This disclosure relates to fluid flow through flowlines, for example, pipelines flowing hydrocarbons such as petroleum, natural gas, or combinations of them. Also, this disclosure relates to sealing leaks in flowlines through which fluid is flowed.
Flowlines are used to flow fluid between two locations. For example, hydrocarbons such as petroleum, natural gas, or combinations of them, which are produced at a wellsite are flowed through flowlines to processing plants, for example, gas-oil separation plants. Sometimes, flowlines leak, due to, for example, mechanical wear and tear, the corrosive nature of the fluid flow through the flowlines, or other reasons. Repairing the leaks can require stopping fluid flow through the flowlines.
This disclosure describes technologies relating to systems and methods for sealing leaks in flowlines.
Certain aspects of the subject matter described in this disclosure can be implemented as a flowline sealing tool assembly. The assembly includes a hollow sealing sleeve, a pair of sealing elements, and a deployment tool. The hollow sealing sleeve is configured to be positioned within a flowline with a circumferential leak. The sealing sleeve includes a pair of ends configured to be positioned on either side of the circumferential leak within the flowline. The pair of sealing elements are attached to the pair of ends, respectively. The pair of sealing elements are configured to seal the pair of ends to an inner wall of the flowline on either side of the circumferential leak. The deployment tool includes a hollow cylinder configured to be inserted into and retracted from an inner volume defined by the sealing sleeve. The deployment tool is configured to activate the pair of sealing elements to seal the pair of ends to the inner wall of the flowline on either side of the circumferential leak in response to being retracted from the inner volume defined by the sealing sleeve.
An aspect combinable with any other aspect includes the following features. The pair of sealing elements is in an undeployed state prior to and when the deployment tool is inserted into the inner volume defined by the sealing sleeve. In the undeployed state, the pair of sealing elements are configured to not seal the pair of ends to the inner wall of the flowline on either side of the circumferential leak.
An aspect combinable with any other aspect includes the following features. In the undeployed state, an outer diameter of the pair of sealing elements is less than an inner diameter of the flowline.
An aspect combinable with any other aspect includes the following features. The pair of sealing elements are configured to be transitioned from the undeployed state to a deployed state in which the pair of sealing elements expand radially to seal the pair of ends to the inner wall of the flowline on either side of the circumferential leak.
An aspect combinable with any other aspect includes the following features. The assembly includes a pair of activating arms attached to the pair of ends, respectively. Each activating arm faces in a first direction within the flowline when the pair of sealing elements is in the undeployed state. Each activating arm is configured to be shifted from the first direction to a second, opposite direction within the flowline. The pair of sealing elements are configured to be transitioned from the undeployed state to the deployed state in response to each activating arm shifting from the first direction to the second, opposite direction.
An aspect combinable with any other aspect includes the following features. The deployment tool is configured to shift each activating arm from the first direction to the second, opposite direction when retracted from the inner volume defined by the sealing sleeve.
An aspect combinable with any other aspect includes the following features. The deployment tool includes a pair of rings attached to the hollow cylinder and spaced apart by a distance equal to a distance between the pair of sealing elements. The pair of rings shift the pair of activating arms from the first direction to the second, opposite direction when the deployment tool is retracted from the inner volume defined by the sealing sleeve.
An aspect combinable with any other aspect includes the following features. The sealing sleeve includes a first set of rollers attached to an outer surface of the sealing sleeve. The first set of rollers are configured to move the sealing sleeve within the flowline responsive to fluid flow within the flowline to be positioned on either side of the circumferential leak within the flowline.
An aspect combinable with any other aspect includes the following features. The deployment tool includes a second set of rollers attached to an outer surface of the deployment tool. The second set of rollers are configured to move the deployment tool into and out of the inner volume defined by the sealing sleeve responsive to the fluid flow within the flowline.
An aspect combinable with any other aspect includes the following features. The assembly includes a slickline connected to an end of the deployment tool. The slickline is configured to be pulled to retract the deployment tool from the inner volume defined by the sealing sleeve.
An aspect combinable with any other aspect includes the following features. The deployment tool includes an umbrella tool positioned within the hollow cylinder. The umbrella tool is in an open position when the deployment tool is inserted within the inner volume defined by the sealing sleeve. The umbrella tool is configured to transition from the open position to the closed position in response to the slickline being pulled to retract the deployment tool from the inner volume defined by the sealing sleeve.
