Aspects of the present disclosure generally relate of the fields of networked computerized industrial control automation systems and networked computerized systems utilized to monitor, log, and display relevant manufacturing/production events and associated data, and supervisory level control and manufacturing information systems. More particularly, aspects of the present disclosure relate to systems and methods for automated detection of anomalous operation of industrial process equipment by entropy scaling.
Typical industrial processes are extremely complex and receive substantially greater volumes of information than any human could possibly digest in its raw form. By way of example, it is not unheard of to have thousands of sensors and control elements (e.g., valve actuators) monitoring/controlling aspects of a multi-stage process within an industrial plant. These sensors are of varied type and report on varied characteristics of the process. Their outputs are similarly varied in the meaning of their measurements, in the amount of data sent for each measurement, and in the frequency of their measurements. As regards the latter, for accuracy and to enable quick response, some of these sensors/control elements take one or more measurements every second. Multiplying a single sensor/control element by thousands of sensors/control elements (a typical industrial control environment) results in an overwhelming volume of data flowing into the manufacturing information and process control system.
Distributing the entire volume of data from all user devices overburdens communications networks and unnecessarily utilizes network resources by sending data irrelevant to users associated with one or more user devices. Prior techniques statistically analyze the data to identify information regarding the industrial process that is of interest to one or more users. Conventional entropy techniques require prior knowledge about the scale of the data values before performing the entropy calculations. Disadvantageously, if the data values drift and/or change scale, then the conventional entropies cannot be compared.
Aspects of the disclosure detect anomalous operation of equipment in an industrial process and generate reports of the anomalous operation for transmission to particular user devices via a communications network. A reporting architecture utilizes scaled entropy calculations that enable comparing signal entropies across a plurality of time periods without prior knowledge of the scale of the signal.
A system embodying aspects of the disclosure includes a processor, a computer-readable storage device, a report database, and a reporting service. The reporting service comprises processor-executable instructions stored on the computer-readable storage device that, when executed by the processor, configure the reporting service to detect operational changes in an industrial process. The reporting service receives time-series data. The time-series data is associated with a process control system and represents one or more values of a process control tag of the process control system over an interval of time. Exemplary and non-limiting process control tags include physical properties of valves, sensors, pumps, tanks, and the like within the continuous process. The reporting service apportions the retrieved time-series data into a plurality of sub-intervals of the interval of time. Each sub-interval includes a predetermined number of individual data values sampled from the time-series data. The reporting service further determines the minimum data value and the maximum data value of the individual data values of each sub-interval and executes an entropy calculation of the individual data values of each sub-interval. The entropy of each sub-interval is scaled based on the determined minimum and maximum data values of the sub-interval. In an embodiment, the entropy is scaled based on the difference between the maximum and minimum values (i.e., the range). The reporting service detects that one or more sub-intervals are anomalous relative to an expected value by performing a statistical analysis for each sub-interval. The reporting service further publishes at least one report indicative of the detected anomalous sub-intervals into the report database.
In other aspects, a computer implemented method and a computer readable storage device are provided.
Other objects and features will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the drawings.
Referring to
In an embodiment, the operational historian 102 is adapted to store (e.g., “historize”) various types of data related to an industrial process. Exemplary data includes, but is not limited to, time-series data, metadata, event data, configuration data, raw time-series binary data, tag metadata, diagnostic log data, and the like. The operational historian 102 is also adapted to record trends and historical information about the industrial process for future reference. An exemplary operational historian 102 stores data about various aspects of an industrial process in quantities that humans cannot interpret or analyze. For example, an operational historian may receive two million or more data values (e.g., tags relating to process control components, process variables, etc.) every second. In an embodiment, historian 102 comprises processor-executable instructions embodied on a storage memory device (e.g., as part of a server computing device) to provide the operational historian 102 via a software environment. An exemplary operational historian 102 includes Wonderware® Historian and Wonderware® Online provided by Schneider Electric.
