The present disclosure relates generally to an automated method of adjusting digital subscriber line (DSL) performance and an automated DSL performance control system.
Digital subscriber lines (DSL), such as ADSL lines, are configured to particular profiles based on service agreement, loop quality, and operating environment. A change in these factors, such as introduction of outside electro-magnetic noise, degrades line performance. If the degradation is serious, the line, may become a “problem line” and need a new profile. With a large network, there may be thousands of DSL lines that become problem lines. The typical system to make profile adjustments is to have a service technician manually change the DSL line profile in response to customer complaints received at a volume call center This process may involve one or more truck rolls (sending a service technician to a customer site) which leads to increased DSL maintenance and service costs. It would be desirable to reduce the costs associated with DSL line maintenance while providing improved DSL line performance. Accordingly, there is a need for an improved system and method of adjusting DSL line performance.
In a particular embodiment, the present application discloses an automated digital subscriber line performance control system comprising a computer system including a logic module to evaluate performance of a plurality of DSL lines and to automatically select a set of DSL lines from the plurality of DSL lines, a line profile database responsive to the computer system, the line profile database providing a plurality of line profiles in response to a request from the computer system, and a digital subscriber line access multiplexer coupled to the computer system. The digital subscriber line access multiplexer is configured to measure a performance parameter of a plurality of physical DSL lines and to change a profile for at least one of the plurality of DSL lines. The set of DSL lines has degraded performance characteristics based on historical performance data.
In another embodiment, an automated method of adjusting digital subscriber line (DSL) performance is disclosed. The method includes evaluating performance of a plurality of DSL lines using a computer based system; automatically selecting a set of DSL lines from the plurality of DSL lines, the set of DSL lines having degraded performance characteristics based on historical performance data accessible with respect to the computer based system; retrieving a plurality of line profiles from a profile database; measuring a performance parameter for each of the set of DSL lines; removing from the set of DSL lines any DSL lines that have suitable performance based on the measured performance parameter to create a revised set of DSL lines with degraded performance; and applying one of the plurality of line profiles to each of the physical DSL lines identified by the revised set of DSL lines.
Referring to
The DSL control system 102 may be implemented as a computer system that includes software to execute the evaluation logic 130 and the DSL selection logic 140. The web-based reporting terminal 112 may be a computer workstation, or personal computer with a display device that includes an input device and a computer processor. An example is a computer workstation that may be operated by a user for viewing reports as to DSL network performance and statistics. The DSL performance database 106 and the line profile database 108 may be implemented with standard computer database technology.
Referring to
Line profiles for the degraded DSL lines are changed, at step 206. For example, the DSL lines that were initially selected, at step 202, and then verified as having performance problems at step 204, would have their line profiles changed, at step 206. An example of a changed line profile includes a change to a reduced speed profile or to a channel interleaved profile to assist the performance of the problem DSL line selected. A report of the results of problem DSL lines is provided using a web-reporting tool, at 208. For example, a performance measurement of the DSL line may be taken after the profile has been changed. The performance of selected problem DSL lines may be reported both before and after the profile change. A display report may be reported to an operator, such as via the remote web-based reporting terminal 112. In this matter, an operator of a network may observe performance measurements for problem DSL lines and may observe and evaluate those problem DSL lines before and after a change of profile has been made.
Referring to
A plurality of line profiles is then retrieved from a profile database, at step 306, and a performance parameter for each of the DSL lines is then measured, at step 308. A subset of DSL lines that have suitable performance based on the measured performance parameter are then removed from the set of degraded DSL lines, at step 310. The result of this step is a revised and reduced size set of DSL lines that have confirmed degraded performance, also shown at step 310. A line profile is then applied to each of the physical DSL lines that are identified by the revised set of DSL lines, at step 312. For example, a reduced speed profile or an interleaved profile would be applied to each of the physical DSL lines that are identified by the revised set of DSL lines, at step 312. Data associated with the revised set of DSL lines is then stored, at 314. An example of such data would be performance data measured after application of the new line profile to the DSL lines. The stored data is then reported, such as by using a remote internet browsing tool, at step 316. At step 318, an error message is reported if application of the profile to a physical DSL line fails. For example, where a new line profile is attempted to be applied to a physical DSL line and that new line profile is unable to be applied, an error message could be reported at the web-based reporting terminal 112. The error report provides for operator awareness and allows subsequent action to be taken by the operator.
The system and method illustrated with respect to
The disclosed system utilizes automated methods and provides for improved DSL line performance. In addition, the system removes a significant level of human influence in the process and provides for enhanced performance at a lower cost. Further, line profile adjustment is often a difficult and error prone process and is well-suited to an automated computer control technique as shown.