Certain aspects of the subject matter described here can be implemented as a method. A pair of ends of a hollow sealing sleeve are positioned on either side of a circumferential leak within a flowline. A pair of sealing elements are attached to the pair of ends. The pair of sealing elements is in an undeployed state. A deployment tool is positioned within an inner volume defined by the sealing sleeve. The deployment tool is configured to be retracted from the inner volume defined by the sealing sleeve. The deployment tool is retracted from the inner volume defined by the sealing sleeve. In response to the retracting, the deployment tool transitions the pair of sealing elements from the undeployed state to a deployed state to seal the pair of ends to the inner wall of the flowline on either side of the circumferential leak.
An aspect combinable with any other aspect includes the following features. The deployment tool is removed from the flowline after retracting the deployment tool from the inner volume defined by the sealing sleeve.
An aspect combinable with any other aspect includes the following features. Fluid flow through the flowline is temporarily stopped in response to identifying the circumferential leak. After removing the deployment tool from the flowline, fluid flow through the inner volume defined by the sealing sleeve is re-started.
An aspect combinable with any other aspect includes the following features. To transition the pair of sealing elements from the undeployed state to the deployed state, the pair of sealing elements are expanded radially.
An aspect combinable with any other aspect includes the following features. A pair of activating arms are attached to the pair of ends, respectively. Each activating arm faces in a first direction within the flowline when the pair of sealing elements is in the undeployed state. Each activating arm is configured to be shifted from the first direction to a second, opposite direction within the flowline. To transition the pair of sealing elements from the undeployed state to the deployed state, each activating arm is shifted from the first direction to the second, opposite direction.
An aspect combinable with any other aspect includes the following features. The deployment ring includes a pair of rings attached to the hollow cylinder and spaced apart by a distance equal to a distance between the pair of sealing elements. To shift each activating arm, the pair of rings moves the pair of activating arms from the first direction to the second, opposite direction when the deployment tool is retracted from the inner volume defined by the sealing sleeve.
An aspect combinable with any other aspect includes the following features. The sealing sleeve includes a first set of rollers attached to an outer surface of the sealing sleeve. To position the pair of ends of the hollow sealing sleeve on either side of the circumferential leak, the sealing sleeve is moved within the flowline responsive to fluid flow within the flowline to be positioned on either side of the circumferential leak.
An aspect combinable with any other aspect includes the following features. The deployment tool includes a second set of rollers attached to an outer surface of the deployment tool. To retract the deployment tool from the inner volume defined by the sealing sleeve, the second set of rollers move the deployment tool out of the inner volume, responsive to the fluid flow within the flowline.
An aspect combinable with any other aspect includes the following features. A slickline is connected to an end of the deployment tool. To retract the deployment tool from the inner volume defined by the sealing sleeve, the slickline is pulled.
The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
Like reference numbers and designations in the various drawings indicate like elements.
This disclosure describes techniques directed to temporarily sealing a flowline leak in a manner that allows fluid to flow through the flowline without being lost through the flowline leak. To do so, a sliding sealing sleeve (for example, a cylindrical carbon-fiber reinforced polymer sleeve) with sealing elements (for example, packers) at either end is used. Prior to deployment, the sealing elements are in a de-activated (or undeployed) state in which the outer diameter of the sealing elements is less than the inner diameter of the flowline. Each sealing element is coupled to a pair of activating arms (for example, packer arms). In the undeployed state, the arms face in one direction (for example, towards fluid flow). To activate the sealing elements, the arms are pivoted to face in the opposite direction (for example, opposite to fluid flow). Within the sealing sleeve is a launching tool (also called a deployment tool) that includes an umbrella tool in an open position. The sealing sleeve is connected to a slickline that is unspooled to allow the sealing sleeve to travel within the flowline to the flowline leak location. The end of the slickline is attached to the deployment tool. Rollers on the sealing sleeve allow the sleeve to travel within the flowline.
In operation, a leak is detected in the flowline, for example, using a fiber optic sensor. The sealing sleeve with the deployment tool is deployed by unspooling the slickline until the sleeve reaches the leak location and the ends of the sleeve are on either side of the leak. The slickline is then reversed to pull the deployment tool out of the sleeve. Doing so collapses the umbrella tool. As the deployment tool is pulled out of the sleeve, rings on the deployment tool causes the activating arms of the sealing elements to pivot. The pivoting action deploys, that is, radially expands, the sealing elements, thereby sealing on either side of the leak. The deployment tool is then retrieved, and fluid flow is restarted. The fluid flows through the sealing sleeve and avoids the leak. When the flowline joint is repaired, the sealing sleeve can be retrieved.