The reporting service 104 illustrated by
In an embodiment, reporting service 104 is adapted to retrieve data from operational historian 102 by transmitting a query to operational historian 102, which operational historian 102 receives and uses to select stored data that matches the query. The operational historian 102 then transmits the selected data to reporting service 104. The reporting service 104 may retrieve data continuously or at regular intervals. In the embodiment illustrated by
Referring again to the embodiment of
After generating the reports, reporting service 104 transmits the reports to the report database 106 for storage. The reporting service 104 is configurable to transmit the reports to report database 106 via an HTML interface, a REST interface, an ODATA interface, and similar interfaces. In an embodiment, system 100 includes a plurality of reporting services 104 that each retrieve data from operational historian 102, detect patterns in the data, generate reports, and store the reports in report database 106. In an embodiment that utilizes a plurality of reporting services, each reporting service may operate independently or the collective operating services may operate in parallel on portions of a larger reporting task.
Still referring to
The curating service 108 is adapted to intelligently review reports stored in database 106, rank and/or classify reviewed reports, and route (e.g., distribute) ranked reports to collections, devices, other services, and the like. In an embodiment, curating service 108 moderates reports and raises their visibility to users at a certain frequency and in a certain manner such that users will not be overwhelmed with data, but instead will be provided with useful information in the reports at times and manners that are most appropriate for each specific user or groups of users. For example, for each user, curating service 108 determines whether a particular report should appear on a primary/front page of a feed for that user, on a secondary page for that user, or just be archived in a searchable format for that user. By distributing relevant reports to certain user devices, curating service 108 reduces the burden on communications networks. The curating service 108 is configurable to take additional actions based on the relevance of a particular report for a particular user, such as beep or alert a user device 118 of the user, as further described herein. In another embodiment, curating service 108 functions as a filter to determine which of the multitude of reports in report database 106 are transmitted to certain users and at which times those reports are transmitted.
In an embodiment, curating service 108 comprises processor-executable instructions embodied on a storage memory device to provide curating service 108 via a software environment. For example, curating service 108 is embodied by processor-executable instructions that comprise a procedure, a function, a routine, a method, and/or a subprogram utilized independently or in conjunction with additional aspects of system 100 by computing device 103 according to an exemplary embodiment of the disclosure. Further details regarding curating service 108 are provided, for example, in U.S. patent application Ser. No. 15/270,898, which is hereby incorporated by reference in its entirety.
Still referring to
Referring again to
The search service 116 of
The user devices 118 of
Still referring to
At 304, reporting service 104 apportions, or divides, the retrieved data into sub-intervals that each includes a predetermined number of sampled data values (e.g., “points”). In an embodiment, reporting service 104 apportions the data into sub-intervals that includes data points. The sub-intervals may be referred to as bins, segments, and/or windows in accordance with one or more aspects of the present disclosure. In accordance with an aspect of the disclosure, the number of sub-intervals is big enough to resolve small changes in data patterns and small enough so that “clumping” occurs where multiple values map to the same sub-interval. In an embodiment, the number of sub-intervals is a number that is easy for users to visualize when the entropy number is projected onto a histogram. An exemplary and non-limiting number of sub-intervals is 100, which is an acceptable number for charting that allows the data to be visualized as percentages and histogram bins can be mapped at each integer percentage of the range of the data from 0% to 100%. Moreover, utilizing 100 sub-intervals ensures clumping.
Entropy calculations become more reliable and precise with larger numbers of data points. However, as the number of data points increases, the number of cycles decreases and the delay before anomaly detection and reporting increases. In accordance with an aspect of the disclosure, the number of data points is large enough to supply meaningful entropy results and small enough to trigger anomalies with reasonable delay. An exemplary and non-limiting number of data points is 360, which aligns well with natural time periods. For example, samples of one second will have cycle periods of five minutes and samples of two seconds will have cycle periods of ten minutes. Moreover, samples of one minute will have cycle periods of six hours, or exactly four periods per day, so the intervals will fall nicely on boundaries of one day. Utilizing 360 data points (e.g., samples) with 100 sub-intervals, as explained above, results in an average of 3.6 values per sub-interval.
