee et al. | Mar 2010 | B1 |
7685561 | Deem et al. | Mar 2010 | B2 |
7685577 | Pace et al. | Mar 2010 | B2 |
7693593 | Ishibashi et al. | Apr 2010 | B2 |
7707224 | Chastagnol et al. | Apr 2010 | B2 |
7712029 | Ferreira et al. | May 2010 | B2 |
7716242 | Pae et al. | May 2010 | B2 |
7725474 | Tamai et al. | May 2010 | B2 |
7725875 | Waldrep | May 2010 | B2 |
7729940 | Harvey et al. | Jun 2010 | B2 |
7730142 | Levasseur et al. | Jun 2010 | B2 |
7752124 | Green et al. | Jul 2010 | B2 |
7756826 | Bots et al. | Jul 2010 | B2 |
7756987 | Wang et al. | Jul 2010 | B2 |
7774745 | Fildebrandt et al. | Aug 2010 | B2 |
7788212 | Beckmann et al. | Aug 2010 | B2 |
7788222 | Shah et al. | Aug 2010 | B2 |
7788632 | Kuester et al. | Aug 2010 | B2 |
7788726 | Teixeira | Aug 2010 | B2 |
7801758 | Gracie et al. | Sep 2010 | B2 |
7822620 | Dixon et al. | Oct 2010 | B2 |
7827523 | Ahmed et al. | Nov 2010 | B2 |
7844640 | Bender et al. | Nov 2010 | B2 |
7849143 | Vuong | Dec 2010 | B2 |
7853468 | Callahan et al. | Dec 2010 | B2 |
7853470 | Sonnleithner et al. | Dec 2010 | B2 |
7853925 | Kemmler | Dec 2010 | B2 |
7870540 | Zare et al. | Jan 2011 | B2 |
7870608 | Shraim et al. | Jan 2011 | B2 |
7873541 | Klar et al. | Jan 2011 | B1 |
7877327 | Gwiazda et al. | Jan 2011 | B2 |
7877812 | Koved et al. | Jan 2011 | B2 |
7885841 | King | Feb 2011 | B2 |
7895260 | Archer et al. | Feb 2011 | B2 |
7904487 | Ghatare | Mar 2011 | B2 |
7917888 | Chong et al. | Mar 2011 | B2 |
7917963 | Goyal et al. | Mar 2011 | B2 |
7921152 | Ashley et al. | Apr 2011 | B2 |
7930197 | Ozzie et al. | Apr 2011 | B2 |
7930753 | Mellinger et al. | Apr 2011 | B2 |
7953725 | Burris et al. | May 2011 | B2 |
7954150 | Croft et al. | May 2011 | B2 |
7958087 | Blumenau | Jun 2011 | B2 |
7958494 | Chaar et al. | Jun 2011 | B2 |
7962900 | Barraclough et al. | Jun 2011 | B2 |
7966310 | Sullivan et al. | Jun 2011 | B2 |
7966599 | Malasky et al. | Jun 2011 | B1 |
7966663 | Strickland et al. | Jun 2011 | B2 |
7975000 | Dixon et al. | Jul 2011 | B2 |
7991559 | Dzekunov et al. | Aug 2011 | B2 |
7996372 | Rubel, Jr. | Aug 2011 | B2 |
8010612 | Costea et al. | Aug 2011 | B2 |
8010720 | Iwaoka et al. | Aug 2011 | B2 |
8019881 | Sandhu et al. | Sep 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8024384 | Prabhakar et al. | Sep 2011 | B2 |
8032721 | Murai | Oct 2011 | B2 |
8037409 | Jacob et al. | Oct 2011 | B2 |
8041913 | Wang | Oct 2011 | B2 |
8069161 | Bugir et al. | Nov 2011 | B2 |
8069471 | Boren | Nov 2011 | B2 |
8082539 | Schelkogonov | Dec 2011 | B1 |
8095923 | Harvey et al. | Jan 2012 | B2 |
8099709 | Baikov et al. | Jan 2012 | B2 |
8103962 | Embley et al. | Jan 2012 | B2 |
8117441 | Kurien et al. | Feb 2012 | B2 |
8146054 | Baker et al. | Mar 2012 | B2 |
8146074 | Ito et al. | Mar 2012 | B2 |
8150717 | Whitmore | Apr 2012 | B2 |
8156105 | Altounian et al. | Apr 2012 | B2 |
8156158 | Rolls et al. | Apr 2012 | B2 |
8166406 | Goldfeder et al. | Apr 2012 | B1 |
8176061 | Swanbeck et al. | May 2012 | B2 |
8176177 | Sussman et al. | May 2012 | B2 |
8176334 | Vainstein | May 2012 | B2 |
8176470 | Klumpp et al. | May 2012 | B2 |
8180759 | Hamzy | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8196176 | Berteau et al. | Jun 2012 | B2 |
8205140 | Hafeez et al. | Jun 2012 | B2 |
8214803 | Horii et al. | Jul 2012 | B2 |
8234377 | Cohn | Jul 2012 | B2 |
8239244 | Ginsberg et al. | Aug 2012 | B2 |
8250051 | Bugir et al. | Aug 2012 | B2 |
8255468 | Vitaldevara et al. | Aug 2012 | B2 |
8266231 | Golovin et al. | Sep 2012 | B1 |
8275632 | Awaraji et al. | Sep 2012 | B2 |
8275793 | Ahmad et al. | Sep 2012 | B2 |
8286239 | Sutton | Oct 2012 | B1 |
8312549 | Goldberg et al. | Nov 2012 | B2 |
8316237 | Felsher et al. | Nov 2012 | B1 |
8332908 | Hatakeyama et al. | Dec 2012 | B2 |
8341405 | Meijer et al. | Dec 2012 | B2 |
8346929 | Lai | Jan 2013 | B1 |
8364713 | Pollard | Jan 2013 | B2 |
8370794 | Moosmann et al. | Feb 2013 | B2 |
8380630 | Felsher | Feb 2013 | B2 |
8380743 | Convertino et al. | Feb 2013 | B2 |
8381180 | Rostoker | Feb 2013 | B2 |
8392982 | Harris et al. | Mar 2013 | B2 |
8418226 | Gardner | Apr 2013 | B2 |
8423954 | Ronen et al. | Apr 2013 | B2 |
8429179 | Mirhaji | Apr 2013 | B1 |
8429597 | Prigge | Apr 2013 | B2 |
8429630 | Nickolov et al. | Apr 2013 | B2 |
8429758 | Chen et al. | Apr 2013 | B2 |
8438644 | Watters et al. | May 2013 | B2 |
8463247 | Misiag | Jun 2013 | B2 |
8468244 | Redlich et al. | Jun 2013 | B2 |
8473324 | Alvarez et al. | Jun 2013 | B2 |
8474012 | Ahmed et al. | Jun 2013 | B2 |
8494894 | Jaster et al. | Jul 2013 | B2 |
8504481 | Motahari et al. | Aug 2013 | B2 |
8510199 | Erlanger | Aug 2013 | B1 |
8516076 | Thomas | Aug 2013 | B2 |
8533746 | Nolan et al. | Sep 2013 | B2 |
8539359 | Rapaport et al. | Sep 2013 | B2 |
8539437 | Finlayson et al. | Sep 2013 | B2 |
8560645 | Linden et al. | Oct 2013 | B2 |
8560956 | Curtis et al. | Oct 2013 | B2 |
8561153 | Grason et al. | Oct 2013 | B2 |
8565729 | Moseler et al. | Oct 2013 | B2 |
8566938 | Prakash et al. | Oct 2013 | B1 |
8571909 | Miller et al. | Oct 2013 | B2 |
8578036 | Holfelder et al. | Nov 2013 | B1 |
8578166 | De Monseignat et al. | Nov 2013 | B2 |
8578481 | Rowley | Nov 2013 | B2 |
8578501 | Ogilvie | Nov 2013 | B1 |
8583694 | Siegel et al. | Nov 2013 | B2 |
8583766 | Dixon et al. | Nov 2013 | B2 |
8589183 | Awaraji et al. | Nov 2013 | B2 |
8601467 | Hofhansl et al. | Dec 2013 | B2 |
8601591 | Krishnamurthy et al. | Dec 2013 | B2 |
8606746 | Yeap et al. | Dec 2013 | B2 |
8612420 | Sun et al. | Dec 2013 | B2 |
8612993 | Grant et al. | Dec 2013 | B2 |
8615731 | Doshi | Dec 2013 | B2 |
8620952 | Bennett et al. | Dec 2013 | B2 |
8621637 | Al-Harbi et al. | Dec 2013 | B2 |
8626671 | Federgreen | Jan 2014 | B2 |
8627114 | Resch et al. | Jan 2014 | B2 |
8640110 | Kopp et al. | Jan 2014 | B2 |
8646072 | Savant | Feb 2014 | B1 |
8656456 | Maxson et al. | Feb 2014 | B2 |
8661036 | Turski et al. | Feb 2014 | B2 |
8667074 | Farkas | Mar 2014 | B1 |
8667487 | Boodman et al. | Mar 2014 | B1 |
8677472 | Dotan et al. | Mar 2014 | B1 |
8681984 | Lee et al. | Mar 2014 | B2 |
8682698 | Cashman et al. | Mar 2014 | B2 |
8683502 | Shkedi et al. | Mar 2014 | B2 |
8688601 | Jaiswal | Apr 2014 | B2 |
8689292 | Williams et al. | Apr 2014 | B2 |
8693689 | Belenkiy et al. | Apr 2014 | B2 |
8700524 | Williams et al. | Apr 2014 | B2 |
8700699 | Shen et al. | Apr 2014 | B2 |
8706742 | Ravid et al. | Apr 2014 | B1 |
8707451 | Ture et al. | Apr 2014 | B2 |
8712813 | King | Apr 2014 | B2 |
8713098 | Adya et al. | Apr 2014 | B1 |
8713638 | Hu et al. | Apr 2014 | B2 |
8719366 | Mathew et al. | May 2014 | B2 |
8732839 | Hohl | May 2014 | B2 |
8744894 | Christiansen et al. | Jun 2014 | B2 |
8751285 | Deb et al. | Jun 2014 | B2 |
8763071 | Sinha et al. | Jun 2014 | B2 |
8763082 | Huber et al. | Jun 2014 | B2 |
8767947 | Ristock et al. | Jul 2014 | B1 |
8769242 | Tkac et al. | Jul 2014 | B2 |
8769671 | Shraim et al. | Jul 2014 | B2 |
8788935 | Hirsch et al. | Jul 2014 | B1 |
8793614 | Wilson et al. | Jul 2014 | B2 |
8793650 | Hilerio et al. | Jul 2014 | B2 |
8793781 | Grossi et al. | Jul 2014 | B2 |
8793809 | Falkenburg et al. | Jul 2014 | B2 |
8799984 | Ahn | Aug 2014 | B2 |
8805707 | Schumann, Jr. et al. | Aug 2014 | B2 |
8805806 | Amarendran et al. | Aug 2014 | B2 |
8805925 | Price et al. | Aug 2014 | B2 |
8812342 | Barcelo et al. | Aug 2014 | B2 |
8812752 | Shih et al. | Aug 2014 | B1 |
8812766 | Kranendonk et al. | Aug 2014 | B2 |
8819253 | Simeloff et al. | Aug 2014 | B2 |
8819617 | Koenig et al. | Aug 2014 | B1 |
8826446 | Liu et al. | Sep 2014 | B1 |
8832649 | Bishop et al. | Sep 2014 | B2 |
8832854 | Staddon et al. | Sep 2014 | B1 |
8839232 | Taylor et al. | Sep 2014 | B2 |
8843487 | McGraw et al. | Sep 2014 | B2 |
8856534 | Khosravi et al. | Oct 2014 | B2 |
8862507 | Sandhu et al. | Oct 2014 | B2 |
8875232 | Blom et al. | Oct 2014 | B2 |
8893078 | Schaude et al. | Nov 2014 | B2 |
8893286 | Oliver | Nov 2014 | B1 |
8893297 | Eversoll et al. | Nov 2014 | B2 |
8904494 | Kindler et al. | Dec 2014 | B2 |
8914263 | Shimada et al. | Dec 2014 | B2 |
8914299 | Pesci-Anderson et al. | Dec 2014 | B2 |
8914342 | Kalaboukis et al. | Dec 2014 | B2 |
8914902 | Moritz et al. | Dec 2014 | B2 |
8918306 | Cashman et al. | Dec 2014 | B2 |
8918392 | Brooker et al. | Dec 2014 | B1 |
8918632 | Sartor | Dec 2014 | B1 |
8930896 | Wiggins | Jan 2015 | B1 |
8930897 | Nassar | Jan 2015 | B2 |
8935198 | Phillips et al. | Jan 2015 | B1 |
8935266 | Wu | Jan 2015 | B2 |
8935342 | Patel | Jan 2015 | B2 |
8935804 | Clark et al. | Jan 2015 | B1 |
8943076 | Stewart et al. | Jan 2015 | B2 |
8943548 | Drokov et al. | Jan 2015 | B2 |
8949137 | Crapo et al. | Feb 2015 | B2 |
8955038 | Nicodemus et al. | Feb 2015 | B2 |
8959568 | Hudis et al. | Feb 2015 | B2 |
8959584 | Piliouras | Feb 2015 | B2 |
8966575 | McQuay et al. | Feb 2015 | B2 |
8966597 | Saylor et al. | Feb 2015 | B1 |
8973108 | Roth et al. | Mar 2015 | B1 |
8977234 | Chava | Mar 2015 | B2 |
8977643 | Schindlauer et al. | Mar 2015 | B2 |
8978158 | Rajkumar et al. | Mar 2015 | B2 |
8983972 | Kriebel et al. | Mar 2015 | B2 |
8984031 | Todd | Mar 2015 | B1 |
8990933 | Magdalin | Mar 2015 | B1 |
8996417 | Channakeshava | Mar 2015 | B1 |
8996480 | Agarwala et al. | Mar 2015 | B2 |
8997213 | Papakipos et al. | Mar 2015 | B2 |
9003295 | Baschy | Apr 2015 | B2 |
9003552 | Goodwin et al. | Apr 2015 | B2 |
9009851 | Droste et al. | Apr 2015 | B2 |
9021469 | Hilerio et al. | Apr 2015 | B2 |
9026526 | Bau et al. | May 2015 | B1 |
9030987 | Bianchetti et al. | May 2015 | B2 |
9032067 | Prasad et al. | May 2015 | B2 |
9043217 | Cashman et al. | May 2015 | B2 |
9043480 | Barton et al. | May 2015 | B2 |
9047463 | Porras | Jun 2015 | B2 |
9047582 | Hutchinson et al. | Jun 2015 | B2 |
9049314 | Pugh et al. | Jun 2015 | B2 |
9055071 | Gates et al. | Jun 2015 | B1 |
9058590 | Criddle et al. | Jun 2015 | B2 |
9064033 | Jin et al. | Jun 2015 | B2 |
9069940 | Hars | Jun 2015 | B2 |
9076231 | Hill et al. | Jul 2015 | B1 |
9081952 | Sagi et al. | Jul 2015 | B2 |
9092796 | Eversoll et al. | Jul 2015 | B2 |
9094434 | Williams et al. | Jul 2015 | B2 |
9098515 | Richter et al. | Aug 2015 | B2 |
9100778 | Stogaitis et al. | Aug 2015 | B2 |
9106691 | Burger et al. | Aug 2015 | B1 |
9111105 | Barton et al. | Aug 2015 | B2 |
9111295 | Tietzen et al. | Aug 2015 | B2 |
9123339 | Shaw et al. | Sep 2015 | B1 |
9129311 | Schoen et al. | Sep 2015 | B2 |
9135261 | Maunder et al. | Sep 2015 | B2 |
9141823 | Dawson | Sep 2015 | B2 |
9152820 | Pauley, Jr. et al. | Oct 2015 | B1 |
9154514 | Prakash | Oct 2015 | B1 |
9154556 | Dotan et al. | Oct 2015 | B1 |
9158655 | Wadhwani et al. | Oct 2015 | B2 |
9170996 | Lovric et al. | Oct 2015 | B2 |
9172706 | Krishnamurthy et al. | Oct 2015 | B2 |
9177293 | Gagnon et al. | Nov 2015 | B1 |
9178901 | Xue et al. | Nov 2015 | B2 |
9183100 | Gventer et al. | Nov 2015 | B2 |
9189642 | Perlman | Nov 2015 | B2 |
9201572 | Lyon et al. | Dec 2015 | B2 |
9201770 | Duerk | Dec 2015 | B1 |
9202085 | Mawdsley et al. | Dec 2015 | B2 |
9215076 | Roth et al. | Dec 2015 | B1 |
9215252 | Smith et al. | Dec 2015 | B2 |
9224009 | Liu et al. | Dec 2015 | B1 |
9230036 | Davis | Jan 2016 | B2 |
9231935 | Bridge et al. | Jan 2016 | B1 |
9232040 | Barash et al. | Jan 2016 | B2 |
9235476 | McHugh et al. | Jan 2016 | B2 |
9240987 | Barrett-Bowen et al. | Jan 2016 | B2 |
9241259 | Daniela et al. | Jan 2016 | B2 |
9245126 | Christodorescu et al. | Jan 2016 | B2 |
9253609 | Hosier, Jr. | Feb 2016 | B2 |
9264443 | Weisman | Feb 2016 | B2 |
9280581 | Grimes et al. | Mar 2016 | B1 |
9286282 | Ling, III et al. | Mar 2016 | B2 |
9288118 | Pattan | Mar 2016 | B1 |
9288556 | Kim et al. | Mar 2016 | B2 |
9317697 | Maier et al. | Apr 2016 | B2 |
9317715 | Schuette et al. | Apr 2016 | B2 |
9336324 | Lomme et al. | May 2016 | B2 |
9336332 | Davis et al. | May 2016 | B2 |
9336400 | Milman et al. | May 2016 | B2 |
9338188 | Ahn | May 2016 | B1 |
9344297 | Shah et al. | May 2016 | B2 |
9344424 | Tenenboym et al. | May 2016 | B2 |
9344484 | Ferris | May 2016 | B2 |
9348802 | Massand | May 2016 | B2 |
9348862 | Kawecki, III | May 2016 | B2 |
9349016 | Brisebois et al. | May 2016 | B1 |
9350718 | Sondhi et al. | May 2016 | B2 |
9355157 | Mohammed et al. | May 2016 | B2 |
9356961 | Todd et al. | May 2016 | B1 |
9369488 | Woods et al. | Jun 2016 | B2 |
9384199 | Thereska et al. | Jul 2016 | B2 |
9384357 | Patil et al. | Jul 2016 | B2 |
9386104 | Adams et al. | Jul 2016 | B2 |
9396332 | Abrams et al. | Jul 2016 | B2 |