Implementing the flowline sealing tool assembly described in this disclosure can provide an automated safety enhancement to a leaking flowline, for example, a leaking gas flowline. The deployed assembly can temporarily and quickly fix leaks in flowlines without necessitating major disruptions to fluid transportation through the flowlines.
In the context of this disclosure, the flowline leak 102 is a circumferential leak in the wall of the flowline 100. Unless sealed, the fluid flowed through the flowline 100 can escape through the flowline leak 102. Although
As described in detail later, in response to detecting the flowline leak 102, a flowline sealing tool assembly 104 is deployed within the flowline 100 to temporarily seal the flowline leak 102. Temporarily sealing the flowline leak 102 means that the flowline sealing tool assembly 104 is not a permanent solution to fix the flowline leak 102. Rather, the flowline sealing tool assembly 104 not only seals the flowline leak 102, but also permits continuing flow through the flowline 100 and through the flowline sealing tool assembly 104 while a permanent solution to the flowline leak 102 is identified. In some instances, the permanent solution can include removal and replacement of the section of the flowline 100 that has the flowline leak 102. In such instances, the flowline sealing tool assembly 104 can be retrieved during such removal and replacement.
The flowine sealing tool assembly 104 includes a hollow sealing sleeve 106 that can be positioned within the flowline 100. The sealing sleeve 106 is an elongated, tubular member, which can be made, for example, of carbon-fiber reinforced polymer. In general, the sealing sleeve 106 can be made of any material that is capable of withstanding fluid flow conditions through the flowline 100 (for example, pressure, temperature, and similar flow conditions) and also withstanding the fluid itself, for example, corrosive nature of the fluid.
The outer cross-section of the sealing sleeve 106 can have the same shape as the inner cross-section of the flowline 100. For example, the sealing sleeve 106 can have a circular outer cross-section when the flowline 100 has a circular inner cross-section.
The sealing sleeve 106 includes a pair of ends, namely, a first end 108a and a second end 108b. When the flowline sealing tube assembly 104 is deployed within the flowline 100, the pair of ends of the sealing sleeve 106 are positioned on either side of the flowline leak 102. As described later, such positioning allows to isolate the circumferential leak from a remainder of the flowline 100. Fluid flow is then routed through the sealing sleeve 106 while avoiding the section of the flowline 100 with the flowline leak 102.
A pair of sealing elements, namely, a first sealing element 110a and a second sealing element 110b, are attached to the pair of ends, respectively. The pair of sealing elements can seal the pair of ends to an inner wall of the flowline 100 on either side of the flowline leak 102. In some implementations, each sealing element is a mechanical packer that includes an expandable metallic structure surrounded by elastomeric elements, for example, rubber elements. Each sealing element can be transitioned from an undeployed state of the sealing element to a deployed state of the sealing element. In the undeployed state of the sealing element, the sealing element has a diameter which is smaller than a diameter of the sealing element in the deployed state. For example, deploying the sealing elements causes the metallic structure to expand from the smaller diameter to the larger diameter. Upon expansion, the elastomeric elements contact and seal against the inner wall of the flowline 100.
A deployment tool 112 is inserted into and retracted from an inner volume 114 defined by the sealing sleeve 106. The deployment tool 112 includes a hollow cylinder having an outer diameter smaller than an inner diameter of the sealing sleeve 106. The deployment tool 112 can have the same properties as, and can be made using, the same material as the sealing sleeve 106. An outer cross-sectional shape of the deployment tool 112 matches an inner cross-sectional shape of the sealing sleeve 106.
As shown in
Upon shifting, the second ends of the pair of activating arms 116 are positioned inside the inner volume 114, and the second ends of the pair of activating arms 118 are positioned outside the inner volume 114.
The pivoting action of the pair of activating arms activates, that is, deploys, the respective sealing element to which the pair of activating arms are connected. The pair of sealing elements 110a and 110b can transition from the undeployed state to the deployed state in response to each activating arm shifting from the first direction to the second, opposite direction. As shown in
As described earlier, the pair of sealing elements 110a and 110b are deployed by retracting the deployment tool 112 from within the inner volume 114 in the second direction. In some implementations, multiple rollers, for example, rollers 124a, 124b, 124c, 124d (
In some implementations, only one ring can be implemented instead of two as described earlier. In such implementations, the same ring can activate the first pair of arms and the second pair of arms in sequence.