In addition, with traditional manual methods, only those problem lines identified by customer calls would get attention. In the disclosed system, many problem lines are detected automatically and profiles may be automatically corrected to prevent these problem customer calls. Thus, customer service and DSL line performance is improved while maintenance costs are further reduced. In this manner, not only are customer complaints taken care of expeditiously, but many problems are fixed where neither the company nor the customer have been formally identified, thus, preventing potential subscriber losses. In addition, using a web-based reporting terminal, reports may be generated that include information, such as a list of problem lines selected, lines that fall in the adjustment process, lines that are adjusted successfully, and a line performance matrix that shows performance before and after the line profile has been applied. Thus, a useful reporting tool for network operators is also provided.
The above disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments which fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Name | Date | Kind |
---|---|---|---|
5751338 | Ludwig, Jr. | May 1998 | A |
5974139 | McNamara et al. | Oct 1999 | A |
5987061 | Chen | Nov 1999 | A |
6044107 | Gatherer et al. | Mar 2000 | A |
6055268 | Timm et al. | Apr 2000 | A |
6081291 | Ludwig, Jr. | Jun 2000 | A |
6292559 | Gaikwad et al. | Sep 2001 | B1 |
6317495 | Gaikwad et al. | Nov 2001 | B1 |
6424657 | Voit et al. | Jul 2002 | B1 |
6466088 | Rezvani et al. | Oct 2002 | B1 |
6467092 | Geile et al. | Oct 2002 | B1 |
6477238 | Schneider et al. | Nov 2002 | B1 |
6498791 | Pickett et al. | Dec 2002 | B2 |
6507606 | Shenoi et al. | Jan 2003 | B2 |
6532277 | Ulanskas et al. | Mar 2003 | B2 |
6538451 | Galli et al. | Mar 2003 | B1 |
6549568 | Bingel | Apr 2003 | B1 |
6570855 | Kung et al. | May 2003 | B1 |
6597689 | Chiu et al. | Jul 2003 | B1 |
6608835 | Geile et al. | Aug 2003 | B2 |
6614781 | Elliott et al. | Sep 2003 | B1 |
6625255 | Green et al. | Sep 2003 | B1 |
6640239 | Gidwani | Oct 2003 | B1 |
6643266 | Pugaczewski | Nov 2003 | B1 |
6658052 | Krinsky et al. | Dec 2003 | B2 |
6667971 | Modarressi et al. | Dec 2003 | B1 |
6668041 | Kamali et al. | Dec 2003 | B2 |
6674725 | Modarressi et al. | Dec 2003 | B2 |
6674749 | Mattathil | Jan 2004 | B1 |
6680940 | Lewin et al. | Jan 2004 | B1 |
6697768 | Jones et al. | Feb 2004 | B2 |
6700927 | Esliger et al. | Mar 2004 | B1 |
6724859 | Galli | Apr 2004 | B1 |
6728238 | Long et al. | Apr 2004 | B1 |
6731678 | White et al. | May 2004 | B1 |
6735601 | Subrahmanyam | May 2004 | B1 |
6751218 | Hagirahim et al. | Jun 2004 | B1 |
6751315 | Liu et al. | Jun 2004 | B1 |
6751662 | Natarajan et al. | Jun 2004 | B1 |
6754283 | Li | Jun 2004 | B1 |
6762992 | Lemieux | Jul 2004 | B1 |
6763025 | Leatherbury et al. | Jul 2004 | B2 |
6765864 | Natarajan et al. | Jul 2004 | B1 |
6765918 | Dixon et al. | Jul 2004 | B1 |
6769000 | Akhtar et al. | Jul 2004 | B1 |
6769024 | Natarajan et al. | Jul 2004 | B1 |
6771673 | Baum et al. | Aug 2004 | B1 |
6775232 | Ah Sue et al. | Aug 2004 | B1 |
6775267 | Kung et al. | Aug 2004 | B1 |
6775268 | Wang et al. | Aug 2004 | B1 |
6775273 | Kung et al. | Aug 2004 | B1 |
6778525 | Baum et al. | Aug 2004 | B1 |
6782082 | Rahamim | Aug 2004 | B2 |
6819746 | Schneider et al. | Nov 2004 | B1 |
6914961 | Holeva | Jul 2005 | B2 |
6985444 | Rosen | Jan 2006 | B1 |
7106833 | Kerpez | Sep 2006 | B2 |
7162011 | Kolligs et al. | Jan 2007 | B2 |
20020057763 | Sisk et al. | May 2002 | A1 |
20040095921 | Kerpez | May 2004 | A1 |
20050141673 | Lunt et al. | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050163286 A1 | Jul 2005 | US |