9401900 | Levasseur et al. | Jul 2016 | B2 |
9411967 | Parecki et al. | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9417859 | Gounares et al. | Aug 2016 | B2 |
9424021 | Zamir | Aug 2016 | B2 |
9426177 | Wang et al. | Aug 2016 | B2 |
9450940 | Belov et al. | Sep 2016 | B2 |
9460136 | Todd et al. | Oct 2016 | B1 |
9460171 | Marrelli et al. | Oct 2016 | B2 |
9460307 | Breslau et al. | Oct 2016 | B2 |
9462009 | Kolman et al. | Oct 2016 | B1 |
9465702 | Gventer et al. | Oct 2016 | B2 |
9465800 | Lacey | Oct 2016 | B2 |
9473446 | Vijay et al. | Oct 2016 | B2 |
9473535 | Sartor | Oct 2016 | B2 |
9477523 | Warman et al. | Oct 2016 | B1 |
9477660 | Scott et al. | Oct 2016 | B2 |
9477942 | Adachi et al. | Oct 2016 | B2 |
9483659 | Bao et al. | Nov 2016 | B2 |
9489366 | Scott et al. | Nov 2016 | B2 |
9501523 | Hyatt et al. | Nov 2016 | B2 |
9507960 | Bell et al. | Nov 2016 | B2 |
9509674 | Nasserbakht et al. | Nov 2016 | B1 |
9509702 | Grigg et al. | Nov 2016 | B2 |
9521166 | Wilson | Dec 2016 | B2 |
9524500 | Dave et al. | Dec 2016 | B2 |
9529989 | Kling et al. | Dec 2016 | B2 |
9536108 | Powell et al. | Jan 2017 | B2 |
9537546 | Cordeiro et al. | Jan 2017 | B2 |
9542568 | Francis et al. | Jan 2017 | B2 |
9549047 | Fredinburg et al. | Jan 2017 | B1 |
9552395 | Bayer et al. | Jan 2017 | B2 |
9552470 | Turgeman et al. | Jan 2017 | B2 |
9553918 | Manion et al. | Jan 2017 | B1 |
9558497 | Carvalho | Jan 2017 | B2 |
9569752 | Deering et al. | Feb 2017 | B2 |
9571509 | Satish et al. | Feb 2017 | B1 |
9571526 | Sartor | Feb 2017 | B2 |
9571991 | Brizendine et al. | Feb 2017 | B1 |
9582681 | Mishra | Feb 2017 | B2 |
9584964 | Pelkey | Feb 2017 | B2 |
9589110 | Carey et al. | Mar 2017 | B2 |
9600181 | Patel et al. | Mar 2017 | B2 |
9602529 | Jones et al. | Mar 2017 | B2 |
9606971 | Seolas et al. | Mar 2017 | B2 |
9607041 | Himmelstein | Mar 2017 | B2 |
9619652 | Slater | Apr 2017 | B2 |
9619661 | Finkelstein | Apr 2017 | B1 |
9621357 | Williams et al. | Apr 2017 | B2 |
9621566 | Gupta et al. | Apr 2017 | B2 |
9626124 | Lipinski et al. | Apr 2017 | B2 |
9642008 | Wyatt et al. | May 2017 | B2 |
9646095 | Gottlieb et al. | May 2017 | B1 |
9648036 | Seiver et al. | May 2017 | B2 |
9652314 | Mahiddini | May 2017 | B2 |
9654506 | Barrett | May 2017 | B2 |
9654541 | Kapczynski et al. | May 2017 | B1 |
9665722 | Nagasundaram et al. | May 2017 | B2 |
9665733 | Sills et al. | May 2017 | B1 |
9672053 | Tang et al. | Jun 2017 | B2 |
9672355 | Titonis et al. | Jun 2017 | B2 |
9678794 | Barrett et al. | Jun 2017 | B1 |
9691090 | Barday | Jun 2017 | B1 |
9705840 | Pujare et al. | Jul 2017 | B2 |
9705880 | Siris | Jul 2017 | B2 |
9721078 | Cornick et al. | Aug 2017 | B2 |
9721108 | Krishnamurthy et al. | Aug 2017 | B2 |
9727751 | Oliver et al. | Aug 2017 | B2 |
9729583 | Barday | Aug 2017 | B1 |
9740985 | Byron et al. | Aug 2017 | B2 |
9740987 | Dolan | Aug 2017 | B2 |
9749408 | Subramani et al. | Aug 2017 | B2 |
9760620 | Nachnani et al. | Sep 2017 | B2 |
9760635 | Bliss et al. | Sep 2017 | B2 |
9760697 | Walker | Sep 2017 | B1 |
9760849 | Vinnakota et al. | Sep 2017 | B2 |
9762553 | Ford et al. | Sep 2017 | B2 |
9767202 | Darby et al. | Sep 2017 | B2 |
9767309 | Patel et al. | Sep 2017 | B1 |
9769124 | Yan | Sep 2017 | B2 |
9785795 | Grondin et al. | Oct 2017 | B2 |
9798749 | Saner | Oct 2017 | B2 |
9798826 | Wilson et al. | Oct 2017 | B2 |
9800605 | Baikalov et al. | Oct 2017 | B2 |
9800606 | Yumer | Oct 2017 | B1 |
9804649 | Cohen et al. | Oct 2017 | B2 |
9804928 | Davis et al. | Oct 2017 | B2 |
9811532 | Parkison et al. | Nov 2017 | B2 |
9817850 | Dubbels et al. | Nov 2017 | B2 |
9817978 | Marsh et al. | Nov 2017 | B2 |
9825928 | Lelcuk et al. | Nov 2017 | B2 |
9832633 | Gerber, Jr. et al. | Nov 2017 | B2 |
9836598 | Iyer et al. | Dec 2017 | B2 |
9838407 | Oprea et al. | Dec 2017 | B1 |
9838839 | Vudali et al. | Dec 2017 | B2 |
9842042 | Chhatwal et al. | Dec 2017 | B2 |
9842349 | Sawczuk et al. | Dec 2017 | B2 |
9848005 | Ardeli et al. | Dec 2017 | B2 |
9852150 | Sharpe et al. | Dec 2017 | B2 |
9853959 | Kapczynski et al. | Dec 2017 | B1 |
9860226 | Thormaehlen | Jan 2018 | B2 |
9864735 | Lamprecht | Jan 2018 | B1 |
9877138 | Franklin | Jan 2018 | B1 |
9882935 | Barday | Jan 2018 | B2 |
9892441 | Barday | Feb 2018 | B2 |
9892442 | Barday | Feb 2018 | B2 |
9892443 | Barday | Feb 2018 | B2 |
9892444 | Barday | Feb 2018 | B2 |
9894076 | Li et al. | Feb 2018 | B2 |
9898613 | Swerdlow et al. | Feb 2018 | B1 |
9898769 | Barday | Feb 2018 | B2 |
9912625 | Mutha et al. | Mar 2018 | B2 |
9912810 | Segre | Mar 2018 | B2 |
9916703 | Douillard et al. | Mar 2018 | B2 |
9922124 | Rathod | Mar 2018 | B2 |
9923927 | McClintock et al. | Mar 2018 | B1 |
9928379 | Hoffer | Mar 2018 | B1 |
9934544 | Whitfield et al. | Apr 2018 | B1 |
9936127 | Todasco | Apr 2018 | B2 |
9942244 | Lahoz et al. | Apr 2018 | B2 |
9942276 | Sartor | Apr 2018 | B2 |
9946897 | Lovin | Apr 2018 | B2 |
9948663 | Wang et al. | Apr 2018 | B1 |
9953189 | Cook et al. | Apr 2018 | B2 |
9959551 | Schermerhorn et al. | May 2018 | B1 |
9959582 | Sukman et al. | May 2018 | B2 |
9961070 | Tang | May 2018 | B2 |
9973518 | Lee et al. | May 2018 | B2 |
9973585 | Ruback et al. | May 2018 | B2 |
9977904 | Khan et al. | May 2018 | B2 |
9983936 | Dornemann et al. | May 2018 | B2 |
9984252 | Pollard | May 2018 | B2 |
9990499 | Chan et al. | Jun 2018 | B2 |
9992213 | Sinnema | Jun 2018 | B2 |
10001975 | Bharthulwar | Jun 2018 | B2 |
10002064 | Muske | Jun 2018 | B2 |
10007895 | Vanasco | Jun 2018 | B2 |
10013577 | Beaumont et al. | Jul 2018 | B1 |
10015164 | Hamburg et al. | Jul 2018 | B2 |
10019339 | Von Hanxleden et al. | Jul 2018 | B2 |
10019588 | Garcia et al. | Jul 2018 | B2 |
10019741 | Hesselink | Jul 2018 | B2 |
10021143 | Cabrera et al. | Jul 2018 | B2 |
10025804 | Vranyes et al. | Jul 2018 | B2 |
10028226 | Ayyagari et al. | Jul 2018 | B2 |
10032172 | Barday | Jul 2018 | B2 |
10044761 | Ducatel et al. | Aug 2018 | B2 |
10055426 | Arasan et al. | Aug 2018 | B2 |
10061847 | Mohammed et al. | Aug 2018 | B2 |
10069914 | Smith | Sep 2018 | B1 |
10073924 | Karp et al. | Sep 2018 | B2 |
10075451 | Hall et al. | Sep 2018 | B1 |
10091214 | Godlewski et al. | Oct 2018 | B2 |
10091312 | Khanwalkar et al. | Oct 2018 | B1 |
10102533 | Barday | Oct 2018 | B2 |
10108409 | Pirzadeh et al. | Oct 2018 | B2 |
10122663 | Hu et al. | Nov 2018 | B2 |
10122760 | Terrill et al. | Nov 2018 | B2 |
10127403 | Kong et al. | Nov 2018 | B2 |
10129211 | Heath | Nov 2018 | B2 |
10140666 | Wang et al. | Nov 2018 | B1 |
10142113 | Zaidi et al. | Nov 2018 | B2 |
10158676 | Barday | Dec 2018 | B2 |
10165011 | Barday | Dec 2018 | B2 |
10169762 | Ogawa | Jan 2019 | B2 |
10176503 | Barday et al. | Jan 2019 | B2 |
10181043 | Pauley, Jr. et al. | Jan 2019 | B1 |
10181051 | Barday et al. | Jan 2019 | B2 |
10187363 | Smirnoff et al. | Jan 2019 | B2 |
10204154 | Barday et al. | Feb 2019 | B2 |
10212175 | Seul et al. | Feb 2019 | B2 |
10223533 | Dawson | Mar 2019 | B2 |
10250594 | Chathoth et al. | Apr 2019 | B2 |
10255602 | Wang | Apr 2019 | B2 |
10257127 | Dotan-Cohen et al. | Apr 2019 | B2 |
10257181 | Sherif et al. | Apr 2019 | B1 |
10268838 | Yadgiri et al. | Apr 2019 | B2 |
10275614 | Barday et al. | Apr 2019 | B2 |
10282370 | Barday et al. | May 2019 | B1 |
10284604 | Barday et al. | May 2019 | B2 |
10289857 | Brinskelle | May 2019 | B1 |
10289866 | Barday et al. | May 2019 | B2 |
10289867 | Barday et al. | May 2019 | B2 |
10289870 | Barday et al. | May 2019 | B2 |
10304442 | Rudden et al. | May 2019 | B1 |
10310723 | Rathod | Jun 2019 | B2 |
10311042 | Kumar | Jun 2019 | B1 |
10311475 | Yuasa | Jun 2019 | B2 |
10318761 | Barday et al. | Jun 2019 | B2 |
10324960 | Skvortsov et al. | Jun 2019 | B1 |
10326768 | Verweyst et al. | Jun 2019 | B2 |
10333975 | Soman et al. | Jun 2019 | B2 |
10346186 | Kalyanpur | Jul 2019 | B2 |
10346635 | Kumar et al. | Jul 2019 | B2 |
10346638 | Barday et al. | Jul 2019 | B2 |
10348726 | Caluwaert | Jul 2019 | B2 |
10353673 | Barday et al. | Jul 2019 | B2 |
10361857 | Woo | Jul 2019 | B2 |
10373119 | Driscoll et al. | Aug 2019 | B2 |
10373409 | White et al. | Aug 2019 | B2 |
10375115 | Mallya | Aug 2019 | B2 |
10387559 | Wendt et al. | Aug 2019 | B1 |
10387657 | Belfiore, Jr. et al. | Aug 2019 | B2 |
10387952 | Sandhu et al. | Aug 2019 | B1 |
10395201 | Vescio | Aug 2019 | B2 |
10402545 | Gorfein et al. | Sep 2019 | B2 |
10404729 | Turgeman | Sep 2019 | B2 |
10417401 | Votaw et al. | Sep 2019 | B2 |
10430608 | Peri et al. | Oct 2019 | B2 |
10437412 | Barday et al. | Oct 2019 | B2 |
10437860 | Barday et al. | Oct 2019 | B2 |
10438016 | Barday et al. | Oct 2019 | B2 |
10440062 | Barday et al. | Oct 2019 | B2 |
10445508 | Sher-Jan et al. | Oct 2019 | B2 |
10445526 | Barday et al. | Oct 2019 | B2 |
10452864 | Barday et al. | Oct 2019 | B2 |
10452866 | Barday et al. | Oct 2019 | B2 |
10454934 | Parimi et al. | Oct 2019 | B2 |
10481763 | Bartkiewicz et al. | Nov 2019 | B2 |
10503926 | Barday et al. | Dec 2019 | B2 |
10510031 | Barday et al. | Dec 2019 | B2 |
10521623 | Rodriguez et al. | Dec 2019 | B2 |
10534851 | Chan et al. | Jan 2020 | B1 |
10535081 | Ferreira et al. | Jan 2020 | B2 |
10536475 | McCorkle, Jr. et al. | Jan 2020 | B1 |
10546135 | Kassoumeh et al. | Jan 2020 | B1 |
10558821 | Barday et al. | Feb 2020 | B2 |
10564935 | Barday et al. | Feb 2020 | B2 |
10564936 | Barday et al. | Feb 2020 | B2 |
10565161 | Barday et al. | Feb 2020 | B2 |
10565236 | Barday et al. | Feb 2020 | B1 |
10567517 | Weinig et al. | Feb 2020 | B2 |
10572684 | Lafever et al. | Feb 2020 | B2 |
10572686 | Barday et al. | Feb 2020 | B2 |
10574705 | Barday et al. | Feb 2020 | B2 |
10592648 | Barday et al. | Mar 2020 | B2 |
10606916 | Brannon et al. | Mar 2020 | B2 |
10613971 | Vasikarla | Apr 2020 | B1 |
10628553 | Murrish et al. | Apr 2020 | B1 |
10650408 | Andersen et al. | May 2020 | B1 |
10659566 | Luah et al. | May 2020 | B1 |
10671749 | Felice-Steele et al. | Jun 2020 | B2 |
10671760 | Esmailzadeh et al. | Jun 2020 | B2 |
10678945 | Barday et al. | Jun 2020 | B2 |
10685140 | Barday et al. | Jun 2020 | B2 |
10706176 | Brannon et al. | Jul 2020 | B2 |
10706226 | Byun et al. | Jul 2020 | B2 |
10713387 | Brannon et al. | Jul 2020 | B2 |
10726153 | Nerurkar et al. | Jul 2020 | B2 |
10726158 | Brannon et al. | Jul 2020 | B2 |
10732865 | Jain et al. | Aug 2020 | B2 |
10740487 | Barday et al. | Aug 2020 | B2 |
10747893 | Kiriyama et al. | Aug 2020 | B2 |
10747897 | Cook | Aug 2020 | B2 |
10749870 | Brouillette et al. | Aug 2020 | B2 |
10762236 | Brannon et al. | Sep 2020 | B2 |
10769302 | Barday et al. | Sep 2020 | B2 |
10776510 | Antonelli et al. | Sep 2020 | B2 |
10776518 | Barday et al. | Sep 2020 | B2 |
10791150 | Barday et al. | Sep 2020 | B2 |
10796020 | Barday et al. | Oct 2020 | B2 |
10796260 | Brannon et al. | Oct 2020 | B2 |
10834590 | Turgeman et al. | Nov 2020 | B2 |
10846433 | Brannon et al. | Nov 2020 | B2 |
10860742 | Joseph et al. | Dec 2020 | B2 |
10878127 | Brannon et al. | Dec 2020 | B2 |
10885485 | Brannon et al. | Jan 2021 | B2 |
10896394 | Brannon et al. | Jan 2021 | B2 |
10909488 | Hecht et al. | Feb 2021 | B2 |
10963571 | Bar Joseph et al. | Mar 2021 | B2 |
10984458 | Gutierrez | Apr 2021 | B1 |
20020077941 | Halligan et al. | Jun 2002 | A1 |
20020103854 | Okita | Aug 2002 | A1 |
20020129216 | Collins | Sep 2002 | A1 |
20020161594 | Bryan et al. | Oct 2002 | A1 |
20020161733 | Grainger | Oct 2002 | A1 |
20030041250 | Proudler | Feb 2003 | A1 |
20030065641 | Chaloux | Apr 2003 | A1 |
20030097451 | Bjorksten et al. | May 2003 | A1 |
20030097661 | Li et al. | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030130893 | Farmer | Jul 2003 | A1 |
20030131001 | Matsuo | Jul 2003 | A1 |
20030131093 | Aschen et al. | Jul 2003 | A1 |
20030167216 | Brown et al. | Sep 2003 | A1 |
20030212604 | Cullen | Nov 2003 | A1 |
20040025053 | Hayward | Feb 2004 | A1 |
20040088235 | Ziekle et al. | May 2004 | A1 |
20040098366 | Sinclair et al. | May 2004 | A1 |
20040098493 | Rees | May 2004 | A1 |
20040111359 | Hudock | Jun 2004 | A1 |
20040186912 | Harlow et al. | Sep 2004 | A1 |
20040193907 | Patanella | Sep 2004 | A1 |
20050022198 | Olapurath et al. | Jan 2005 | A1 |
20050033616 | Vavul et al. | Feb 2005 | A1 |
20050076294 | Dehamer et al. | Apr 2005 | A1 |
20050114343 | Wesinger et al. | May 2005 | A1 |
20050144066 | Cope et al. | Jun 2005 | A1 |
20050197884 | Mullen, Jr. | Sep 2005 | A1 |
20050198177 | Black | Sep 2005 | A1 |
20050246292 | Sarcanin | Nov 2005 | A1 |