In some implementations, the deployment tool 112 is connected to a slickline 126 or similar wire or cable. The slickline 126 can be pulled to retract the deployment tool 112 from the inner volume 106. In some implementations, the deployment tool 112 includes an umbrella tool 128 positioned within the deployment tool 112. The umbrella tool 128 can have the shape and structure of an umbrella. For example, the umbrella tool 128 can have a central rod member with an expandable and collapsible frame attached to the central rod member (for example, at an end of the central rod member). A material layer, for example, a fabric or polymer layer or a layer made of any material that can withstand fluid flow conditions and the fluid, covers the frame of the umbrella tool 128. The frame of the umbrella tool 128 can be in an expanded state when the umbrella tool 128 is in an open position and in a collapsed state when the umbrella tool 128 is in a closed position. Thus, an effective cross-sectional diameter of the umbrella tool 128 in the closed position is less than the effective cross-sectional diameter of the umbrella tool 128 in the open position. Also, in the open position, the material layer is stretched over the frame providing a drag force to the umbrella tool 128 caused by the fluid flowing through the flowline 100. In contrast, in the closed position, the material layer is not stretched over the frame, and the drag force is significantly reduced or is absent.
Prior to deploying the sealing elements 110a and 110b, the umbrella tool 128 is in an open position, a portion of the deployment tool 112 resides within the inner volume 114 and the pair of activating arms are facing the first direction (
In some implementations, the deployment tool is removed from the flowline after retracting the deployment tool from the inner volume defined by the sealing sleeve. Subsequently, fluid flow through the flowline is assumed.
In some implementations, prior to deploying the flowline sealing tool assembly 104, fluid leak through the circumferential leak is identified, for example, using fiber-optic detection techniques. In response to identifying the fluid leak, fluid flow through the flowline is temporarily stopped, and the flowline sealing tool assembly 104 is deployed.
At 602, the fiber optic detection system identifies a leak in the flowline as well as a distance between a location of the leak and the sealing sleeve launcher 502. At 604, the valve 504a is shut off, thereby temporarily stopping flow past the circumferential leak. At 606, the valves 504b and 504c are open. Because the valve 504a is shut off, fluid flows past the valve 504b and into a distal end of the flowline sealing tool assembly 104. The umbrella tool 128 is in an open position within the deployment tool 112. The fluid flowing past the flowline sealing tool assembly 104 applies a drag force on the umbrella tool 128 and pushes the flowline sealing tool assembly 104 past the open valve 504b into the flowline and towards the location of the circumferential leak. The controller of the sealing sleeve launcher 502 can operatively communicate with the controller of the fiber optic detection system to determine a distance that the flowline sealing tool assembly 104 needs to travel such that ends of the sealing sleeve 106 are positioned on either side of the circumferential leak. At 608, the slickline spooling unit 506 is unspooled to provide the required distance to the slickline 126 such that the flowline sealing tool assembly 104 can travel the determined distance. At 610, the sealing sleeve 106 reaches the determined distance, and, at 612, the slickline spooling unit 506 ceases to unspool the slickline 126. At 614, the slickline spooling unit 506 begins to spool the slickline 126, thereby pulling the deployment tool 112. At 616 and in response to the deployment tool 112 being pulled, the umbrella tool 128 collapses and the activating arms are pulled by the rings towards the opposite direction to activate the sealing elements to expand and seal against the inner wall of the flowline on either side of the circumferential leak. At 618 and at predetermined over pull, the activating arms disconnect from the rings. At 620, the deployment tool 112 is retrieved from within the flowline. At 622, the flowline is scheduled for replacing the damaged joint at the same time that the sealing sleeve is retrieved. To retrieve the sealing sleeve, the deployment tool is inserted into the inner volume defined by the sealing sleeve. The rings of the deployment tool shift the activating arms from the second direction to the first direction and cause the sealing elements to contract radially. The sealing sleeve can then be retrieved from within the damaged segment of the flowline. The position of the sealing sleeve within the flowline can also be modified in a similar manner. For example, if it is determined that the sealing sleeve needs to be moved from one location within the flowline to another location, the deployment tool can be inserted into the inner volume defined by the sealing sleeve to detach the sealing sleeve from its first location and to move the sealing sleeve to its second location.
Thus, particular implementations of the subject matter have been described. Other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results. In addition, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous.
