Not applicable.
Not applicable.
This disclosure relates generally to the field of directional drilling using steerable drilling motors. More specifically, the disclosure relates to methods and apparatus for automatically operating a drilling unit to cause a wellbore being drilled with a drill string using a steerable drilling motor to follow a selected trajectory.
Steerable drilling motors are used in directional drilling operations to cause a wellbore drilled through subsurface formations to follow a selected trajectory. To cause the trajectory to remain on a particular direction, the drill string may be rotated from the surface, causing the steerable motor housing to rotate therewith. Such rotation causes the drill string to drill the wellbore along a substantially continuous direction. To change the direction of the wellbore trajectory, the rotation of the drill string at the surface is stopped, and drilling progresses using only the rotation of a drill bit at the lower end of the drill string provided by the steerable motor. The motor may be operated, for example, by flow of drilling fluid therethrough. The drilling motor may have a bend in its housing, such that when rotation of the drill string is stopped, the wellbore trajectory turns in the direction of the inside of the bend in the motor housing. Such procedure is known as “slide” drilling, and may continue until wellbore survey information, such as may be obtained by a measurement while drilling (MWD) instrument disposed in the drill string, indicates that the wellbore trajectory has been reoriented to a new selected direction. At such time, rotation of the drill string may resume (so-called “rotary drilling”).
Various techniques are known in the art for improving performance of directional drilling operations using steerable drilling motors. See, for example, U.S. Pat. Nos. 6,802,378, 6,918,453, 7,096,979 and 7,810,584 all of which are issued to Haci et al. The techniques described in the foregoing patents include devices and methods for “rocking” the drill string during slide drilling and methods for changing from slide drilling to rotary drilling and back again, among other things.
What is needed is a method and system for automating the transition from rotary to slide drilling, maintaining a selected direction of the steerable drilling motor during slide drilling and operating the drill string to reduce incidence of “stalling” of the drilling motor by application of excessive axial loading thereon.
One aspect is a method for directional drilling of a wellbore including automatically rotating a drill string having a steerable drilling motor at an end thereof in a first direction so that a measured torque related parameter thereon reaches a first value. The drill string is automatically rotated in a second direction so that the measured torque related parameter reaches a second value lower than the first value. A rate of release of the drill string is automatically controlled so that at least one of selected drilling fluid pressure and a range thereof is maintained.
Other aspects and advantages of the invention will be apparent from the description and claims which follow.
In
The drilling rig 11 includes a derrick 13 that is supported on the ground above a rig floor 15. The drilling rig 11 includes lifting gear, which includes a crown block 17 mounted to derrick 13 and a traveling block 19. The crown block 17 and the traveling block 19 are interconnected by a cable 21 that is driven by draw works 23 to control the upward and downward movement of the traveling block 19. The draw works 23 may be configured to be automatically operated to control rate of drop or release of the drill string into the wellbore during drilling. One non-limiting example of an automated draw works release control system is described in U.S. Pat. No. 7,059,427 issued to Power et al. and incorporated herein by reference.
The traveling block 19 carries a hook 25 from which is suspended a top drive 27. The top drive 27 supports a drill string, designated generally by the numeral 31, in a wellbore 33. According to an example implementation, the drill string 31 may in signal communication with and mechanically coupled to the top drive 27 through an instrumented sub 29. As will be described in more detail, the instrumented top sub 29 may include sensors (not shown separately) that provide drill string torque information. Other types of torque sensors may be used in other examples, or proxy measurements for torque applied to the drill string 31 by the top drive 27 may be used, non-limiting examples of which may include electric current (or related measure corresponding to power or energy) or hydraulic fluid flow drawn by a motor (not shown) in the top drive. A longitudinal end of the drill string 31 includes a drill bit 2 mounted thereon to drill the formations to extend (drill) the wellbore 33.
The top drive 27 can be operated to rotate the drill string 31 in either direction, as will be further explained. A load sensor 26 may be coupled to the hook 25 in order to measure the weight load on the hook 25. Such weight load may be related to the weight of the drill string 31, friction between the drill string 31 and the wellbore 33 wall and an amount of the weight of the drill string 31 that is applied to the drill bit 2 to drill the formations to extend the wellbore 33.
The drill string 31 may include a plurality of interconnected sections of drill pipe 35 a bottom hole assembly (BHA) 37, which may include stabilizers, drill collars, and a suite of measurement while drilling (MWD) and or logging while drilling (LWD) instruments, shown generally at 51.
A steerable drilling motor 41 may be connected proximate the bottom of BHA 37. The steerable drilling motor 41 may be any type known in the art for rotating the drill bit 2 and/or selected portions of the drill string 31 and to enable change in trajectory of the wellbore during slide drilling (explained in the Background section herein) or to perform rotary drilling (also explained in the Background section herein). Example types of drilling motors include, without limitation, positive displacement fluid operated motors, turbine fluid operated motors, electric motors and hydraulic fluid operated motors. The present example motor 41 may be operated by drilling fluid flow. Drilling fluid may be delivered to the drill string 31 by mud pumps 43 through a mud hose 45. In some examples, pressure of the drilling mud may be measured by a pressure sensor 49. During drilling, the drill string 31 is rotated within the wellbore 33 by the top drive 27, in a manner to be explained further below. As is known in the art, the top drive 27 is slidingly mounted on parallel vertically extending rails (not shown) to resist rotation as torque is applied to the drill string 31. During drilling, the bit 2 may be rotated by the motor 41, which in the present example may be operated by the flow of drilling fluid supplied by the mud pumps 43. Although a top drive rig is illustrated, those skilled in the art will recognize that the present example may also be used in connection with systems in which a rotary table and kelly are used to apply torque to the drill string 31. Drill cuttings produced as the bit 2 drills into the subsurface formations to extend the wellbore 33 are carried out of the wellbore 33 by the drilling mud as it passes through nozzles, jets or courses (none shown) in the drill bit 2.