20050278538 | Fowler | Dec 2005 | A1 |
20060031078 | Pizzinger et al. | Feb 2006 | A1 |
20060075122 | Lindskog et al. | Apr 2006 | A1 |
20060149730 | Curtis | Jul 2006 | A1 |
20060156052 | Bodnar et al. | Jul 2006 | A1 |
20060206375 | Scott et al. | Sep 2006 | A1 |
20060224422 | Cohen | Oct 2006 | A1 |
20060253597 | Mujica | Nov 2006 | A1 |
20060259416 | Johnson | Nov 2006 | A1 |
20070027715 | Gropper et al. | Feb 2007 | A1 |
20070061393 | Moore | Mar 2007 | A1 |
20070130101 | Anderson et al. | Jun 2007 | A1 |
20070130323 | Landsman et al. | Jun 2007 | A1 |
20070157311 | Meier et al. | Jul 2007 | A1 |
20070173355 | Klein | Jul 2007 | A1 |
20070179793 | Bagchi et al. | Aug 2007 | A1 |
20070180490 | Renzi et al. | Aug 2007 | A1 |
20070192438 | Goei | Aug 2007 | A1 |
20070266420 | Hawkins et al. | Nov 2007 | A1 |
20070283171 | Breslin et al. | Dec 2007 | A1 |
20080015927 | Ramirez | Jan 2008 | A1 |
20080028065 | Caso et al. | Jan 2008 | A1 |
20080028435 | Strickland et al. | Jan 2008 | A1 |
20080047016 | Spoonamore | Feb 2008 | A1 |
20080120699 | Spear | May 2008 | A1 |
20080195436 | Whyte | Aug 2008 | A1 |
20080235177 | Kim et al. | Sep 2008 | A1 |
20080270203 | Holmes et al. | Oct 2008 | A1 |
20080281649 | Morris | Nov 2008 | A1 |
20080282320 | Denovo et al. | Nov 2008 | A1 |
20080288271 | Faust | Nov 2008 | A1 |
20090012896 | Arnold | Jan 2009 | A1 |
20090022301 | Mudaliar | Jan 2009 | A1 |
20090037975 | Ishikawa et al. | Feb 2009 | A1 |
20090138276 | Hayashida et al. | May 2009 | A1 |
20090144702 | Atkin et al. | Jun 2009 | A1 |
20090158249 | Tomkins et al. | Jun 2009 | A1 |
20090172705 | Cheong | Jul 2009 | A1 |
20090182818 | Krywaniuk | Jul 2009 | A1 |
20090187764 | Astakhov et al. | Jul 2009 | A1 |
20090204452 | Iskandar et al. | Aug 2009 | A1 |
20090204820 | Brandenburg et al. | Aug 2009 | A1 |
20090210347 | Sarcanin | Aug 2009 | A1 |
20090216610 | Chorny | Aug 2009 | A1 |
20090249076 | Reed et al. | Oct 2009 | A1 |
20090303237 | Liu et al. | Dec 2009 | A1 |
20100077484 | Paretti et al. | Mar 2010 | A1 |
20100082533 | Nakamura et al. | Apr 2010 | A1 |
20100094650 | Tran et al. | Apr 2010 | A1 |
20100100398 | Auker et al. | Apr 2010 | A1 |
20100121773 | Currier et al. | May 2010 | A1 |
20100192201 | Shimoni et al. | Jul 2010 | A1 |
20100205057 | Hook et al. | Aug 2010 | A1 |
20100223349 | Thorson | Sep 2010 | A1 |
20100228786 | Török | Sep 2010 | A1 |
20100234987 | Benschop et al. | Sep 2010 | A1 |
20100235297 | Mamorsky | Sep 2010 | A1 |
20100235915 | Memon et al. | Sep 2010 | A1 |
20100268628 | Pitkow et al. | Oct 2010 | A1 |
20100268932 | Bhattacharjee | Oct 2010 | A1 |
20100281313 | White et al. | Nov 2010 | A1 |
20100287114 | Bartko et al. | Nov 2010 | A1 |
20100333012 | Adachi et al. | Dec 2010 | A1 |
20110006996 | Smith et al. | Jan 2011 | A1 |
20110010202 | Neale | Jan 2011 | A1 |
20110082794 | Blechman | Apr 2011 | A1 |
20110137696 | Meyer et al. | Jun 2011 | A1 |
20110145154 | Rivers et al. | Jun 2011 | A1 |
20110191664 | Sheleheda et al. | Aug 2011 | A1 |
20110208850 | Sheleheda et al. | Aug 2011 | A1 |
20110209067 | Bogess et al. | Aug 2011 | A1 |
20110231896 | Tovar | Sep 2011 | A1 |
20110252456 | Hatakeyama | Oct 2011 | A1 |
20120041903 | Beilby | Feb 2012 | A1 |
20120084151 | Kozak et al. | Apr 2012 | A1 |
20120084349 | Lee et al. | Apr 2012 | A1 |
20120102543 | Kohli et al. | Apr 2012 | A1 |
20120110674 | Belani et al. | May 2012 | A1 |
20120116923 | Irving et al. | May 2012 | A1 |
20120131438 | Li et al. | May 2012 | A1 |
20120143650 | Crowley et al. | Jun 2012 | A1 |
20120144499 | Tan et al. | Jun 2012 | A1 |
20120226621 | Petran et al. | Sep 2012 | A1 |
20120239557 | Weinflash et al. | Sep 2012 | A1 |
20120254320 | Dove et al. | Oct 2012 | A1 |
20120259752 | Agee | Oct 2012 | A1 |
20120323700 | Aleksandrovich et al. | Dec 2012 | A1 |
20120330869 | Durham | Dec 2012 | A1 |
20130004933 | Bhaskaran | Jan 2013 | A1 |
20130018954 | Cheng | Jan 2013 | A1 |
20130054684 | Brazier | Feb 2013 | A1 |
20130085801 | Sharpe et al. | Apr 2013 | A1 |
20130103485 | Postrel | Apr 2013 | A1 |
20130111323 | Taghaddos et al. | May 2013 | A1 |
20130124257 | Schubert | May 2013 | A1 |
20130159351 | Hamann et al. | Jun 2013 | A1 |
20130171968 | Wang | Jul 2013 | A1 |
20130179982 | Bridges et al. | Jul 2013 | A1 |
20130185806 | Hatakeyama | Jul 2013 | A1 |
20130218829 | Martinez | Aug 2013 | A1 |
20130219459 | Bradley | Aug 2013 | A1 |
20130254649 | ONeill | Sep 2013 | A1 |
20130254699 | Bashir et al. | Sep 2013 | A1 |
20130262328 | Federgreen | Oct 2013 | A1 |
20130282466 | Hampton | Oct 2013 | A1 |
20130290169 | Bathula | Oct 2013 | A1 |
20130298071 | Wine | Nov 2013 | A1 |
20130311224 | Heroux et al. | Nov 2013 | A1 |
20130318207 | Dotter | Nov 2013 | A1 |
20130326112 | Park et al. | Dec 2013 | A1 |
20130332362 | Ciurea | Dec 2013 | A1 |
20130340086 | Blom | Dec 2013 | A1 |
20140006355 | Kirihata | Jan 2014 | A1 |
20140006616 | Aad et al. | Jan 2014 | A1 |
20140012833 | Humprecht | Jan 2014 | A1 |
20140019561 | Belity et al. | Jan 2014 | A1 |
20140032259 | Lafever et al. | Jan 2014 | A1 |
20140032265 | Paprocki | Jan 2014 | A1 |
20140040134 | Ciurea | Feb 2014 | A1 |
20140040161 | Berlin | Feb 2014 | A1 |
20140040979 | Barton et al. | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052463 | Cashman et al. | Feb 2014 | A1 |
20140074645 | Ingram | Mar 2014 | A1 |
20140089027 | Brown | Mar 2014 | A1 |
20140089039 | McClellan | Mar 2014 | A1 |
20140108173 | Cooper et al. | Apr 2014 | A1 |
20140142988 | Grosso et al. | May 2014 | A1 |
20140143011 | Mudugu et al. | May 2014 | A1 |
20140164476 | Thomson | Jun 2014 | A1 |
20140188956 | Subba et al. | Jul 2014 | A1 |
20140196143 | Fliderman et al. | Jul 2014 | A1 |
20140208418 | Libin | Jul 2014 | A1 |
20140244309 | Francois | Aug 2014 | A1 |
20140244325 | Cartwright | Aug 2014 | A1 |
20140244375 | Kim | Aug 2014 | A1 |
20140244399 | Orduna et al. | Aug 2014 | A1 |
20140257917 | Spencer et al. | Sep 2014 | A1 |
20140258093 | Gardiner et al. | Sep 2014 | A1 |
20140278663 | Samuel et al. | Sep 2014 | A1 |
20140278730 | Muhart et al. | Sep 2014 | A1 |
20140283027 | Orona et al. | Sep 2014 | A1 |
20140283106 | Stahura et al. | Sep 2014 | A1 |
20140288971 | Whibbs, III | Sep 2014 | A1 |
20140289862 | Gorfein et al. | Sep 2014 | A1 |
20140317171 | Fox et al. | Oct 2014 | A1 |
20140324480 | Dufel et al. | Oct 2014 | A1 |
20140337041 | Madden et al. | Nov 2014 | A1 |
20140337466 | Li et al. | Nov 2014 | A1 |
20140344015 | Puértolas-Montañés et al. | Nov 2014 | A1 |
20150012363 | Grant et al. | Jan 2015 | A1 |
20150019530 | Felch | Jan 2015 | A1 |
20150026260 | Worthley | Jan 2015 | A1 |
20150033112 | Norwood et al. | Jan 2015 | A1 |
20150066577 | Christiansen et al. | Mar 2015 | A1 |
20150106867 | Liang | Apr 2015 | A1 |
20150106948 | Holman et al. | Apr 2015 | A1 |
20150106949 | Holman et al. | Apr 2015 | A1 |
20150143258 | Carolan et al. | May 2015 | A1 |
20150149362 | Baum et al. | May 2015 | A1 |
20150154520 | Federgreen et al. | Jun 2015 | A1 |
20150169318 | Nash | Jun 2015 | A1 |
20150172296 | Fujioka | Jun 2015 | A1 |
20150178740 | Borawski et al. | Jun 2015 | A1 |
20150199534 | Francis et al. | Jul 2015 | A1 |
20150199541 | Koch et al. | Jul 2015 | A1 |
20150199702 | Singh | Jul 2015 | A1 |
20150229664 | Hawthorn et al. | Aug 2015 | A1 |
20150235049 | Cohen et al. | Aug 2015 | A1 |
20150235050 | Wouhaybi et al. | Aug 2015 | A1 |
20150235283 | Nishikawa | Aug 2015 | A1 |
20150242778 | Wilcox et al. | Aug 2015 | A1 |
20150242858 | Smith et al. | Aug 2015 | A1 |
20150254597 | Jahagirdar | Sep 2015 | A1 |
20150261887 | Joukov | Sep 2015 | A1 |
20150262189 | Vergeer | Sep 2015 | A1 |
20150264417 | Spitz et al. | Sep 2015 | A1 |
20150269384 | Holman et al. | Sep 2015 | A1 |
20150309813 | Patel | Oct 2015 | A1 |
20150310227 | Ishida et al. | Oct 2015 | A1 |
20150310575 | Shelton | Oct 2015 | A1 |
20150356362 | Demos | Dec 2015 | A1 |
20150379430 | Dirac et al. | Dec 2015 | A1 |
20160012465 | Sharp | Jan 2016 | A1 |
20160026394 | Goto | Jan 2016 | A1 |
20160034918 | Bjelajac et al. | Feb 2016 | A1 |
20160048700 | Stransky-Heilkron | Feb 2016 | A1 |
20160050213 | Storr | Feb 2016 | A1 |
20160063523 | Nistor et al. | Mar 2016 | A1 |
20160063567 | Srivastava | Mar 2016 | A1 |
20160070581 | Soon-Shiong | Mar 2016 | A1 |
20160071112 | Unser | Mar 2016 | A1 |
20160099963 | Mahaffey et al. | Apr 2016 | A1 |
20160103963 | Mishra | Apr 2016 | A1 |
20160125550 | Joao et al. | May 2016 | A1 |
20160125749 | Delacroix et al. | May 2016 | A1 |
20160125751 | Barker et al. | May 2016 | A1 |
20160140466 | Sidebottom et al. | May 2016 | A1 |
20160143570 | Valacich et al. | May 2016 | A1 |
20160148143 | Anderson et al. | May 2016 | A1 |
20160162269 | Pogorelik et al. | Jun 2016 | A1 |
20160164915 | Cook | Jun 2016 | A1 |
20160171387 | Suskind | Jun 2016 | A1 |
20160171514 | Frank | Jun 2016 | A1 |
20160180386 | Konig | Jun 2016 | A1 |
20160188450 | Appusamy et al. | Jun 2016 | A1 |
20160196189 | Miyagi et al. | Jul 2016 | A1 |
20160225000 | Glasgow | Aug 2016 | A1 |
20160232465 | Kurtz et al. | Aug 2016 | A1 |
20160232534 | Lacey et al. | Aug 2016 | A1 |
20160234319 | Griffin | Aug 2016 | A1 |
20160255139 | Rathod | Sep 2016 | A1 |
20160261631 | Vissamsetty et al. | Sep 2016 | A1 |
20160262163 | Gonzalez Garrido et al. | Sep 2016 | A1 |
20160292621 | Ciccone et al. | Oct 2016 | A1 |
20160321582 | Broudou et al. | Nov 2016 | A1 |
20160321748 | Mahatma et al. | Nov 2016 | A1 |
20160330237 | Edlabadkar | Nov 2016 | A1 |
20160342811 | Whitcomb et al. | Nov 2016 | A1 |
20160349935 | Gelfenbeyn | Dec 2016 | A1 |
20160360039 | Sanghavi | Dec 2016 | A1 |
20160364736 | Maugans, III | Dec 2016 | A1 |
20160370954 | Burningham et al. | Dec 2016 | A1 |
20160378762 | Rohter | Dec 2016 | A1 |
20160381064 | Chan et al. | Dec 2016 | A1 |
20160381560 | Margaliot | Dec 2016 | A1 |
20170004055 | Horan et al. | Jan 2017 | A1 |
20170032395 | Kaufman et al. | Feb 2017 | A1 |
20170032408 | Kumar et al. | Feb 2017 | A1 |
20170034101 | Kumar et al. | Feb 2017 | A1 |
20170041324 | Ionutescu et al. | Feb 2017 | A1 |
20170046399 | Sankaranarasimhan et al. | Feb 2017 | A1 |
20170046753 | Deupree, IV | Feb 2017 | A1 |
20170068785 | Experton et al. | Mar 2017 | A1 |
20170093917 | Chandra et al. | Mar 2017 | A1 |
20170115864 | Thomas et al. | Apr 2017 | A1 |
20170124570 | Nidamanuri et al. | May 2017 | A1 |
20170140174 | Lacey et al. | May 2017 | A1 |
20170140467 | Neag et al. | May 2017 | A1 |
20170142158 | Laoutaris et al. | May 2017 | A1 |
20170142177 | Hu | May 2017 | A1 |
20170149703 | Willett | May 2017 | A1 |
20170154188 | Meier et al. | Jun 2017 | A1 |
20170161520 | Lockhart, III et al. | Jun 2017 | A1 |
20170171235 | Mulchandani et al. | Jun 2017 | A1 |
20170177324 | Frank et al. | Jun 2017 | A1 |
20170180378 | Tyler et al. | Jun 2017 | A1 |
20170180505 | Shaw et al. | Jun 2017 | A1 |
20170193624 | Tsai | Jul 2017 | A1 |
20170201518 | Holmqvist et al. | Jul 2017 | A1 |
20170206707 | Guay et al. | Jul 2017 | A1 |
20170208084 | Steelman et al. | Jul 2017 | A1 |
20170220685 | Yan et al. | Aug 2017 | A1 |
20170220964 | Datta Ray | Aug 2017 | A1 |
20170249710 | Guillama et al. | Aug 2017 | A1 |
20170269791 | Meyerzon et al. | Sep 2017 | A1 |
20170270318 | Ritchie | Sep 2017 | A1 |
20170278004 | McElhinney et al. | Sep 2017 | A1 |
20170278117 | Wallace et al. | Sep 2017 | A1 |
20170286719 | Krishnamurthy et al. | Oct 2017 | A1 |
20170287031 | Barday | Oct 2017 | A1 |
20170289199 | Barday | Oct 2017 | A1 |
20170308875 | O'Regan et al. | Oct 2017 | A1 |
20170316400 | Venkatakrishnan et al. | Nov 2017 | A1 |
20170330197 | DiMaggio et al. | Nov 2017 | A1 |
20170353404 | Hodge | Dec 2017 | A1 |
20180039975 | Hefetz | Feb 2018 | A1 |
20180041498 | Kikuchi | Feb 2018 | A1 |
20180046753 | Shelton | Feb 2018 | A1 |
20180063174 | Grill et al. | Mar 2018 | A1 |
20180063190 | Wright et al. | Mar 2018 | A1 |
20180082368 | Weinflash et al. | Mar 2018 | A1 |
20180083843 | Sambandam | Mar 2018 | A1 |
20180091476 | Jakobsson et al. | Mar 2018 | A1 |
20180131574 | Jacobs et al. | May 2018 | A1 |
20180131658 | Bhagwan et al. | May 2018 | A1 |
20180165637 | Romero et al. | Jun 2018 | A1 |
20180198614 | Neumann | Jul 2018 | A1 |
20180219917 | Chiang | Aug 2018 | A1 |
20180239500 | Allen et al. | Aug 2018 | A1 |
20180248914 | Sartor | Aug 2018 | A1 |
20180285887 | Maung | Oct 2018 | A1 |
20180301222 | Dew, Sr. et al. | Oct 2018 | A1 |
20180307859 | Lafever et al. | Oct 2018 | A1 |