Number | Name | Date | Kind |
---|---|---|---|
774519 | Greenaway | Nov 1904 | A |
2508761 | Kroboth | May 1950 | A |
2519116 | Crake | Aug 1950 | A |
2671510 | Slick et al. | Mar 1954 | A |
2696259 | Greene | Dec 1954 | A |
2747002 | Walker et al. | May 1956 | A |
2804148 | Schremp et al. | Aug 1957 | A |
2872935 | Kenney | Feb 1959 | A |
2993540 | Fons | Jul 1961 | A |
3055424 | Allen | Sep 1962 | A |
3302717 | West et al. | Feb 1967 | A |
3354955 | Beny | Nov 1967 | A |
3419080 | Lebourg | Dec 1968 | A |
3525398 | Fisher | Aug 1970 | A |
3633377 | Quick | Jan 1972 | A |
3762476 | Gall | Oct 1973 | A |
3957641 | Jakubek et al. | May 1976 | A |
3968568 | Jackson | Jul 1976 | A |
4074763 | Stevens | Feb 1978 | A |
4106562 | Barnes | Aug 1978 | A |
4107052 | Yoshino et al. | Aug 1978 | A |
4163770 | Porosoff | Aug 1979 | A |
4346922 | Ohtsuga et al. | Aug 1982 | A |
4349047 | Ditto | Sep 1982 | A |
4457236 | Akhmadiev | Jul 1984 | A |
4462714 | Smith et al. | Jul 1984 | A |
4572295 | Walley | Feb 1986 | A |
4766957 | McIntyre | Aug 1988 | A |
4817721 | Pober | Apr 1989 | A |
4949682 | Klein | Aug 1990 | A |
5154588 | Freet et al. | Oct 1992 | A |
5149344 | Macy | Nov 1992 | A |
5161615 | Hutchins et al. | Nov 1992 | A |
5741293 | Wijay | Apr 1998 | A |
5797993 | Woehleke | Aug 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
6063295 | Williams | May 2000 | A |
6102120 | Chen | Aug 2000 | A |
6253850 | Nazzai et al. | Jul 2001 | B1 |
6336504 | Alhanati et al. | Jan 2002 | B1 |
6368498 | Guilmette | Apr 2002 | B1 |
6419730 | Chavez | Jul 2002 | B1 |
6452068 | Zuo et al. | Sep 2002 | B1 |
6497287 | Podio et al. | Dec 2002 | B1 |
6533039 | Rivas et al. | Mar 2003 | B2 |
6540777 | Stenzel | Apr 2003 | B2 |
6672385 | Kilaas et al. | Jan 2004 | B2 |
6719048 | Ramos et al. | Apr 2004 | B1 |
6752175 | Willschuetz | Jun 2004 | B1 |
6755250 | Hall et al. | Jun 2004 | B2 |
6834725 | Whanger et al. | Dec 2004 | B2 |
6860329 | Oosterling | Mar 2005 | B1 |
6923275 | Gardes | Aug 2005 | B2 |
7296597 | Freyer et al. | Nov 2007 | B1 |
7311818 | Gurfinkel | Dec 2007 | B1 |
7357189 | Aldaz et al. | Apr 2008 | B2 |
7370701 | Surjaatmadja et al. | May 2008 | B2 |
7380595 | Wetzel et al. | Jun 2008 | B2 |
7611635 | Chieng et al. | Nov 2009 | B2 |
7665537 | Patel et al. | Feb 2010 | B2 |
7708081 | Bosma et al. | May 2010 | B2 |
7927161 | Schaefer, Jr. | Apr 2011 | B2 |
7954516 | Hallundbaek | Jun 2011 | B2 |
8002121 | Berard et al. | Aug 2011 | B2 |
8414781 | Berard et al. | Apr 2013 | B2 |
8523936 | Schmid et al. | Sep 2013 | B2 |
8528632 | Mack | Sep 2013 | B2 |
8651177 | Vail et al. | Feb 2014 | B2 |
9095799 | Packard | Aug 2015 | B1 |
10087708 | Al-Gouhi | Oct 2018 | B2 |
10385635 | Tucker | Aug 2019 | B1 |
10605041 | Noui-Mehidi | Mar 2020 | B2 |
10605397 | Acker | Mar 2020 | B2 |
20030121558 | Cook et al. | Jul 2003 | A1 |
20040144535 | Kalman et al. | Jul 2004 | A1 |
20050199401 | Patel | Sep 2005 | A1 |
20070137826 | Bosma | Jun 2007 | A1 |
20070260439 | Jeffryes et al. | Jul 2007 | A1 |
20070284011 | Freyer | Dec 2007 | A1 |
20080060813 | Badalamenti et al. | Mar 2008 | A1 |
20080093083 | Johnson | Apr 2008 | A1 |
20080245525 | Rivas et al. | Oct 2008 | A1 |
20090178809 | Keller | Jul 2009 | A1 |