The reporting service 104 determines, at 306, the minimum and maximum data values within each sub-interval. In an embodiment, the difference between the minimum and maximum data values (e.g., maximum minus minimum) comprises a range of data values within a sub-interval. At 308, reporting service 104 calculates the entropy of the data values of each sub-interval utilizing standard entropy methods. In an embodiment, reporting service 104 calculates the entropy via Equation 1, where b is the base of the logarithm used
H(X)=Σi=1nP(xi)I(xi)=−Σi=1nP(xi)logbP(xi) (1)
In Equation 1, H is the entropy of a discrete random variable X with possible values {x1, . . . , xn} and probability mass function P(X), I is the information content of X, which is itself a random variable, and b is the base of the logarithm used. Exemplary values of b include, but are not limited to, 2, Euler's number e, and 10.
The reporting service 104 scales the entropy value for each sub-interval at 310. In an embodiment, reporting service 104 scales the entropy value of each sub-interval by multiplying the entropy value by the range of data values (i.e., the distance between the minimum and maximum values) in that sub-interval (e.g., S=H*range(signal)). At 312, reporting service 104 performs a statistical analysis on the scaled entropy value of each sub-interval to determine if that sub-interval is anomalous. In an embodiment, the statistical analysis utilizes mean and standard deviations. In another embodiment, the statistical analysis comprises a “golden rule” analysis that analyzes the data for normal ranges and/or repeatable values. Other analyses within the scope of the present disclosure include, but are not limited to, statistical algorithms and/or machine learning algorithms to detect patterns and/or non-conformities with patterns in the data.
Upon detecting at least one anomalous sub-interval through the statistical analysis, reporting service 104 generates reports regarding the anomaly. In an embodiment, reporting service 104 generates reports about detected patterns and/or non-conformities with patterns in the data of the anomalous sub-interval. In another embodiment, reporting service 104 generates reports including identified information of interest to users of aspects of system 100. For example, the reports may include normal data, abnormal data, a textual description of the anomaly, graphics, metadata, multimedia items, and the like that facilitate conveying characteristics of detected patterns and/or non-conformities (e.g., anomalies, deviations, etc.) in the data to users via user devices 118 and/or facilitate organizing or indexing the reports for access by devices including user devices 118. The reporting service 104 transmits (e.g., publishes) generated reports to report database 106 at step 314. The report database 106 stores the reports for access by various devices or services, including curating service 108 and search service 116. In an embodiment, a processor executing the operations of
The scaled entropy anomaly detection process 300 performed by reporting service 104 described above overcomes the disadvantages of the conventional techniques. By determining the range of values within each bin and scaling the entropy by the range, the scaled entropy value will be much higher for the increase in flow at Day 6. Thus, higher disorder and larger spreads in the data result in higher entropy values in accordance with aspects of the present disclosure. Performing statistical analyses on the scaled entropy enables improved detection of unusual behaviors in an industrial process. Exemplary scenarios that the scaled entropy anomaly detection process 300 performed by reporting service 104 can detect include, but are not limited to, data that does not change range but increases or decreases entropy (e.g., changing from a normal distribution to a uniform distribution, changing from a square wave to a sine wave, etc.), data that drifts but the behavior changes (e.g., increasing or decreasing water usage as measured by a total flow meter, etc.), and data that changes ranges (e.g., changing from a small range to a large range, etc.).