20180349583 | Turgeman et al. | Dec 2018 | A1 |
20180351888 | Howard | Dec 2018 | A1 |
20180352003 | Winn et al. | Dec 2018 | A1 |
20180357243 | Yoon | Dec 2018 | A1 |
20180365720 | Goldman et al. | Dec 2018 | A1 |
20180374030 | Barday et al. | Dec 2018 | A1 |
20180375814 | Hart | Dec 2018 | A1 |
20190005210 | Wiederspohn et al. | Jan 2019 | A1 |
20190012672 | Francesco | Jan 2019 | A1 |
20190019184 | Lacey et al. | Jan 2019 | A1 |
20190050547 | Welsh et al. | Feb 2019 | A1 |
20190087570 | Sloane | Mar 2019 | A1 |
20190096020 | Barday et al. | Mar 2019 | A1 |
20190108353 | Sadeh et al. | Apr 2019 | A1 |
20190130132 | Barbas et al. | May 2019 | A1 |
20190138496 | Yamaguchi | May 2019 | A1 |
20190148003 | Van Hoe | May 2019 | A1 |
20190156053 | Vogel et al. | May 2019 | A1 |
20190156058 | Van Dyne et al. | May 2019 | A1 |
20190180051 | Barday et al. | Jun 2019 | A1 |
20190182294 | Rieke et al. | Jun 2019 | A1 |
20190188402 | Wang et al. | Jun 2019 | A1 |
20190266201 | Barday et al. | Aug 2019 | A1 |
20190266350 | Barday et al. | Aug 2019 | A1 |
20190268343 | Barday et al. | Aug 2019 | A1 |
20190268344 | Barday et al. | Aug 2019 | A1 |
20190272492 | Elledge et al. | Sep 2019 | A1 |
20190294818 | Barday et al. | Sep 2019 | A1 |
20190332802 | Barday et al. | Oct 2019 | A1 |
20190332807 | Lafever et al. | Oct 2019 | A1 |
20190333118 | Crimmins et al. | Oct 2019 | A1 |
20190362169 | Lin et al. | Nov 2019 | A1 |
20190362268 | Fogarty et al. | Nov 2019 | A1 |
20190378073 | Lopez et al. | Dec 2019 | A1 |
20190384934 | Kim | Dec 2019 | A1 |
20190392170 | Barday et al. | Dec 2019 | A1 |
20190392171 | Barday et al. | Dec 2019 | A1 |
20200020454 | McGarvey et al. | Jan 2020 | A1 |
20200074471 | Adjaoute | Mar 2020 | A1 |
20200082270 | Gu et al. | Mar 2020 | A1 |
20200090197 | Rodriguez et al. | Mar 2020 | A1 |
20200092179 | Chieu et al. | Mar 2020 | A1 |
20200110589 | Bequet et al. | Apr 2020 | A1 |
20200137097 | Zimmermann et al. | Apr 2020 | A1 |
20200143797 | Manoharan | May 2020 | A1 |
20200183655 | Barday et al. | Jun 2020 | A1 |
20200186355 | Davies | Jun 2020 | A1 |
20200193018 | Van Dyke | Jun 2020 | A1 |
20200193022 | Lunsford et al. | Jun 2020 | A1 |
20200210558 | Barday et al. | Jul 2020 | A1 |
20200210620 | Haletky | Jul 2020 | A1 |
20200220901 | Barday et al. | Jul 2020 | A1 |
20200226196 | Brannon et al. | Jul 2020 | A1 |
20200242719 | Lee | Jul 2020 | A1 |
20200252817 | Brouillette et al. | Aug 2020 | A1 |
20200272764 | Brannon et al. | Aug 2020 | A1 |
20200293679 | Handy Bosma et al. | Sep 2020 | A1 |
20200302089 | Barday et al. | Sep 2020 | A1 |
20200311310 | Barday et al. | Oct 2020 | A1 |
20200344243 | Brannon et al. | Oct 2020 | A1 |
20200356695 | Brannon et al. | Nov 2020 | A1 |
20200364369 | Brannon et al. | Nov 2020 | A1 |
20200372178 | Barday et al. | Nov 2020 | A1 |
20200410117 | Barday et al. | Dec 2020 | A1 |
20200410131 | Barday et al. | Dec 2020 | A1 |
20200410132 | Brannon et al. | Dec 2020 | A1 |
20210012341 | Garg et al. | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
1394698 | Mar 2004 | EP |
2031540 | Mar 2009 | EP |
20130062500 | Jun 2013 | KR |
2001033430 | May 2001 | WO |
2005008411 | Jan 2005 | WO |
2007002412 | Jan 2007 | WO |
2012174659 | Dec 2012 | WO |
2015116905 | Aug 2015 | WO |
Entry |
---|
Ball, et al, “Aspects of the Computer-Based Patient Record,” Computers in Heathcare, Springer-Verlag New York Inc., pp. 1-23 (Year: 1992). |
Final Office Action, dated Aug. 28, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Sep. 8, 2020, from corresponding U.S. Appl. No. 16/410,866. |
Notice of Allowance, dated Aug. 26, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Notice of Allowance, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/901,662. |
Office Action, dated Aug. 20, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Office Action, dated Aug. 24, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Sep. 4, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Notice of Allowance, dated Sep. 16, 2020, from corresponding U.S. Appl. No. 16/915,097. |
Notice of Allowance, dated Sep. 17, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Final Office Action, dated Sep. 21, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Final Office Action, dated Sep. 22, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Hauch, et al, “Information Intelligence: Metadata for Information Discovery, Access, and Integration,” ACM, pp. 793-798 (Year: 2005). |
Hernandez, et al, “Data Exchange with Data-Metadata Translations,” ACM, pp. 260-273 (Year: 2008). |
Notice of Allowance, dated Sep. 18, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Singh, et al, “A Metadata Catalog Service for Data Intensive Applications,” ACM, pp. 1-17 (Year: 2003). |
Slezak, et al, “Brighthouse: An Analytic Data Warehouse for Ad-hoc Queries,” ACM, pp. 1337-1345 (Year: 2008). |
Ahmad, et al, “Performance of Resource Management Algorithms for Processable Bulk Data Transfer Tasks in Grid Environments,” ACM, pp. 177-188 (Year: 2008). |
Final Office Action, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Final Office Action, dated Aug. 5, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Grolinger, et al, “Data Management in Cloud Environments: NoSQL and NewSQL Data Stores,” Journal of Cloud Computing: Advances, Systems and Applications, pp. 1-24 (Year: 2013). |
Leadbetter, et al, “Where Big Data Meets Linked Data: Applying Standard Data Models to Environmental Data Streams,” IEEE, pp. 2929-2937 (Year: 2016). |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Notice of Allowance, dated Aug. 10, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Notice of Allowance, dated Aug. 12, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Notice of Allowance, dated Aug. 7, 2020, from corresponding U.S. Appl. No. 16/901,973. |
Office Action, dated Aug. 6, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Office Action, dated Jul. 24, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Jul. 27, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Xu, et al, “GatorShare: A File System Framework for High-Throughput Data Management,” ACM, pp. 776-786 (Year: 2010). |
Zheng, et al, “Methodologies for Cross-Domain Data Fusion: An Overview,” IEEE, pp. 16-34 (Year: 2015). |
Notice of Allowance, dated Aug. 30, 2018, from corresponding U.S. Appl. No. 15/996,208. |
Notice of Allowance, dated Aug. 9, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Dec. 10, 2018, from corresponding U.S. Appl. No. 16/105,602. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Notice of Allowance, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/593,634. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Notice of Allowance, dated Dec. 12, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Notice of Allowance, dated Dec. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Notice of Allowance, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Notice of Allowance, dated Dec. 18, 2019, from corresponding U.S. Appl. No. 16/659,437. |
Notice of Allowance, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/656,835. |
Notice of Allowance, dated Dec. 3, 2019, from corresponding U.S. Appl. No. 16/563,749. |
Notice of Allowance, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/159,634. |
Notice of Allowance, dated Dec. 31, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Notice of Allowance, dated Dec. 4, 2019, from corresponding U.S. Appl. No. 16/594,670. |
Notice of Allowance, dated Dec. 5, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Notice of Allowance, dated Dec. 6, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Notice of Allowance, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,261. |
Notice of Allowance, dated Feb. 10, 2020, from corresponding U.S. Appl. No. 16/552,765. |
Notice of Allowance, dated Feb. 12, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Notice of Allowance, dated Feb. 13, 2019, from corresponding U.S. Appl. No. 16/041,561. |
Notice of Allowance, dated Feb. 14, 2019, from corresponding U.S. Appl. No. 16/226,272. |
Notice of Allowance, dated Feb. 19, 2019, from corresponding U.S. Appl. No. 16/159,632. |
Notice of Allowance, dated Feb. 25, 2020, from corresponding U.S. Appl. No. 16/714,355. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/041,468. |
Notice of Allowance, dated Feb. 27, 2019, from corresponding U.S. Appl. No. 16/226,290. |
Notice of Allowance, dated Jan. 14, 2020, from corresponding U.S. Appl. No. 16/277,715. |
Notice of Allowance, dated Jan. 18, 2018, from corresponding U.S. Appl. No. 15/619,478. |
Notice of Allowance, dated Jan. 18, 2019 from corresponding U.S. Appl. No. 16/159,635. |
Notice of Allowance, dated Jan. 2, 2020, from corresponding U.S. Appl. No. 16/410,296. |
Notice of Allowance, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,251. |
Notice of Allowance, dated Jan. 26, 2018, from corresponding U.S. Appl. No. 15/619,469. |
Notice of Allowance, dated Jan. 29, 2020, from corresponding U.S. Appl. No. 16/278,119. |
Notice of Allowance, dated Jan. 8, 2020, from corresponding U.S. Appl. No. 16/600,879. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Notice of Allowance, dated Jul. 10, 2019, from corresponding U.S. Appl. No. 16/403,358. |
Notice of Allowance, dated Jul. 12, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Notice of Allowance, dated Jul. 14, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Notice of Allowance, dated Jul. 15, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Notice of Allowance, dated Jul. 16, 2020, from corresponding U.S. Appl. No. 16/901,979. |
Notice of Allowance, dated Jul. 17, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Notice of Allowance, dated Jul. 17, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Notice of Allowance, dated Jul. 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Notice of Allowance, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Notice of Allowance, dated Jul. 26, 2019, from corresponding U.S. Appl. No. 16/409,673. |
Notice of Allowance, dated Jul. 31, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Notice of Allowance, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/813,321. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/278,123. |
Final Office Action, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Final Office Action, dated Sep. 24, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Final Office Action, dated Sep. 28, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Hinde, “A Model to Assess Organisational Information Privacy Maturity Against the Protection of Personal Information Act” Dissertation University of Cape Town 2014, pp. 1-121 (Year: 2014). |
Notice of Allowance, dated Sep. 23, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Notice of Allowance, dated Sep. 25, 2020, from corresponding U.S. Appl. No. 16/983,536. |
Office Action, dated Oct. 14, 2020, from corresponding U.S. Appl. No. 16/927,658. |
Office Action, dated Oct. 16, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Dwork, Cynthia, Differential Privacy, Microsoft Research, p. 1-12. |
Emerson, et al, “A Data Mining Driven Risk Profiling Method for Road Asset Management,” ACM, pp. 1267-1275 (Year: 2013). |
Enck, William, et al, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, ACM Transactions on Computer Systems, vol. 32, No. 2, Article 5, Jun. 2014, p. 5:1-5:29. |
Falahrastegar, Marjan, et al, Tracking Personal Identifiers Across the Web, Medical Image Computing and Computer-Assisted Intervention—Miccai 2015, 18th International Conference, Oct. 5, 2015, Munich, Germany. |
Final Written Decision Regarding Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 10, 2019. |
Francis, Andre, Business Mathematics and Statistics, South-Western Cengage Learning, 2008, Sixth Edition. |
Friedman et al, “Informed Consent in the Mozilla Browser: Implementing Value-Sensitive Design,” Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 2002, IEEE, pp. 1-10 (Year: 2002). |
Frikken, Keith B., et al, Yet Another Privacy Metric for Publishing Micro-data, Miami University, Oct. 27, 2008, p. 117-121. |
Fung et al, “Discover Information and Knowledge from Websites using an Integrated Summarization and Visualization Framework”, IEEE, pp. 232-235 (Year 2010). |
Ghiglieri, Marco et al.; Personal DLP for Facebook, 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops); IEEE; Mar. 24, 2014; pp. 629-634. |
Golfarelli et al, “Beyond Data Warehousing: What's Next in Business Intelligence?,” ACM, pp. 1-6 (Year: 2004). |