20090183875 | Rayssiguier et al. | Jul 2009 | A1 |
20090223662 | Shaw et al. | Sep 2009 | A1 |
20100096141 | Brown et al. | Apr 2010 | A1 |
20100258306 | Camilleri et al. | Oct 2010 | A1 |
20100284828 | Woie et al. | Nov 2010 | A1 |
20110266228 | Brown et al. | Nov 2011 | A1 |
20120055667 | Ingram | Mar 2012 | A1 |
20120273078 | Hawwa et al. | Nov 2012 | A1 |
20130134109 | Tweit | May 2013 | A1 |
20130153207 | Lauderdale | Jun 2013 | A1 |
20130228075 | Zylla | Jul 2013 | A1 |
20130220641 | Fripp et al. | Aug 2013 | A1 |
20130233414 | Valencia | Sep 2013 | A1 |
20140158350 | Castillo | Jun 2014 | A1 |
20140299331 | Hart et al. | Oct 2014 | A1 |
20150090122 | Hemstock | Apr 2015 | A1 |
20150144541 | Balasubramanian | May 2015 | A1 |
20150267501 | Al-Gouhi | Sep 2015 | A1 |
20160045842 | Agar et al. | Feb 2016 | A1 |
20160084059 | Moore et al. | Mar 2016 | A1 |
20160177659 | Voll | Jun 2016 | A1 |
20180112490 | Al-Gouhi et al. | Apr 2018 | A1 |
20180154318 | Al-Gouhi | Jun 2018 | A1 |
20190060795 | Bulekbay | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
1212312 | Oct 1986 | CA |
2241443 | Apr 1991 | GB |
2251011 | Jun 1992 | GB |
2411918 | Sep 2005 | GB |
138787 | Mar 2014 | RU |
2632607 | Oct 2017 | RU |
1999015755 | Apr 1999 | WO |
2002099247 | Dec 2002 | WO |
2010127240 | Nov 2010 | WO |
WO 2014093649 | Jun 2014 | WO |
2018057361 | Mar 2018 | WO |
2018098303 | May 2018 | WO |
Entry |
---|
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/017050, dated Apr. 26, 2021, 16 pages. |
“Solids Interceptors,” Zurn Product Chart, available on or before Jun. 14, 2017, 9 pages. |
ceramicindustry.com [online], “Microwave Heating of Ceramics,” Oct. 1, 2015, [retrieved on May 15, 2018], retrieved from URL: <https://www.ceramicindustry.com/articles/95044-microwave-heating-of-ceramics>, 4 pages. |
energyweldfab.com [online], “Sandtraps,” Energy weldfab, Manufacturer of Oil and Gas Processing Equipment, available on or before Jun. 25, 2016, retrieved on Oct. 11, 2018, retrieved from URL: <https://www.energyweldfab.com/sandtraps/>, 3 pages. |
Gur et al., “Radially Expandable Ring-Linke Structure with Antiparallelogram Loops,” Proceedings of the International Symposium of Mechanism and Machine Science, AzC IFToMM—Azerbaijan Technical University, Baku, Azerbaijan, Sep. 11-14, 2017, 6 pages. |
Innopipe, “Innopipe-Unique inline gas separator and piggable drip system removes 99% of liquids,” Innopipe Inline Separators and Drips, Copyright 2017, 3 pages. |
Rooks et al., “Integral Pod Intake for Electrical Submersible Pumps,” SPE 160864, presented at the SPE Saudi Arabia Section Technical Symposium and Exhibition in Al-Khobar, Saudi Arabia, Apr. 8-11, 2012, 8 pages. |
Saltel et al., “In-Situ Polymerisation of an Inflatable Composite Sleeve to Reline Damaged Tubing and Shut-Off Perforation,” SPE 8202, presented at the Offshore Technology Conference, May 6-9, 1996, 9 pages. |
Shell Global Solutions,“Pure and Simple—Innovative Water Separation Technology Cuts Costs in Oman,” Published in 2004, 2 pages. |
Technip, “Electricity Trace Heated Pipe-in-Pipe,” Engineering and Technologies, Jan. 2016, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20210247014 A1 | Aug 2021 | US |