Signals from the pressure sensor 49, the hookload sensor 26, the instrumented top sub 29 and from an MWD/LWD system or steering tool 51 (which may be communicated using any known wellbore to surface communication system), may be received in a control unit 48, which will be further explained with reference to
The output of the torque related parameter sensor 53 may be received as input to a processor 55. In some examples, output of the pressure sensor 49 and/or one or more sensors of the MWD/LWD system or steering tool 51 may also be provided as input to the processor 55. A particular input from the MWD/LWD system or steering tool 51 may be the orientation angle with respect to geomagnetic or geodetic direction and Earth's gravity of a bend in the housing of the steerable drilling motor (41 in
The processor 55 may be any programmable general purpose processor such as a programmable logic controller (PLC) or may be one or more general purpose programmable computers. The processor 55 may receive user input from user input devices, such as a keyboard 57. Other user input devices such as touch screens, keypads, and the like may also be used. The processor 55 may also provide visual output to a display 59. The processor 55 may also provide output to a drill string rotation controller 61 that operates the top drive (27 in
The drill string rotation controller 61 may be implemented, for example, as a servo panel (not shown separately) that attaches to a manual control panel for the top drive. One such servo panel is provided with a service sold under the service mark SLIDER, which is a service mark of Schlumberger Technology Corporation, Sugar Land, Tex. The drill string rotation controller 61 may also be implemented as direct control to the top drive motor power input (e.g., as electric current controls or variable orifice hydraulic valves). The top drive control can also be implemented as computer code in the control unit 48 to operate the top drive controller 27. The type of drill string rotation controller is not a limit on the scope of the present disclosure.
The processor 55 may also accept as input signals from the hookload sensor 26. The processor may also provide output signals to the automated draw works 23 as explained with reference to
Referring once again to
As the wellbore trajectory is changed to begin inclination from vertical, as shown at 72 in
Referring once again to
In one example, a calibration may be performed so that a relationship between combined torque exerted by the directional drilling motor 41 and the drill string, and the drilling fluid pressure may be determined. Also, a relationship between the hookload and the drilling fluid pressure may be determined. In one example, the drilling fluid pressure and hookload are measured while the drill string is rotating (so that drill string friction effects are accounted for). The resulting determined relationships may be used in the control unit 48, e.g., in the processor 55 to determine suitable rocking torque values and hookload values.
Referring once again to
In some examples, the amount of torque in the first and second direction may be selected so that a position of the drill string at a midpoint of the first and second torque values maintains a selected rotational position at the surface (called a “scribe mark”). If it is observed that the midpoint (scribe mark) changes rotational orientation in one direction or the other, the torque exerted during rocking in the first or the second direction may be adjusted to either maintain the moved scribe mark orientation or to return the scribe mark to its previous position.
As drilling progresses, the amount of friction applied to the drill string will increase corresponding to the amount of contact between the wellbore wall and the drill string. The foregoing is related to the inclination of the wellbore, the rate of change of inclination and the length of the inclined sections of the wellbore. Therefore, as such drilling progresses, there is less correspondence between the measured hookload (art sensor 26 in
Referring to
During building of the inclination (e.g., at 72 in
The processor (55 in
In one example, an optimized rate of penetration of the drill string (i.e., an optimized rate of release of the drill string) and optimized rocking torque values may be determined in the control unit (48 in
An automatic directional drilling system and method according to the examples described herein may provide improved drilling efficiency and reduce the amount of user input required, thus reducing the possibility of operator caused error in function of the system.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
6050348 | Richarson et al. | Apr 2000 | A |
6802378 | Haci et al. | Oct 2004 | B2 |
6837315 | Pisoni et al. | Jan 2005 | B2 |
6918453 | Haci et al. | Jul 2005 | B2 |
7059427 | Power et al. | Jun 2006 | B2 |
7096979 | Haci et al. | Aug 2006 | B2 |
7810584 | Haci et al. | Oct 2010 | B2 |
8534354 | Maidla et al. | Sep 2013 | B2 |
9145768 | Normore et al. | Sep 2015 | B2 |
20040118612 | Haci et al. | Jun 2004 | A1 |
20040222023 | Haci et al. | Nov 2004 | A1 |
20060081399 | Jones | Apr 2006 | A1 |
20060266553 | Hutchinson | Nov 2006 | A1 |
20080066958 | Haci et al. | Mar 2008 | A1 |
20080164025 | Peter | Jul 2008 | A1 |
20100193246 | Grayson et al. | Aug 2010 | A1 |
20110024187 | Boone et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
2012080819 | Jun 2012 | WO |
WO 2013000094 | Jan 2013 | WO |
2015065883 | May 2015 | WO |
Entry |
---|
International Search Report and Written Opinion issued in PCT/US2013/072125 on Nov. 27, 2013, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20140166363 A1 | Jun 2014 | US |