Goni, Kyriaki, “Deletion Process_Only you can see my history: Investigating Digital Privacy, Digital Oblivion, and Control on Personal Data Through an Interactive Art Installation,” ACM, 2016, retrieved online on Oct. 3, 2019, pp. 324-333. Retrieved from the Internet URL: http://delivery.acm.org/10.1145/2920000/291. |
Gowadia et al, “RDF Metadata for XML Access Control,” ACM, pp. 31-48 (Year: 2003). |
Guo, et al, “OPAL: A Passe-partout for Web Forms,” ACM, pp. 353-356 (Year: 2012). |
Gustarini, et al, “Evaluation of Challenges in Human Subject Studies “In-the-Wild” Using Subjects' Personal Smartphones,” ACM, pp. 1447-1456 (Year: 2013). |
Hacigümüs, Hakan, et al, Executing SQL over Encrypted Data in the Database-Service-Provider Model, ACM, Jun. 4, 2002, pp. 216-227. |
Hodge, et al, “Managing Virtual Data Marts with Metapointer Tables,” pp. 1-7 (Year: 2002). |
Huner et al, “Towards a Maturity Model for Corporate Data Quality Management”, ACM, pp. 231-238, 2009 (Year: 2009). |
Hunton & Williams LLP, The Role of Risk Management in Data Protection, Privacy Risk Framework and the Risk-based Approach to Privacy, Centre for Information Policy Leadership, Workshop II, Nov. 23, 2014. |
Huo et al, “A Cloud Storage Architecture Model for Data-Intensive Applications,” IEEE, pp. 1-4 (Year: 2011). |
Iapp, Daily Dashboard, PIA Tool Stocked With New Templates for DPI, Infosec, International Association of Privacy Professionals, Apr. 22, 2014. |
Iapp, ISO/IEC 27001 Information Security Management Template, Resource Center, International Association of Privacy Professionals. |
Imran et al, “Searching in Cloud Object Storage by Using a Metadata Model”, IEEE, 2014, retrieved online on Apr. 1, 2020, pp. 121-128. Retrieved from the Internet: URL: https://ieeeexplore.ieee.org/stamp/stamp.jsp? (Year: 2014). |
International Search Report, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
International Search Report, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
International Search Report, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
International Search Report, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
International Search Report, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
International Search Report, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
International Search Report, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
International Search Report, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
International Search Report, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
International Search Report, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
International Search Report, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
International Search Report, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
International Search Report, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
International Search Report, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
International Search Report, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
International Search Report, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Office Action, dated Jan. 24, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Office Action, dated Jan. 27, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Office Action, dated Jan. 28, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Office Action, dated Jan. 4, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Office Action, dated Jan. 7, 2020, from corresponding U.S. Appl. No. 16/572,182. |
Office Action, dated Jul. 18, 2019, from corresponding U.S. Appl. No. 16/410,762. |
Office Action, dated Jul. 21, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Office Action, dated Jul. 23, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Office Action, dated Jun. 1, 2020, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Jun. 24, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Jun. 27, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Office Action, dated Mar. 11, 2019, from corresponding U.S. Appl. No. 16/220,978. |
Office Action, dated Mar. 12, 2019, from corresponding U.S. Appl. No. 16/221,153. |
Office Action, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/719,488. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/565,395. |
Office Action, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Office Action, dated Mar. 20, 2020, from corresponding U.S. Appl. No. 16/778,709. |
Office Action, dated Mar. 23, 2020, from corresponding U.S. Appl. No. 16/671,444. |
Office Action, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/278,121. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/701,043. |
Office Action, dated Mar. 25, 2020, from corresponding U.S. Appl. No. 16/791,006. |
Office Action, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Office Action, dated Mar. 30, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Office Action, dated Mar. 4, 2019, from corresponding U.S. Appl. No. 16/237,083. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated May 14, 2020, from corresponding U.S. Appl. No. 16/808,503. |
Office Action, dated May 15, 2020, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated May 16, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Office Action, dated May 17, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Office Action, dated May 2, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Office Action, dated May 2, 2019, from corresponding U.S. Appl. No. 16/104,628. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated May 29, 2020, from corresponding U.S. Appl. No. 16/863,226. |
Office Action, dated May 5, 2020, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Nov. 1, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Office Action, dated Nov. 15, 2018, from corresponding U.S. Appl. No. 16/059,911. |
Office Action, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/552,758. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,885. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/560,889. |
Office Action, dated Nov. 18, 2019, from corresponding U.S. Appl. No. 16/572,347. |
Office Action, dated Nov. 19, 2019, from corresponding U.S. Appl. No. 16/595,342. |
Office Action, dated Nov. 20, 2019, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Nov. 23, 2018, from corresponding U.S. Appl. No. 16/042,673. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/041,563. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,083. |
Office Action, dated Oct. 10, 2018, from corresponding U.S. Appl. No. 16/055,944. |
Zeldovich, Nickolai, et al, Making Information Flow Explicit in HiStar, OSDI '06: 7th USENIX Symposium on Operating Systems Design and Implementation, USENIX Association, p. 263-278. |
Zhang et al, “Data Transfer Performance Issues for a Web Services Interface to Synchrotron Experiments”, ACM, pp. 59-65 (Year: 2007). |
Zhang et al, “Dynamic Topic Modeling for Monitoring Market Competition from Online Text and Image Data”, ACM, pp. 1425-1434 (Year: 2015). |
Zhu, et al, “Dynamic Data Integration Using Web Services,” IEEE, pp. 1-8 (Year: 2004). |
Stern, Joanna, “iPhone Privacy Is Broken . . . and Apps Are to Blame”, The Wall Street Journal, wsj.com, May 31, 2019. |
Symantec, Symantex Data Loss Prevention—Discover, monitor, and protect confidential data; 2008; Symantec Corporation; http://www.mssuk.com/images/Symantec%2014552315_IRC_BR_DLP_03.09_sngl.pdf. |
The Cookie Collective, Optanon Cookie Policy Generator, The Cookie Collective, Year 2016, http://web.archive.org/web/20160324062743/https:/optanon.com/. |
Thuraisingham, “Security Issues for the Semantic Web,” Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, Dallas, TX, USA, 2003, pp. 633-638 (Year: 2003). |
TRUSTe Announces General Availability of Assessment Manager for Enterprises to Streamline Data Privacy Management with Automation, PRNewswire, Mar. 4, 2015. |
Tsai et al, “Determinants of Intangible Assets Value: The Data Mining Approach,” Knowledge Based System, pp. 67-77 http://www.elsevier.com/locate/knosys (Year: 2012). |
Tuomas Aura et al., Scanning Electronic Documents for Personally Identifiable Information, ACM, Oct. 30, 2006, retrieved online on Jun. 13, 2019, pp. 41-49. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/1180000/1179608/p41-aura.pdf? (Year: 2006). |
Wang et al, “Revealing Key Non-Financial Factors for Online Credit-Scoring in E-Financing,” 2013, IEEE, pp. 1-6 (Year: 2013). |
Wang et al, “Secure and Efficient Access to Outsourced Data,” ACM, pp. 55-65 (Year: 2009). |
Weaver et al, “Understanding Information Preview in Mobile Email Processing”, ACM, pp. 303-312, 2011 (Year: 2011). |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025611. |
Written Opinion of the International Searching Authority, dated Aug. 15, 2017, from corresponding International Application No. PCT/US2017/036919. |
Written Opinion of the International Searching Authority, dated Aug. 21, 2017, from corresponding International Application No. PCT/US2017/036914. |
Written Opinion of the International Searching Authority, dated Aug. 29, 2017, from corresponding International Application No. PCT/US2017/036898. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036889. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036890. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036893. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036901. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036913. |
Written Opinion of the International Searching Authority, dated Aug. 8, 2017, from corresponding International Application No. PCT/US2017/036920. |
Written Opinion of the International Searching Authority, dated Dec. 14, 2018, from corresponding International Application No. PCT/US2018/045296. |
Written Opinion of the International Searching Authority, dated Jan. 14, 2019, from corresponding International Application No. PCT/US2018/046949. |
Written Opinion of the International Searching Authority, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055772. |
Written Opinion of the International Searching Authority, dated Jun. 21, 2017, from corresponding International Application No. PCT/US2017/025600. |
Written Opinion of the International Searching Authority, dated Jun. 6, 2017, from corresponding International Application No. PCT/US2017/025605. |
Written Opinion of the International Searching Authority, dated Mar. 14, 2019, from corresponding International Application No. PCT/US2018/055736. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055773. |
Written Opinion of the International Searching Authority, dated Mar. 4, 2019, from corresponding International Application No. PCT/US2018/055774. |
Written Opinion of the International Searching Authority, dated Nov. 19, 2018, from corresponding International Application No. PCT/US2018/046939. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043975. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043976. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/043977. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/044026. |
Written Opinion of the International Searching Authority, dated Oct. 11, 2018, from corresponding International Application No. PCT/US2018/045240. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2017, from corresponding International Application No. PCT/US2017/036888. |
Written Opinion of the International Searching Authority, dated Oct. 12, 2018, from corresponding International Application No. PCT/US2018/044046. |
Written Opinion of the International Searching Authority, dated Oct. 16, 2018, from corresponding International Application No. PCT/US2018/045243. |
Written Opinion of the International Searching Authority, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
Written Opinion of the International Searching Authority, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
Written Opinion of the International Searching Authority, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
Written Opinion of the International Searching Authority, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
Written Opinion of the International Searching Authority, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
www.truste.com (1), 200150207, Internet Archive Wayback Machine, www.archive.org,Feb. 7, 2015. |
Yang et al, “DAC-MACS: Effective Data Access Control for Multiauthority Cloud Storage Systems,” IEEE, pp. 1790-1801 (Year: 2013). |