The processor 1002, memory 1004, and I/O interface 1006 are communicatively connected and/or electrically connected to each other. The I/O interface 1006 is communicatively and/or electrically connected to the I/O component 1008. The processor 1002 is adapted to execute processor-executable instructions stored in the memory 1004 for implementing the operational historian interface 102′, reporting service 104, report database interface 106′, curating service 108, user-specific report collection 110, general report collection 112, alert service 114, and/or search service 116. The I/O interface 1006 of
The operational historian interface 102′ of
The communication network 1102 is capable of facilitating the exchange of data among historian device 101, computing device 103, report database 106, user devices 118, and components of fluid processing system 1110. The communication network 1102 in the embodiment of
The historian device 101 is adapted to provide operational historian 102, which is adapted to store (e.g., “historize”) various types of data related to fluid processing system 1110, as further described herein. The computing device 103 is adapted to provide reporting service 104, report database 106 (or an interface to a computer-readable storage medium storing report database 106), curating service 108, user-specific report collection 110, general report collection 112, alert service 114, and search service 116, as further described herein. The report database 106 is adapted to store reports generated by reporting service 104 as an organized collection of data, as further described herein. The user devices 118 are adapted to receive from and transmit data to user-specific report collection 110, general report collection 112, alert service 114, and/or search service 116, as further described herein.
Still referring to
In an embodiment, aspects of the disclosure are utilized with user devices 118 embodied as mobile devices with mobile apps. For example, aspects of the disclosure may be installed via app stores and aspects may be optimized for touchscreen embodiments. In other embodiments, aspects of the disclosure may be browser-based (e.g., served application that showcases historian capabilities). In an embodiment, aspects of the disclosure may be used as a productivity tool to allow debugging and analysis for custom applications. In an embodiment, aspects of the disclosure take advantage of capabilities including leveraging summary tags, leveraging model view and derivation view, and leveraging flexible events, data dictionary, and IHistory. Aspects of the disclosure utilize a technology stack including an HTML5 app (e.g., Angular.js and D3), modular components, and a managed historian. Aspects of the disclosure are component-based (e.g., value and time axis pieces can be shared between all chart types). Exemplary modular components include charts, trends, grids, and the like.
In an aspect, a system includes a processor (e.g., processor 1002), a computer-readable storage device (e.g., memory 1004), a report database (e.g., report database 106), and a reporting service (e.g., reporting service 104). The reporting service comprises processor-executable instructions stored on the computer-readable storage device that, when executed by the processor, configure the reporting service to detect operational changes in an industrial process. The reporting service receives (302) time-series data. The time-series data is associated with a process control system (e.g., industrial process system 1100) and represents one or more values of a process control tag of the process control system over an interval of time. Exemplary and non-limiting process control tags include physical properties of valves, sensors, pumps, tanks, and the like within the continuous process. The reporting service apportions (304) the retrieved time-series data into a plurality of sub-intervals of the interval of time. Each sub-interval includes a predetermined number of individual data values sampled from the time-series data. The reporting service further determines (306) the minimum data value and the maximum data value of the individual data values of each sub-interval and calculates (308) an entropy of the individual data values of each sub-interval. The entropy of each sub-interval is scaled (310) based on the determined minimum and maximum data values of the sub-interval. In an embodiment, the entropy is scaled based on the difference between the maximum and minimum values (i.e., the range). The reporting service detects that one or more sub-intervals are anomalous relative to an expected value by performing (312) a statistical analysis for each sub-interval. The reporting service further publishes (314) at least one report indicative of the detected anomalous sub-intervals into the report database.
In another aspect, the present disclosure provides a computer-implemented method of detecting operational changes in an industrial process. The method includes a reporting service receiving time-series data for analysis. The time-series data is associated with a process control system and the data represents one or more values of a process control tag of the process control system over an interval of time. The reporting service analyzes the process data by apportioning the data into a plurality of sub-intervals that each include a predetermined number of individual data value sampled from the time-series data, determining a minimum data value and a maximum data value of the individual data values of each sub-interval, calculating an entropy of the individual data values of each sub-interval, and scaling the entropy of each sub-interval based on the determined minimum and maximum data values of the sub-interval. The method further includes detecting that one or more sub-intervals are anomalous relative to an expected value by performing a statistical analysis for each sub-interval. The reporting service publishes at least one report indicative of the detected anomalous sub-intervals into a report database.