Ye et al, “An Evolution-Based Cache Scheme for Scalable Mobile Data Access,” ACM, pp. 1-7 (Year: 2007). |
Yin et al, “Multibank Memory Optimization for Parallel Data Access in Multiple Data Arrays”, ACM, pp. 1-8 (Year: 2016). |
Yiu et al, “Outsourced Similarity Search on Metric Data Assets”, IEEE, pp. 338-352 (Year: 2012). |
Yu, “Using Data from Social Media Websites to Inspire the Design of Assistive Technology”, ACM, pp. 1-2 (Year: 2016). |
Yu, et al, “Performance and Fairness Issues in Big Data Transfers,” ACM, pp. 9-11 (Year: 2014). |
Zannone, et al, “Maintaining Privacy on Derived Objects,” ACM, pp. 10-19 (Year: 2005). |
International Search Report, dated Oct. 18, 2018, from corresponding International Application No. PCT/US2018/045249. |
International Search Report, dated Oct. 20, 2017, from corresponding International Application No. PCT/US2017/036917. |
International Search Report, dated Oct. 3, 2017, from corresponding International Application No. PCT/US2017/036912. |
International Search Report, dated Sep. 1, 2017, from corresponding International Application No. PCT/US2017/036896. |
International Search Report, dated Sep. 12, 2018, from corresponding International Application No. PCT/US2018/037504. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036912. |
Invitation to Pay Additional Search Fees, dated Aug. 10, 2017, from corresponding International Application No. PCT/US2017/036917. |
Invitation to Pay Additional Search Fees, dated Aug. 24, 2017, from corresponding International Application No. PCT/US2017/036888. |
Invitation to Pay Additional Search Fees, dated Jan. 18, 2019, from corresponding International Application No. PCT/US2018/055736. |
Invitation to Pay Additional Search Fees, dated Jan. 7, 2019, from corresponding International Application No. PCT/US2018/055773. |
Invitation to Pay Additional Search Fees, dated Jan. 8, 2019, from corresponding International Application No. PCT/US2018/055774. |
Invitation to Pay Additional Search Fees, dated Oct. 23, 2018, from corresponding International Application No. PCT/US2018/045296. |
Islam, et al, “Mixture Model Based Label Association Techniques for Web Accessibility,” ACM, pp. 67-76 (Year: 2010). |
Joel Reardon et al., Secure Data Deletion from Persistent Media, ACM, Nov. 4, 213, retrieved online on Jun. 13, 2019, pp. 271-283. Retrieved from the Internet: URL: http://delivery.acm.org/10.1145/2520000/2516699/p271-reardon.pdf? (Year: 2013). |
Joonbakhsh et al, “Mining and Extraction of Personal Software Process measures through IDE Interaction logs,” ACM/IEEE, 2018, retrieved online on Dec. 2, 2019, pp. 78-81. Retrieved from the Internet: URL: http://delivery.acm.org/10.114513200000/3196462/p78-joonbakhsh.pdf? (Year: 2018). |
Jun et al, “Scalable Multi-Access Flash Store for Big Data Analytics,” ACM, pp. 55-64 (Year: 2014). |
Kirkam, et al, “A Personal Data Store for an Internet of Subjects,” IEEE, pp. 92-97 (Year: 2011). |
Korba, Larry et al.; “Private Data Discovery for Privacy Compliance in Collaborative Environments”; Cooperative Design, Visualization, and Engineering; Springer Berlin Heidelberg; Sep. 21, 2008; pp. 142-150. |
Krol, Kat, et al, Control versus Effort in Privacy Warnings for Webforms, ACM, Oct. 24, 2016, pp. 13-23. |
Lamb et al, “Role-Based Access Control for Data Service Integration”, ACM, pp. 3-11 (Year: 2006). |
Lebeau, Franck, et al, “Model-Based Vulnerability Testing for Web Applications,” 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops, pp. 445-452, IEEE, 2013 (Year: 2013). |
Li, Ninghui, et al, t-Closeness: Privacy Beyond k-Anonymity and I-Diversity, IEEE, 2014, p. 106-115. |
Liu et al, “Cross-Geography Scientific Data Transferring Trends and Behavior,” ACM, pp. 267-278 (Year: 2018). |
Liu, Kun, et al, A Framework for Computing the Privacy Scores of Users in Online Social Networks, ACM Transactions on Knowledge Discovery from Data, vol. 5, No. 1, Article 6, Dec. 2010, 30 pages. |
Lizar et al, “Usable Consents: Tracking and Managing Use of Personal Data with a Consent Transaction Receipt,” Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, 2014, pp. 647-652 (Year: 2014). |
Maret et al, “Multimedia Information Interchange: Web Forms Meet Data Servers”, IEEE, pp. 499-505 (Year: 1999). |
McGarth et al, “Digital Library Technology for Locating and Accessing Scientific Data”, ACM, pp. 188-194 (Year: 1999). |
Mesbah et al, “Crawling Ajax-Based Web Applications Through Dynamic Analysis of User Interface State Changes,” ACM Transactions on the Web (TWEB) vol. 6, No. 1, Article 3, Mar. 2012, pp. 1-30 (Year: 2012). |
Moiso et al, “Towards a User-Centric Personal Data Ecosystem the Role of the Bank of Individual's Data,” 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, 2012, pp. 202-209 (Year: 2012). |
Moscoso-Zea et al, “Datawarehouse Design for Educational Data Mining,” IEEE, pp. 1-6 (Year: 2016). |
Mudepalli et al, “An efficient data retrieval approach using blowfish encryption on cloud CipherText Retrieval in Cloud Computing” IEEE, pp. 267-271 (Year: 2017). |
Mundada et al, “Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web,” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, 2016, pp. 675-685 (Year: 2016). |
Newman et al, “High Speed Scientific Data Transfers using Software Defined Networking,” ACM, pp. 1-9 (Year: 2015). |
Newman, “Email Archive Overviews using Subject Indexes”, ACM, pp. 652-653, 2002 (Year: 2002). |
Notice of Allowance, dated Apr. 12, 2017, from corresponding U.S. Appl. No. 15/256,419. |
Notice of Allowance, dated Apr. 17, 2020, from corresponding U.S. Appl. No. 16/593,639. |
Notice of Allowance, dated Apr. 2, 2019, from corresponding U.S. Appl. No. 16/160,577. |
Notice of Allowance, dated Apr. 25, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Allowance, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/700,049. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/565,265. |
Notice of Allowance, dated Apr. 30, 2020, from corresponding U.S. Appl. No. 16/820,346. |
Notice of Allowance, dated Apr. 8, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Notice of Allowance, dated Apr. 8, 2020, from corresponding U.S. Appl. No. 16/791,348. |
Notice of Allowance, dated Apr. 9, 2020, from corresponding U.S. Appl. No. 16/791,075. |
Notice of Allowance, dated Aug. 14, 2018, from corresponding U.S. Appl. No. 15/989,416. |
Notice of Allowance, dated Aug. 18, 2017, from corresponding U.S. Appl. No. 15/619,455. |
Notice of Allowance, dated Aug. 20, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Notice of Allowance, dated Aug. 24, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Notice of Allowance, dated Aug. 26, 2019, from corresponding U.S. Appl. No. 16/443,374. |
Notice of Allowance, dated Aug. 28, 2019, from corresponding U.S. Appl. No. 16/278,120. |
Notice of Allowance, dated Nov. 8, 2018, from corresponding U.S. Appl. No. 16/042,642. |
Notice of Allowance, dated Oct. 10, 2019, from corresponding U.S. Appl. No. 16/277,539. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/054,672. |
Notice of Allowance, dated Oct. 17, 2019, from corresponding U.S. Appl. No. 16/563,741. |
Notice of Allowance, dated Oct. 21, 2019, from corresponding U.S. Appl. No. 16/404,405. |
Notice of Allowance, dated Oct. 3, 2019, from corresponding U.S. Appl. No. 16/511,700. |
Notice of Allowance, dated Sep. 12, 2019, from corresponding U.S. Appl. No. 16/512,011. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,809. |
Notice of Allowance, dated Sep. 13, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 15/,894,819. |
Notice of Allowance, dated Sep. 18, 2018, from corresponding U.S. Appl. No. 16/041,545. |
Notice of Allowance, dated Sep. 27, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Notice of Allowance, dated Sep. 28, 2018, from corresponding U.S. Appl. No. 16/041,520. |
Notice of Allowance, dated Sep. 4, 2018, from corresponding U.S. Appl. No. 15/883,041. |
Notice of Filing Date for Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Apr. 12, 2018. |
O'Keefe et al, “Privacy-Preserving Data Linkage Protocols,” Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, 2004, pp. 94-102 (Year: 2004). |
Olenski, Steve, For Consumers, Data Is a Matter of Trust, CMO Network, Apr. 18, 2016, https://www.forbes.com/sites/steveolenski/2016/04/18/for-consumers-data-is-a-matter-of-trust/#2e48496278b3. |
Pechenizkiy et al, “Process Mining Online Assessment Data,” Educational Data Mining, pp. 279-288 (Year: 2009). |
Petition for Post-Grant Review of related U.S. Pat. No. 9,691,090 dated Mar. 27, 2018. |
Petrie et al, “The Relationship between Accessibility and Usability of Websites”, ACM, pp. 397-406 (Year: 2007). |
Pfeifle, Sam, The Privacy Advisor, IAPP and AvePoint Launch New Free PIA Tool, International Association of Privacy Professionals, Mar. 5, 2014. |
Pfeifle, Sam, The Privacy Advisor, Iapp Heads to Singapore with APIA Template in Tow, International Association of Privacy Professionals, https://iapp.org/news/a/iapp-heads-to-singapore-with-apia-template_in_tow/, Mar. 28, 2014, p. 1-3. |
Ping et al, “Wide Area Placement of Data Replicas for Fast and Highly Available Data Access,” ACM, pp. 1-8 (Year: 2011). |
Popescu-Zeletin, “The Data Access and Transfer Support in a Local Heterogeneous Network (HMINET)”, IEEE, pp. 147-152 (Year: 1979). |
Porter, “De-Identified Data and Third Party Data Mining: The Risk of Re-Identification of Personal Information,” Shidler JL Com. & Tech. 5, 2008, pp. 1-9 (Year: 2008). |
Qing-Jiang et al, “The (P, a, K) Anonymity Model for Privacy Protection of Personal Information in the Social Networks,” 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 2 IEEE, 2011, pp. 420-423 (Year: 2011). |
Qiu, et al, “Design and Application of Data Integration Platform Based on Web Services and XML,” IEEE, pp. 253-256 (Year: 2016). |
Restriction Requirement, dated Apr. 10, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Restriction Requirement, dated Apr. 13, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Restriction Requirement, dated Apr. 24, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Restriction Requirement, dated Aug. 7, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Restriction Requirement, dated Aug. 9, 2019, from corresponding U.S. Appl. No. 16/404,399. |
Restriction Requirement, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 15/169,668. |
Restriction Requirement, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/565,395. |
Restriction Requirement, dated Jan. 18, 2017, from corresponding U.S. Appl. No. 15/256,430. |
Restriction Requirement, dated Jul. 28, 2017, from corresponding U.S. Appl. No. 15/169,658. |
Restriction Requirement, dated May 5, 2020, from corresponding U.S. Appl. No. 16/808,489. |
Restriction Requirement, dated Nov. 15, 2019, from corresponding U.S. Appl. No. 16/586,202. |
Restriction Requirement, dated Nov. 21, 2016, from corresponding U.S. Appl. No. 15/254,901. |
Restriction Requirement, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/563,744. |
Restriction Requirement, dated Oct. 17, 2018, from corresponding U.S. Appl. No. 16/055,984. |
Restriction Requirement, dated Sep. 9, 2019, from corresponding U.S. Appl. No. 16/505,426. |
Rozepz, “What is Google Privacy Checkup? Everything You Need to Know,” Tom's Guide web post, Apr. 26, 2018, pp. 1-11 (Year: 2018). |
Salim et al, “Data Retrieval and Security using Lightweight Directory Access Protocol”, IEEE, pp. 685-688 (Year: 2009). |
Santhisree, et al, “Web Usage Data Clustering Using Dbscan Algorithm and Set Similarities,” IEEE, pp. 220-224 (Year: 2010). |
Sanzo et al, “Analytical Modeling of Lock-Based Concurrency Control with Arbitrary Transaction Data Access Patterns,” ACM, pp. 69-78 (Year: 2010). |
Schwartz, Edward J., et al, 2010 IEEE Symposium on Security and Privacy: All You Ever Wanted to Know About Dynamic Analysis and forward Symbolic Execution (but might have been afraid to ask), Carnegie Mellon University, IEEE Computer Society, 2010, p. 317-331. |
Srinivasan et al, “Descriptive Data Analysis of File Transfer Data,” ACM, pp. 1-8 (Year: 2014). |
Srivastava, Agrima, et al, Measuring Privacy Leaks in Online Social Networks, International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013. |
Notice of Allowance, dated Jun. 12, 2019, from corresponding U.S. Appl. No. 16/363,454. |
Notice of Allowance, dated Jun. 16, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Notice of Allowance, dated Jun. 17, 2020, from corresponding U.S. Appl. No. 16/656,895. |
Notice of Allowance, dated Jun. 18, 2019, from corresponding U.S. Appl. No. 16/410,566. |
Notice of Allowance, dated Jun. 19, 2018, from corresponding U.S. Appl. No. 15/894,890. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/042,673. |
Notice of Allowance, dated Jun. 19, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Notice of Allowance, dated Jun. 21, 2019, from corresponding U.S. Appl. No. 16/404,439. |
Notice of Allowance, dated Jun. 22, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Notice of Allowance, dated Jun. 27, 2018, from corresponding U.S. Appl. No. 15/882,989. |
Notice of Allowance, dated Jun. 4, 2019, from corresponding U.S. Appl. No. 16/159,566. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Notice of Allowance, dated Jun. 5, 2019, from corresponding U.S. Appl. No. 16/357,260. |
Notice of Allowance, dated Jun. 6, 2018, from corresponding U.S. Appl. No. 15/875,570. |
Notice of Allowance, dated Jun. 6, 2019, from corresponding U.S. Appl. No. 16/159,628. |
Notice of Allowance, dated Jun. 8, 2020, from corresponding U.S. Appl. No. 16/712,104. |
Notice of Allowance, dated Mar. 1, 2018, from corresponding U.S. Appl. No. 15/853,674. |
Notice of Allowance, dated Mar. 1, 2019, from corresponding U.S. Appl. No. 16/059,911. |
Notice of Allowance, dated Mar. 13, 2019, from corresponding U.S. Appl. No. 16/055,083. |
Notice of Allowance, dated Mar. 14, 2019, from corresponding U.S. Appl. No. 16/055,944. |
Notice of Allowance, dated Mar. 16, 2020, from corresponding U.S. Appl. No. 16/778,704. |
Notice of Allowance, dated Mar. 17, 2020, from corresponding U.S. Appl. No. 16/560,885. |
Notice of Allowance, dated Mar. 18, 2020, from corresponding U.S. Appl. No. 16/560,963. |
Notice of Allowance, dated Mar. 2, 2018, from corresponding U.S. Appl. No. 15/858,802. |
Notice of Allowance, dated Mar. 24, 2020, from corresponding U.S. Appl. No. 16/552,758. |
Notice of Allowance, dated Mar. 25, 2019, from corresponding U.S. Appl. No. 16/054,780. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/560,889. |
Notice of Allowance, dated Mar. 26, 2020, from corresponding U.S. Appl. No. 16/578,712. |
Notice of Allowance, dated Mar. 27, 2019, from corresponding U.S. Appl. No. 16/226,280. |
Notice of Allowance, dated Mar. 29, 2019, from corresponding U.S. Appl. No. 16/055,998. |
Notice of Allowance, dated Mar. 31, 2020, from corresponding U.S. Appl. No. 16/563,744. |
Notice of Allowance, dated May 1, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Notice of Allowance, dated May 11, 2020, from corresponding U.S. Appl. No. 16/186,196. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Notice of Allowance, dated May 19, 2020, from corresponding U.S. Appl. No. 16/808,496. |
Notice of Allowance, dated May 20, 2020, from corresponding U.S. Appl. No. 16/107,762. |
Notice of Allowance, dated May 21, 2018, from corresponding U.S. Appl. No. 15/896,790. |
Notice of Allowance, dated May 27, 2020, from corresponding U.S. Appl. No. 16/820,208. |
Notice of Allowance, dated May 28, 2019, from corresponding U.S. Appl. No. 16/277,568. |
Notice of Allowance, dated May 28, 2020, from corresponding U.S. Appl. No. 16/199,279. |
Notice of Allowance, dated May 5, 2017, from corresponding U.S. Appl. No. 15/254,901. |
Notice of Allowance, dated May 5, 2020, from corresponding U.S. Appl. No. 16/563,754. |
Notice of Allowance, dated May 7, 2020, from corresponding U.S. Appl. No. 16/505,426. |
Notice of Allowance, dated Nov. 14, 2019, from corresponding U.S. Appl. No. 16/436,616. |
Notice of Allowance, dated Nov. 2, 2018, from corresponding U.S. Appl. No. 16/054,762. |
Notice of Allowance, dated Nov. 26, 2019, from corresponding U.S. Appl. No. 16/563,735. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/570,712. |
Notice of Allowance, dated Nov. 27, 2019, from corresponding U.S. Appl. No. 16/577,634. |
Notice of Allowance, dated Nov. 5, 2019, from corresponding U.S. Appl. No. 16/560,965. |
Notice of Allowance, dated Nov. 7, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Office Action, dated Oct. 15, 2018, from corresponding U.S. Appl. No. 16/054,780. |
Office Action, dated Oct. 16, 2019, from corresponding U.S. Appl. No. 16/557,392. |
Office Action, dated Oct. 23, 2018, from corresponding U.S. Appl. No. 16/055,961. |
Office Action, dated Oct. 26, 2018, from corresponding U.S. Appl. No. 16/041,468. |
Office Action, dated Oct. 8, 2019, from corresponding U.S. Appl. No. 16/552,765. |
Office Action, dated Sep. 1, 2017, from corresponding U.S. Appl. No. 15/619,459. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,375. |
Office Action, dated Sep. 11, 2017, from corresponding U.S. Appl. No. 15/619,478. |
Office Action, dated Sep. 16, 2019, from corresponding U.S. Appl. No. 16/277,715. |
Office Action, dated Sep. 19, 2017, from corresponding U.S. Appl. No. 15/671,073. |
Office Action, dated Sep. 22, 2017, from corresponding U.S. Appl. No. 15/619,278. |
Office Action, dated Sep. 5, 2017, from corresponding U.S. Appl. No. 15/619,469. |
Office Action, dated Sep. 6, 2017, from corresponding U.S. Appl. No. 15/619,479. |
Office Action, dated Sep. 7, 2017, from corresponding U.S. Appl. No. 15/633,703. |
Office Action, dated Sep. 8, 2017, from corresponding U.S. Appl. No. 15/619,251. |
Abdullah et al, “The Mapping Process of Unstructured Data to the Structured Data”, ACM, pp. 151-155 (Year: 2013). |
Agar, Gunes, et al, The Web Never Forgets, Computer and Communications Security, ACM, Nov. 3, 2014, pp. 674-689. |
Advisory Action, dated Jun. 19, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Advisory Action, dated Jun. 2, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Advisory Action, dated May 21, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Aghasian, Erfan, et al, Scoring Users' Privacy Disclosure Across Multiple Online Social Networks,IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Jul. 31, 2017, vol. 5, 2017. |
Agosti et al, “Access and Exchange of Hierarchically Structured Resources on the Web with the NESTOR Framework”, IEEE, pp. 659-662 (Year: 2009). |
Agrawal et al, “Securing Electronic Health Records Without Impeding the Flow of Information,” International Journal of Medical Informatics 76, 2007, pp. 471-479 (Year: 2007). |
Ahmad et al, “Task-Oriented Access Model for Secure Data Sharing Over Cloud,” ACM, pp. 1-7 (Year: 2015). |
Antunes et al, “Preserving Digital Data in Heterogeneous Environments”, ACM, pp. 345-348, 2009 (Year: 2009). |
AvePoint, Automating Privacy Impact Assessments, AvePoint, Inc. |
AvePoint, AvePoint Privacy Impact Assessment 1: User Guide, Cumulative Update 2, Revision E, Feb. 2015, AvePoint, Inc. |
AvePoint, Installing and Configuring the APIA System, International Association of Privacy Professionals, AvePoint, Inc. |
Bang et al, “Building an Effective and Efficient Continuous Web Application Security Program,” 2016 International Conference on Cyber Security Situational Awareness, Data Analytics and Assessment (CyberSA), London, 2016, pp. 1-4 (Year: 2016). |
Barker, “Personalizing Access Control by Generalizing Access Control,” ACM, pp. 149-158 (Year: 2010). |
Bayardo et al, “Technological Solutions for Protecting Privacy,” Computer 36.9 (2003), pp. 115-118, (Year: 2003). |
Berezovskiy et al, “A framework for dynamic data source identification and orchestration on the Web”, ACM, pp. 1-8 (Year: 2010). |
Bertino et al, “On Specifying Security Policies for Web Documents with an XML-based Language,” ACM, pp. 57-65 (Year: 2001). |
Bhargav-Spantzel et al., Receipt Management—Transaction History based Trust Establishment, 2007, ACM, p. 82-91. |
Bhuvaneswaran et al, “Redundant Parallel Data Transfer Schemes for the Grid Environment”, ACM, pp. 18 (Year: 2006). |
Binns, et al, “Data Havens, or Privacy Sans Frontieres? a Study of International Personal Data Transfers,” ACM, pp. 273-274 (Year: 2002). |
Brandt et al, “Efficient Metadata Management in Large Distributed Storage Systems,” IEEE, pp. 1-9 (Year: 2003). |
Byun, Ji-Won, Elisa Bertino, and Ninghui Li. “Purpose based access control of complex data for privacy protection.” Proceedings of the tenth ACM symposium on Access control models and technologies. ACM, 2005. (Year: 2005). |
Carminati et al, “Enforcing Access Control Over Data Streams,” ACM, pp. 21-30 (Year: 2007). |
Carpineto et al, “Automatic Assessment of Website Compliance to the European Cookie Law with CooLCheck,” Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, 2016, pp. 135-138 (Year: 2016). |
Cerpzone, “How to Access Data on Data Archival Storage and Recovery System”, https://www.sakusace.army.mil/Portals/44/docs/Environmental/Lake%20O%20Watershed/15February2017/How%20To%20Access%20Model%20Data%20on%20DASR.pdf?ver=2017-02-16-095535-633, Feb. 16, 2017. |
Cha et al, “A Data-Driven Security Risk Assessment Scheme for Personal Data Protection,” IEEE, pp. 50510-50517 (Year: 2018). |
Chapados et al, “Scoring Models for Insurance Risk Sharing Pool Optimization,” 2008, IEEE, pp. 97-105 (Year: 2008). |
Choi et al, “Retrieval Effectiveness of Table of Contents and Subject Headings,” ACM, pp. 103-104 (Year: 2007). |
Chowdhury et al, “A System Architecture for Subject-Centric Data Sharing”, ACM, pp. 1-10 (Year: 2018). |
Chowdhury et al, “Managing Data Transfers in Computer Clusters with Orchestra,” ACM, pp. 98-109 (Year: 2011). |
Decision Regarding Institution of Post-Grant Review in Case PGR2018-00056 for U.S. Pat. No. 9,691,090 B1, Oct. 11, 2018. |
Dimou et al, “Machine-Interpretable Dataset and Service Descriptions for Heterogeneous Data Access and Retrieval”, ACM, pp. 145-152 (Year: 2015). |
Dokholyan et al, “Regulatory and Ethical Considerations for Linking Clinical and Administrative Databases,” American Heart Journal 157.6 (2009), pp. 971-982 (Year: 2009). |
Dunkel et al, “Data Organization and Access for Efficient Data Mining”, IEEE, pp. 522-529 (Year: 1999). |
Final Office Action, dated Apr. 23, 2020, from corresponding U.S. Appl. No. 16/572,347. |
Final Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/595,327. |
Final Office Action, dated Dec. 9, 2019, from corresponding U.S. Appl. No. 16/410,336. |
Final Office Action, dated Feb. 19, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Final Office Action, dated Feb. 3, 2020, from corresponding U.S. Appl. No. 16/557,392. |
Final Office Action, dated Jan. 17, 2018, from corresponding U.S. Appl. No. 15/619,278. |
Final Office Action, dated Jan. 21, 2020, from corresponding U.S. Appl. No. 16/410,762. |
Final Office Action, dated Jan. 23, 2018, from corresponding U.S. Appl. No. 15/619,479. |
Final Office Action, dated Jan. 23, 2020, from corresponding U.S. Appl. No. 16/505,430. |
Final Office Action, dated Mar. 5, 2019, from corresponding U.S. Appl. No. 16/055,961. |
Final Office Action, dated Mar. 6, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Final Office Action, dated Nov. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Final Office Action, dated Sep. 25, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Office Action, dated Apr. 18, 2018, from corresponding U.S. Appl. No. 15/894,819. |
Office Action, dated Apr. 20, 2020, from corresponding U.S. Appl. No. 16/812,795. |
Office Action, dated Apr. 22, 2019, from corresponding U.S. Appl. No. 16/241,710. |
Office Action, dated Apr. 22, 2020, from corresponding U.S. Appl. No. 16/811,793. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/798,818. |
Office Action, dated Apr. 28, 2020, from corresponding U.S. Appl. No. 16/808,500. |
Office Action, dated Apr. 29, 2020, from corresponding U.S. Appl. No. 16/791,337. |
Office Action, dated Apr. 5, 2019, from corresponding U.S. Appl. No. 16/278,119. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/788,633. |
Office Action, dated Apr. 7, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/505,430. |
Office Action, dated Aug. 13, 2019, from corresponding U.S. Appl. No. 16/512,033. |
Office Action, dated Aug. 15, 2019, from corresponding U.S. Appl. No. 16/505,461. |
Office Action, dated Aug. 19, 2019, from corresponding U.S. Appl. No. 16/278,122. |
Office Action, dated Aug. 23, 2017, from corresponding U.S. Appl. No. 15/626,052. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/169,643. |
Office Action, dated Aug. 24, 2017, from corresponding U.S. Appl. No. 15/619,451. |
Office Action, dated Aug. 27, 2019, from corresponding U.S. Appl. No. 16/410,296. |
Office Action, dated Aug. 29, 2017, from corresponding U.S. Appl. No. 15/619,237. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,212. |