In yet another aspect, a computer-readable storage device stores processor readable instructions including instructions that, when executed by a processor, implement a reporting service for detecting operational changes in an industrial process. The reporting service is configured to receive time-series data. The time-series data is associated with a process control system and represents one or more values of a process control tag of the process control system over an interval of time. The reporting service is configured to apportion the retrieved time-series data into a plurality of sub-intervals of the interval of time. Each sub-interval includes a predetermined number of individual data values sampled from the time-series data. The reporting service is further configured to determine the minimum data value and the maximum data value of the individual data values of each sub-interval, calculate an entropy of the individual data values of each sub-interval, and scale the entropy of each sub-interval based on the determined minimum and maximum data values of the sub-interval. In an embodiment, the entropy is scaled based on the difference between the maximum and minimum values (i.e., the range). The reporting service is configured to detect that one or more sub-intervals are anomalous relative to an expected value by performing a statistical analysis for each sub-interval. The reporting service is further configured to publish at least one report indicative of the detected anomalous sub-intervals into the report database.
In one form, the statistical analysis is at least one of a mean analysis and a standard deviation analysis. In another form, the detected anomalous sub-intervals are at least one of an increase and a decrease in entropy during the sub-intervals. In yet another form, the detected anomalous sub-intervals are an operational change in the industrial process. In another form, the detected anomalous sub-intervals include data values that have changed ranges. In yet another form, the predetermined number of individual data values is large enough to supply meaningful entropy calculations and small enough to trigger anomalies with reasonable delay. In another form, the plurality of sub-intervals is a number of sub-intervals large enough to resolve small changes in patterns in the time-series data and small enough so that clumping occurs where a plurality of time-series data values map to the same sub-interval.
Embodiments of the present disclosure may comprise a special purpose computer including a variety of computer hardware, as described in greater detail below.
Embodiments within the scope of the present disclosure also include computer-readable media for carrying or having computer-executable instructions or data structures stored thereon. Such computer-readable media can be any available media that can be accessed by a special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage, or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of computer-executable instructions or data structures and that can be accessed by a general purpose or special purpose computer. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a computer-readable medium. Thus, any such connection is properly termed a computer-readable medium. Combinations of the above should also be included within the scope of computer-readable media. Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions.
The following discussion is intended to provide a brief, general description of a suitable computing environment in which aspects of the disclosure may be implemented. Although not required, aspects of the disclosure will be described in the general context of computer-executable instructions, such as program modules, being executed by computers in network environments. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequence of such executable instructions or associated data structures represent examples of corresponding acts for implementing the functions described in such steps.
Those skilled in the art will appreciate that aspects of the disclosure may be practiced in network computing environments with many types of computer system configurations, including personal computers, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. Aspects of the disclosure may also be practiced in distributed computing environments where tasks are performed by local and remote processing devices that are linked (either by hardwired links, wireless links, or by a combination of hardwired or wireless links) through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
An exemplary system for implementing aspects of the disclosure includes a special purpose computing device in the form of a conventional computer, including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit. The system bus may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory includes read only memory (ROM) and random access memory (RAM). A basic input/output system (BIOS), containing the basic routines that help transfer information between elements within the computer, such as during start-up, may be stored in ROM. Further, the computer may include any device (e.g., computer, laptop, tablet, PDA, cell phone, mobile phone, a smart television, and the like) that is capable of receiving or transmitting an IP address wirelessly to or from the internet.
The computer may also include a magnetic hard disk drive for reading from and writing to a magnetic hard disk, a magnetic disk drive for reading from or writing to a removable magnetic disk, and an optical disk drive for reading from or writing to removable optical disk such as a CD-ROM or other optical media. The magnetic hard disk drive, magnetic disk drive, and optical disk drive are connected to the system bus by a hard disk drive interface, a magnetic disk drive-interface, and an optical drive interface, respectively. The drives and their associated computer-readable media provide nonvolatile storage of computer-executable instructions, data structures, program modules, and other data for the computer. Although the exemplary environment described herein employs a magnetic hard disk, a removable magnetic disk, and a removable optical disk, other types of computer readable media for storing data can be used, including magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, RAMs, ROMs, solid state drives (SSDs), and the like.