Office Action, dated Aug. 30, 2017, from corresponding U.S. Appl. No. 15/619,382. |
Office Action, dated Aug. 6, 2019, from corresponding U.S. Appl. No. 16/404,491. |
Office Action, dated Dec. 11, 2019, from corresponding U.S. Appl. No. 16/578,712. |
Office Action, dated Dec. 14, 2018, from corresponding U.S. Appl. No. 16/104,393. |
Office Action, dated Dec. 15, 2016, from corresponding U.S. Appl. No. 15/256,419. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/563,754. |
Office Action, dated Dec. 16, 2019, from corresponding U.S. Appl. No. 16/565,265. |
Office Action, dated Dec. 19, 2019, from corresponding U.S. Appl. No. 16/410,866. |
Office Action, dated Dec. 2, 2019, from corresponding U.S. Appl. No. 16/560,963. |
Office Action, dated Dec. 23, 2019, from corresponding U.S. Appl. No. 16/593,639. |
Office Action, dated Dec. 3, 2018, from corresponding U.S. Appl. No. 16/055,998. |
Office Action, dated Dec. 31, 2018, from corresponding U.S. Appl. No. 16/160,577. |
Office Action, dated Feb. 15, 2019, from corresponding U.S. Appl. No. 16/220,899. |
Office Action, dated Feb. 26, 2019, from corresponding U.S. Appl. No. 16/228,250. |
Office Action, dated Feb. 5, 2020, from corresponding U.S. Appl. No. 16/586,202. |
Office Action, dated Feb. 6, 2020, from corresponding U.S. Appl. No. 16/707,762. |
Office Action, dated Jan. 18, 2019, from corresponding U.S. Appl. No. 16/055,984. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Advisory Action, dated Jan. 13, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Advisory Action, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Notice of Allowance, dated Jan. 1, 2021, from corresponding U.S. Appl. No. 17/026,727. |
Notice of Allowance, dated Jan. 15, 2021, from corresponding U.S. Appl. No. 17/030,714. |
Notice of Allowance, dated Jan. 6, 2021, from corresponding U.S. Appl. No. 16/595,327. |
Office Action, dated Jan. 4, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Alaa et al, “Personalized Risk Scoring for Critical Care Prognosis Using Mixtures of Gaussian Processes,” Apr. 27, 2017, IEEE, vol. 65, issue 1, pp. 207-217 (Year: 2017). |
Final Office Action, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/862,956. |
Gajare et al, “Improved Automatic Feature Selection Approach for Health Risk Prediction,” Feb. 16, 2018, IEEE, pp. 816-819 (Year: 2018). |
Horrall et al, “Evaluating Risk: IBM's Country Financial Risk and Treasury Risk Scorecards,” Jul. 21, 2014, IBM, vol. 58, issue 4, pp. 2:1-2:9 (Year: 2014). |
Notice of Allowance, dated Dec. 15, 2020, from corresponding U.S. Appl. No. 16/989,086. |
Notice of Allowance, dated Dec. 17, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Notice of Allowance, dated Dec. 23, 2020, from corresponding U.S. Appl. No. 17/068,557. |
Notice of Allowance, dated Dec. 7, 2020, from corresponding U.S. Appl. No. 16/817,136. |
Notice of Allowance, dated Dec. 9, 2020, from corresponding U.S. Appl. No. 16/404,491. |
Notice of Allowance, dated Nov. 23, 2020, from corresponding U.S. Appl. No. 16/791,589. |
Notice of Allowance, dated Nov. 24, 2020, from corresponding U.S. Appl. No. 17/027,019. |
Notice of Allowance, dated Nov. 25, 2020, from corresponding U.S. Appl. No. 17/019,771. |
Office Action, dated Dec. 16, 2020, from corresponding U.S. Appl. No. 17/020,275. |
Office Action, dated Dec. 18, 2020, from corresponding U.S. Appl. No. 17/030,714. |
Office Action, dated Dec. 24, 2020, from corresponding U.S. Appl. No. 17/068,454. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/013,758. |
Office Action, dated Dec. 8, 2020, from corresponding U.S. Appl. No. 17/068,198. |
Sedinic et al, “Security Risk Management in Complex Organization,” May 29, 2015, IEEE, pp. 1331-1337 (Year: 2015). |
Strodl, et al, “Personal & SOHO Archiving,” Vienna University of Technology, Vienna, Austria, JCDL '08, Jun. 16-20, 2008, Pittsburgh, Pennsylvania, USA, pp. 115-123 (Year: 2008). |
Notice of Allowance, dated Nov. 3, 2020, from corresponding U.S. Appl. No. 16/719,071. |
Notice of Allowance, dated Nov. 9, 2020, from corresponding U.S. Appl. No. 16/595,342. |
Notice of Allowance, dated Oct. 21, 2020, from corresponding U.S. Appl. No. 16/834,812. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,355. |
Office Action, dated Nov. 12, 2020, from corresponding U.S. Appl. No. 17/034,772. |
Final Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Friedman et al, “Data Mining with Differential Privacy,” ACM, Jul. 2010, pp. 493-502 (Year: 2010). |
Notice of Allowance, dated Feb. 11, 2021, from corresponding U.S. Appl. No. 17/086,732. |
Notice of Allowance, dated Feb. 19, 2021, from corresponding U.S. Appl. No. 16/832,451. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 16/827,039. |
Notice of Allowance, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/068,558. |
Notice of Allowance, dated Jan. 25, 2021, from corresponding U.S. Appl. No. 16/410,336. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Office Action, dated Feb. 10, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Office Action, dated Feb. 17, 2021, from corresponding U.S. Appl. No. 16/862,948. |
Office Action, dated Feb. 18, 2021, from corresponding U.S. Appl. No. 16/862,952. |
Office Action, dated Feb. 2, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Office Action, dated Feb. 3, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Office Action, dated Feb. 8, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Office Action, dated Feb. 9, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Office Action, dated Jan. 22, 2021, from corresponding U.S. Appl. No. 17/099,270. |
Office Action, dated Jan. 29, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Sukumar et al, “Review on Modern Data Preprocessing Techniques in Web Usage Mining (WUM),” IEEE, 2016, pp. 54-69 (Year: 2016). |
Tanasa et al, “Advanced Data Preprocessing for Intersites Web Usage Mining,” IEEE, Mar. 2004, pp. 59-65 (Year: 2004). |
Wu et al, “Data Mining with Big Data,” IEEE, Jan. 2014, pp. 97-107, vol. 26, No. 1, (Year: 2014). |
Yang et al, “Mining Web Access Sequence with Improved Apriori Algorithm,” IEEE, 2017, pp. 780-784 (Year: 2017). |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/034,355. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/068,198. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,106. |
Notice of Allowance, dated Feb. 24, 2021, from corresponding U.S. Appl. No. 17/101,251. |
Ardagna, et al, “A Privacy-Aware Access Control System,” Journal of Computer Security, 16:4, pp. 369-397 (Year: 2008). |
Hu, et al, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations (Draft),” NIST Special Publication 800-162, pp. 1-54 (Year: 2013). |
Notice of Allowance, dated Feb. 25, 2021, from corresponding U.S. Appl. No. 17/106,469. |
Notice of Allowance, dated Feb. 26, 2021, from corresponding U.S. Appl. No. 17/139,650. |
Notice of Allowance, dated Mar. 10, 2021, from corresponding U.S. Appl. No. 17/128,666. |
Notice of Allowance, dated Mar. 16, 2021, from corresponding U.S. Appl. No. 17/149,380. |
Office Action, dated Mar. 15, 2021, from corresponding U.S. Appl. No. 17/149,421. |
Bieker, et al, “Privacy-Preserving Authentication Solutions—Best Practices for Implementation and EU Regulatory Perspectives,” Oct. 29, 2014, IEEE, pp. 1-10 (Year: 2014). |
Final Office Action, dated Apr. 27, 2021, from corresponding U.S. Appl. No. 17/068,454. |
Final Office Action, dated Mar. 26, 2021, from corresponding U.S. Appl. No. 17/020,275. |
Notice of Allowance, dated Apr. 19, 2021, from corresponding U.S. Appl. No. 17/164,029. |
Notice of Allowance, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/162,006. |
Notice of Allowance, dated Apr. 22, 2021, from corresponding U.S. Appl. No. 17/163,701. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/135,445. |
Notice of Allowance, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 17/181,828. |
Notice of Allowance, dated Apr. 30, 2021, from corresponding U.S. Appl. No. 16/410,762. |
Notice of Allowance, dated Mar. 19, 2021, from corresponding U.S. Appl. No. 17/013,757. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/013,758. |
Notice of Allowance, dated Mar. 31, 2021, from corresponding U.S. Appl. No. 17/162,205. |
Office Action, dated Apr. 1, 2021, from corresponding U.S. Appl. No. 17/119,080. |
Office Action, dated Apr. 15, 2021, from corresponding U.S. Appl. No. 17/161,159. |
Office Action, dated Apr. 2, 2021, from corresponding U.S. Appl. No. 17/151,334. |
Office Action, dated Apr. 28, 2021, from corresponding U.S. Appl. No. 16/808,497. |
Office Action, dated Mar. 30, 2021, from corresponding U.S. Appl. No. 17/151,399. |
Reardon et al., User-Level Secure Deletion on Log-Structured File Systems, ACM, 2012, retrieved online on Apr. 22, 2021, pp. 1-11. Retrieved from the Internet: URL: http://citeseerx.ist.psu.edu/viewdoc/download; sessionid=450713515DC7F19F8ED09AE961D4B60E. (Year: 2012). |
Soceanu, et al, “Managing the Privacy and Security of eHealth Data,” May 29, 2015, IEEE, pp. 1-8 (Year: 2015). |
Zheng, et al, “Toward Assured Data Deletion in Cloud Storage,” IEEE, vol. 34, No. 3, pp. 101-107 May/Jun. 2020 (Year: 2020). |
Cha, et al, “Process-Oriented Approach for Validating Asset Value for Evaluating Information Security Risk,” IEEE, Aug. 31, 2009, pp. 379-385 (Year: 2009). |
Cheng, Raymond, et al, “Radiatus: A Shared-Nothing Server-Side Web Architecture,” Proceedings of the Seventh ACM Symposium on Cloud Computing, Oct. 5, 2016, pp. 237-250 (Year: 2016). |
Final Office Action, dated May 14, 2021, from corresponding U.S. Appl. No. 17/013,756. |
Gilda, et al, “Blockchain for Student Data Privacy and Consent,” 2018 International Conference on Computer Communication and Informatics, Jan. 4-6, 2018, IEEE, pp. 1-5 (Year: 2018). |
Huang, et al, “A Study on Information Security Management with Personal Data Protection,” IEEE, Dec. 9, 2011, pp. 624-630 (Year: 2011). |
Liu, Yandong, et al, “Finding the Right Consumer: Optimizing for Conversion in Display Advertising Campaigns,” Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, Feb. 2, 2012, pp. 473-428 (Year: 2012). |
Luu, et al, “Combined Local and Holistic Facial Features for Age-Determination,” 2010 11th Int. Conf. Control, Automation, Robotics and Vision, Singapore, Dec. 7, 2010, IEEE, pp. 900-904 (Year: 2010). |
Nishikawa, Taiji, English Translation of JP 2019154505, Aug. 27, 2019 (Year: 2019). |
Notice of Allowance, dated May 13, 2021, from corresponding U.S. Appl. No. 17/101,915. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/808,493. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 16/865,874. |
Notice of Allowance, dated May 26, 2021, from corresponding U.S. Appl. No. 17/199,514. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 16/927,658. |
Notice of Allowance, dated May 27, 2021, from corresponding U.S. Appl. No. 17/198,757. |
Notice of Allowance, dated May 28, 2021, from corresponding U.S. Appl. No. 16/862,944. |
Notice of Allowance, dated May 7, 2021, from corresponding U.S. Appl. No. 17/194,662. |
Office Action, dated May 18, 2021, from corresponding U.S. Appl. No. 17/196,570. |
Pretorius, et al, “Attributing Users Based on Web Browser History,” 2017 IEEE Conference on Application, Information and Network Security (AINS), 2017, pp. 69-74 (Year 2017). |
Radu, et al, “Analyzing Risk Evaluation Frameworks and Risk Assessment Methods,” IEEE, Dec. 12, 2020, pp. 1-6 (Year 2020). |
Number | Date | Country | |
---|---|---|---|
20200344219 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62728437 | Sep 2018 | US | |
62728435 | Sep 2018 | US | |
62631684 | Feb 2018 | US | |
62631703 | Feb 2018 | US | |
62572096 | Oct 2017 | US | |
62547530 | Aug 2017 | US | |
62541613 | Aug 2017 | US | |
62537839 | Jul 2017 | US | |
62360123 | Jul 2016 | US | |
62353802 | Jun 2016 | US | |
62348695 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16863226 | Apr 2020 | US |
Child | 16925628 | US | |
Parent | 16565265 | Sep 2019 | US |
Child | 16863226 | US | |
Parent | 16277539 | Feb 2019 | US |
Child | 16565265 | US | |
Parent | 16159566 | Oct 2018 | US |
Child | 16277539 | US | |
Parent | 16055083 | Aug 2018 | US |
Child | 16159566 | US | |
Parent | 15996208 | Jun 2018 | US |
Child | 16055083 | US | |
Parent | 15853674 | Dec 2017 | US |
Child | 15996208 | US | |
Parent | 15619455 | Jun 2017 | US |
Child | 15853674 | US | |
Parent | 15254901 | Sep 2016 | US |
Child | 15619455 | US |