The computer typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media include both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media are non-transitory and include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, SSDs, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired non-transitory information, which can accessed by the computer. Alternatively, communication media typically embody computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
Program code means comprising one or more program modules may be stored on the hard disk, magnetic disk, optical disk, ROM, and/or RAM, including an operating system, one or more application programs, other program modules, and program data. A user may enter commands and information into the computer through a keyboard, pointing device, or other input device, such as a microphone, joy stick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit through a serial port interface coupled to the system bus. Alternatively, the input devices may be connected by other interfaces, such as a parallel port, a game port, or a universal serial bus (USB). A monitor or another display device is also connected to the system bus via an interface, such as video adapter 48. In addition to the monitor, personal computers typically include other peripheral output devices (not shown), such as speakers and printers.
One or more aspects of the disclosure may be embodied in computer-executable instructions (i.e., software), routines, or functions stored in system memory or nonvolatile memory as application programs, program modules, and/or program data. The software may alternatively be stored remotely, such as on a remote computer with remote application programs. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types when executed by a processor in a computer or other device. The computer executable instructions may be stored on one or more tangible, non-transitory computer readable media (e.g., hard disk, optical disk, removable storage media, solid state memory, RAM, etc.) and executed by one or more processors or other devices. As will be appreciated by one of skill in the art, the functionality of the program modules may be combined or distributed as desired in various embodiments. In addition, the functionality may be embodied in whole or in part in firmware or hardware equivalents such as integrated circuits, application specific integrated circuits, field programmable gate arrays (FPGA), and the like.
The computer may operate in a networked environment using logical connections to one or more remote computers. The remote computers may each be another personal computer, a tablet, a PDA, a server, a router, a network PC, a peer device, or other common network node, and typically include many or all of the elements described above relative to the computer. The logical connections include a local area network (LAN) and a wide area network (WAN) that are presented here by way of example and not limitation. Such networking environments are commonplace in office-wide or enterprise-wide computer networks, intranets and the Internet.
When used in a LAN networking environment, the computer is connected to the local network through a network interface or adapter. When used in a WAN networking environment, the computer may include a modem, a wireless link, or other means for establishing communications over the wide area network, such as the Internet. The modem, which may be internal or external, is connected to the system bus via the serial port interface. In a networked environment, program modules depicted relative to the computer, or portions thereof, may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and other means of establishing communications over wide area network may be used.
Preferably, computer-executable instructions are stored in a memory, such as the hard disk drive, and executed by the computer. Advantageously, the computer processor has the capability to perform all operations (e.g., execute computer-executable instructions) in real-time.
The order of execution or performance of the operations in embodiments of the disclosure illustrated and described herein is not essential, unless otherwise specified. That is, the operations may be performed in any order, unless otherwise specified, and embodiments of the disclosure may include additional or fewer operations than those disclosed herein. For example, it is contemplated that executing or performing a particular operation before, contemporaneously with, or after another operation is within the scope of aspects of the disclosure.
Embodiments of the disclosure may be implemented with computer-executable instructions. The computer-executable instructions may be organized into one or more computer-executable components or modules. Aspects of the disclosure may be implemented with any number and organization of such components or modules. For example, aspects of the disclosure are not limited to the specific computer-executable instructions or the specific components or modules illustrated in the figures and described herein. Other embodiments of the disclosure may include different computer-executable instructions or components having more or less functionality than illustrated and described herein.
When introducing elements of aspects of the disclosure or the embodiments thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Having described aspects of the disclosure in detail, it will be apparent that modifications and variations are possible without departing from the scope of aspects of the disclosure as defined in the appended claims. As various changes could be made in the above constructions, products, and methods without departing from the scope of aspects of the disclosure, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is a continuation of U.S. patent application Ser. No. 15/852,809, filed Dec. 22, 2017, the entire contents of which are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15852809 | Dec 2017 | US |
Child | 17090844 | US |